1
|
Shi Y, Nakamura S, Mitomo H, Yonamine Y, Wang G, Ijiro K. Plasmonic circular dichroism-based metal ion detection using gold nanorod-DNA complexes. Chem Commun (Camb) 2024; 60:11794-11797. [PMID: 39330876 DOI: 10.1039/d4cc04017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We report that complexes formed between gold nanorods (AuNRs) and metal-mediated DNA exhibit plasmonic circular dichroism (CD) signals up to ∼400 times stronger than the molecular CD signal of DNA. This substantial enhancement enables the detection of metal ions, offering a promising approach to analytical applications in chiral biochemistry.
Collapse
Affiliation(s)
- Yali Shi
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan
| | - Satoshi Nakamura
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
- Institute for the Promotion of General Graduate Education (IPGE), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | - Guoqing Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| |
Collapse
|
2
|
Zhang NN, Mychinko M, Gao SY, Yu L, Shen ZL, Wang L, Peng F, Wei Z, Wang Z, Zhang W, Zhu S, Yang Y, Sun T, Liz-Marzán LM, Bals S, Liu K. Self-Matching Assembly of Chiral Gold Nanoparticles Leads to High Optical Asymmetry and Sensitive Detection of Adenosine Triphosphate. NANO LETTERS 2024. [PMID: 39360649 DOI: 10.1021/acs.nanolett.4c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
To achieve chiral amplification, life uses small chiral molecules as building blocks to construct hierarchical chiral architectures that can realize advanced physiological functions. Inspired by the chiral amplification strategy of nature, we herein demonstrate that the chiral assembly of chiral gold nanorods (GNRs) leads to enhanced optical asymmetry factors (g-factors), up to 0.24. The assembly of chiral GNRs, dictated by structural self-matching, leads to g-factors with over 100-fold higher values than those of individual chiral GNRs, as confirmed by numerical simulations. Moreover, the efficient optical asymmetry of chiral GNR assemblies enables their application as highly sensitive sensors of adenosine triphosphate (ATP detection limit of 1.0 μM), with selectivity against adenosine diphosphate and adenosine monophosphate.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130012, China
| | - Mikhail Mychinko
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Shu-Yang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Linxiuzi Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhi-Li Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fei Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhonglin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zizhun Wang
- Electron Microscopy Center, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Key Laboratory of Automobile Materials MOE, Jilin University, Changchun 130012, China
| | - Wei Zhang
- Electron Microscopy Center, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Key Laboratory of Automobile Materials MOE, Jilin University, Changchun 130012, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital, Jilin University, Changchun 130012, China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tianmeng Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130012, China
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 43009 Bilbao, Spain
- Networking Biomedical Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, University of Vigo, 36310 Vigo, Spain
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Yang J, Sun L, Sun X, Tan J, Xu H, Zhang Q. Unraveling the Origin of Reverse Plasmonic Circular Dichroism from Discrete Bichiral Au Nanoparticles. NANO LETTERS 2024; 24:11706-11713. [PMID: 39230335 DOI: 10.1021/acs.nanolett.4c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bichiral plasmonic nanoparticles exhibited intriguing geometry-dependent circular dichroism (CD) reversal; however, the crucial factor that dominates the plasmonic CD is still unclear. Combined with CD spectroscopy and theoretical multipole analysis, we demonstrate that plasmonic CD originates from the excitation of electric quadrupolar plasmons. Moreover, a comparative study of two distinct quadrupolar modes reveals the correlation between the sign of the CD and the local geometric handedness at the plasmonic hotspots, thereby establishing a structure-property relationship in bichiral nanoparticles. The reverse CD is attributed to the opposite directions of the wavelength shift of the two plasmon modes upon changing the particle geometry. By finely tuning the size of bichiral nanoparticles, we can further reveal that the dependence of plasmonic CD on the electric quadrupolar plasmons. Our work sheds light on the physical origin of plasmonic CD and provides important guidelines for the design of chiral plasmonic nanoparticles toward chirality-dependent applications.
Collapse
Affiliation(s)
- Jian Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiqing Tan
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Hongxing Xu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
5
|
Lu Y, Zhao X, Yan D, Mi Y, Sun P, Yan X, Liu X, Lu G. Upconversion-based chiral nanoprobe for highly selective dual-mode sensing and bioimaging of hydrogen sulfide in vitro and in vivo. LIGHT, SCIENCE & APPLICATIONS 2024; 13:180. [PMID: 39090112 PMCID: PMC11294450 DOI: 10.1038/s41377-024-01539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Chiral assemblies have become one of the most active research areas due to their versatility, playing an increasingly important role in bio-detection, imaging and therapy. In this work, chiral UCNPs/CuxOS@ZIF nanoprobes are prepared by encapsulating upconversion nanoparticles (UCNPs) and CuxOS nanoparticles (NPs) into zeolitic imidazolate framework-8 (ZIF-8). The novel excited-state energy distribution-modulated upconversion nanostructure (NaYbF4@NaYF4: Yb, Er) is selected as the fluorescence source and energy donor for highly efficient fluorescence resonance energy transfer (FRET). CuxOS NP is employed as chiral source and energy acceptor to quench upconversion luminescence (UCL) and provide circular dichroism (CD) signal. Utilizing the natural adsorption and sorting advantages of ZIF-8, the designed nanoprobe can isolate the influence of other common disruptors, thus achieve ultra-sensitive and highly selective UCL/CD dual-mode quantification of H2S in aqueous solution and in living cells. Notably, the nanoprobe is also capable of in vivo intra-tumoral H2S tracking. Our work highlights the multifunctional properties of chiral nanocomposites in sensing and opens a new vision and idea for the preparation and application of chiral nanomaterials in biomedical and biological analysis.
Collapse
Affiliation(s)
- Yang Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Xu Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, China
| | - Yingqian Mi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China.
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China.
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China.
| |
Collapse
|
6
|
Liu Y, Zhang T, Cai J, Zhang F, He Q, Pu M, Guo Y, Bao H, Ma X, Li X, Luo X. Simultaneous Circular Dichroism and Wavefront Manipulation with Generalized Pancharatnam-Berry Phase Metasurfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33935-33942. [PMID: 38899863 DOI: 10.1021/acsami.4c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Simultaneous circular dichroism and wavefront manipulation have gained considerable attention in various applications, such as chiroptical spectroscopy, chiral imaging, sorting and detection of enantiomers, and quantum optics, which can improve the miniaturization and integration of the optical system. Typically, structures with n-fold rotational symmetry (n ≥ 3) are used to improve circular dichroism, as they induce stronger interactions between the electric and magnetic fields. However, manipulating the wavefront with these structures remains challenging because they are commonly considered isotropic and lack a geometric phase response in linear optics. Here, we propose and experimentally demonstrate an approach to achieve simultaneous circular dichroism (with a maximum value of ∼0.62) and wavefront manipulation using a plasmonic metasurface made up of C3 Archimedes spiral nanostructures. The circular dichroism arises from the magnetic dipole-dipole resonance and strong interactions between adjacent meta-atoms. As a proof of concept, two metadevices are fabricated and characterized in the near-infrared regime. This configuration possesses the potential for future applications in photodetection, chiroptical spectroscopy, and the customization of linear and nonlinear optical responses.
Collapse
Affiliation(s)
- Yongjian Liu
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taiming Zhang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jixiang Cai
- College of Mechanical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Fei Zhang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
| | - Qiong He
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
| | - Mingbo Pu
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
| | - Yinghui Guo
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
| | - Hanlin Bao
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoliang Ma
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Li
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangang Luo
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Tan Y, Lu X, Ding T. Trace-Amount Detection of Chiral Molecules Based on Plasmonic Racemic Arrays Fabricated via Direct Laser Writing. ACS Sens 2024; 9:3290-3295. [PMID: 38832719 DOI: 10.1021/acssensors.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Superchiral fields, supported by chiral plasmonic structures, have shown outstanding performance for chiral molecule sensing via enhanced chiral light-matter interaction. However, this sensing capability cannot fully reveal the chiral origin of the molecules as the chiroptic response of the molecules is intertwined with the chiroptic response of the chiral plasmonic nanostructures, which can potentially be excluded by using a plasmonic racemic mixture. Such a plasmonic racemic mixture is not easily attainable, as it normally requires complex fabrication and expensive instrumentation, whose structural fineness is limited by the fabrication precision. Here, we demonstrate trace-amount chiral molecule detection with plasmonic racemic arrays fabricated by direct laser writing with vector beams, which is facile, cost-effective, and highly controllable. The racemic arrays present no inherent circular differential scattering but a large local superchiral field, which reflects the intrinsic chiral features of the chiral molecules. They are further applied to discriminate enantiomers of phenylalanine with a limit of detection (LOD) of 10.0 ± 2.8 μM, which is an order of magnitude smaller than the LOD of conventional circular dichroism spectroscopy. The strong local superchiral field provided by the plasmonic racemic arrays enlightens the design of a superior sensing platform, which holds promising applications for biomedical detection and enantioselective drug development.
Collapse
Affiliation(s)
- Yong Tan
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaolin Lu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Liu Z, Zhang P, Mei C, Liang XT, Jha A, Duan HG. Transient Chiral Dynamics in the Fenna-Matthews-Olson Complex Revealed by Two-Dimensional Circular Dichroism Spectroscopy. J Phys Chem Lett 2024; 15:6550-6559. [PMID: 38885182 DOI: 10.1021/acs.jpclett.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chirality plays a pivotal role across scientific disciplines with profound implications spanning light-matter interactions, molecular recognition, and natural evolutionary processes. This study delves into the active influence of molecular chirality on exciton energy transfer within photosynthetic protein complexes, focusing on the Fenna-Matthews-Olson (FMO) complex. Employing two-dimensional circular dichroism (2DCD) spectroscopy, we investigate the transient chiral dynamics of excitons during energy transfer processes within the FMO complex. Our approach, incorporating pulse information into population dynamics based on the third-order response function, facilitates the calculation of 2DCD spectra and dynamics. This enables the extraction of chiral contributions to excitonic energy transfer and the examination of electronic wave functions. We demonstrate that 2DCD spectra offer excitation energies that are better resolved than those from conventional two-dimensional electronic spectroscopy. These findings deepen our understanding of exciton energy transfer mechanisms in natural photosynthesis, emphasizing the potential of 2DCD spectroscopy as a powerful tool for unraveling the chiral contribution to exciton dynamics.
Collapse
Affiliation(s)
- Zihui Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Panpan Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Chao Mei
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Xian-Ting Liang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Ajay Jha
- Rosalind Franklin Institute, Harwell Campus, OX11 0QX Didcot, U.K
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, U.K
| | - Hong-Guang Duan
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
9
|
Liu C, Sun L, Yang G, Cheng Q, Wang C, Tao Y, Sun X, Wang Z, Zhang Q. Chiral Au-Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310353. [PMID: 38150652 DOI: 10.1002/smll.202310353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed-mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au-Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au-Pd nanorods are fine-tailored. More importantly, the chiral Au-Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization-dependent plasmon-enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon-induced chiral photochemistry.
Collapse
Affiliation(s)
- Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zixu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
10
|
Wang L, Zheng J, Wang K, Khan M, Hu N, Li H, Li L, Wang J, Ni W. Circular Differential Photocurrent Mapping of Hot Electron Response from Individual Plasmonic Nanohelicoids. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38687553 DOI: 10.1021/acsami.4c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Chiral plasmonic nanocrystals have recently attracted increasing attention in circular polarization-dependent photocatalysis driven by hot carriers. While being concealed in traditional ensemble measurements, the individual chiral photocatalytic activity of nanocrystals can exclusively be revealed by directly correlating the circular differential photocurrent response to helical morphologies using single-particle techniques. Herein, we develop a method named circular differential photocurrent mapping (CDPM) and demonstrate that CDPM can be used to characterize the circular differential hot electron (CDHE) response from individual Au nanohelicoids (AuNHs) on a TiO2 photoanode in a photoelectrochemical cell. The single-particle circular differential scattering and CDHE measurements were interpreted with calculations performed on a model in direct correlation to the helical morphologies of the nanocrystal. While CDHE response was found inactive at a dipolar resonance of 750 nm, helicity-convoluted sites of HE generation were identified on the AuNH at a specific higher-order mode of 550 nm, resulting in a significant response of CDHE in association with the handedness of the AuNH. Details of circular differential contributions were further resolved by examining the efficiencies of individual AuNHs in terms of g-factors. Our study provides a powerful microscopic method at the single-particle level for the photocatalytic characterization of chiral nanocrystals, gaining fundamental insights into the photocatalysis of chirality, especially toward plasmon-induced asymmetrical photochemistry or photoelectrochemistry.
Collapse
Affiliation(s)
- Le Wang
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Kaiyu Wang
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Majid Khan
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Ningneng Hu
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Hao Li
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Liang Li
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
11
|
Li S, Xu X, Xu L, Lin H, Kuang H, Xu C. Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis. Nat Commun 2024; 15:3506. [PMID: 38664409 PMCID: PMC11045795 DOI: 10.1038/s41467-024-47657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Asymmetric transformations and synthesis have garnered considerable interest in recent decades due to the extensive need for chiral organic compounds in biomedical, agrochemical, chemical, and food industries. The field of chiral inorganic catalysts, garnering considerable interest for its contributions to asymmetric organic transformations, has witnessed remarkable advancements and emerged as a highly innovative research area. Here, we review the latest developments in this dynamic and emerging field to comprehensively understand the advances in chiral inorganic nanocatalysts and stimulate further progress in asymmetric catalysis.
Collapse
Affiliation(s)
- Si Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Hengwei Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Ding Q, Yang W, Xing X, Lin H, Xu C, Xu L, Li S. Modulation by Co (II) Ion of Optical Activities of L/D-glutathione (GSH)-modified Chiral Copper Nanoclusters for Sensitive Adenosine Triphosphate Detection. Angew Chem Int Ed Engl 2024; 63:e202401032. [PMID: 38438340 DOI: 10.1002/anie.202401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/06/2024]
Abstract
Chiral nanoscale enantiomers exhibit different biological effects in living systems. However, their chirality effect on the detection sensitivity for chiral biological targets still needs to be explored. Here, we discovered that Co2+ can modulate the luminescence performance of L/D-glutathione (GSH)-modified copper nanoclusters (L/D-Cu NCs) and induce strong chiroptical activities as the asymmetric factor was enhanced 223-fold with their distribution regulating from the ultraviolet to visible region. One Co2+ coordinated with two GSH molecules that modified on the surface of Cu NCs in the way of CoN2O2. On this basis, dual-modal chiral and luminescent signals of Co2+ coordinated L/D-Cu NCs (L/D-Co-Cu NCs) were used to detect the chiral adenosine triphosphate (ATP) based on the competitive interaction between surficial GSH and ATP molecules with Co2+. The limits of detection of ATP obtained with fluorescence and circular dichroism intensity were 9.15 μM and 15.75 nM for L-Co-Cu NCs, and 5.35 μM and 4.69 nM for D-Co-Cu NCs. This demonstrated that selecting suitable chiral configurations of nanoprobes effectively enhances detection sensitivity. This study presents not only a novel method to modulate and enhance the chiroptical activity of nanomaterials but also a unique perspective of chirality effects on the detection performances for bio-targets.
Collapse
Affiliation(s)
- Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Weimin Yang
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Xinhe Xing
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
13
|
Liang X, Liang K, Deng X, He C, Zhou P, Li J, Qin J, Jin L, Yu L. The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:705. [PMID: 38668199 PMCID: PMC11053506 DOI: 10.3390/nano14080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Manipulating plasmonic chirality has shown promising applications in nanophotonics, stereochemistry, chirality sensing, and biomedicine. However, to reconfigure plasmonic chirality, the strategy of constructing chiral plasmonic systems with a tunable morphology is cumbersome and complicated to apply for integrated devices. Here, we present a simple and effective method that can also manipulate chirality and control chiral light-matter interactions only via strong coupling between chiral plasmonic nanoparticles and excitons. This paper presents a chiral plexcitonic system consisting of L-shaped nanorod dimers and achiral molecule excitons. The circular dichroism (CD) spectra in our strong-coupling system can be calculated by finite element method simulations. We found that the formation of the chiral plexcitons can significantly modulate the CD spectra, including the appearance of new hybridized peaks, double Rabi splitting, and bisignate anti-crossing behaviors. This phenomenon can be explained by our extended coupled-mode theory. Moreover, we explored the applications of this method in enantiomer ratio sensing by using the properties of the CD spectra. We found a strong linear dependence of the CD spectra on the enantiomer ratio. Our work provides a facile and efficient method to modulate the chirality of nanosystems, deepens our understanding of chiral plexcitons in nanosystems, and facilitates the development of chiral devices and chiral sensing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; (X.L.); (K.L.); (X.D.); (C.H.); (P.Z.); (J.L.); (J.Q.); (L.J.)
| |
Collapse
|
14
|
Wan J, Sun L, Sun X, Liu C, Yang G, Zhang B, Tao Y, Yang Y, Zhang Q. Cu 2+-Dominated Chirality Transfer from Chiral Molecules to Concave Chiral Au Nanoparticles. J Am Chem Soc 2024; 146:10640-10654. [PMID: 38568727 DOI: 10.1021/jacs.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Foreign ions as additives are of great significance for realizing excellent control over the morphology of noble metal nanostructures in the state-of-the-art seed-mediated growth method; however, they remain largely unexplored in chiral synthesis. Here, we report on a Cu2+-dominated chiral growth strategy that can direct the growth of concave chiral Au nanoparticles with C3-dominant chiral centers. The introduction of trace amounts of Cu2+ ions in the seed-mediated chiral growth process is found to dominate the chirality transfer from chiral molecules to chiral nanoparticles, leading to the formation of chiral nanoparticles with a concave VC geometry. Both experimental and theoretical results further demonstrate the correlation between the nanoparticle structure and optical chirality for the concave chiral nanoparticle. The Cu2+ ion is found to dominate the chiral growth by selectively activating the deposition of Au atoms along the [110] and [111] directions, facilitating the formation of the concave VC. We further demonstrate that the Cu2+-dominated chiral growth strategy can be employed to generate a variety of concave chiral nanoparticles with enriched geometric chirality and desired chiroptical properties. Concave chiral nanoparticles also exhibit appealing catalytic activity and selectivity toward electrocatalytic oxidation of enantiomers in comparison to helicoidal nanoparticles. The ability to tune the geometric chirality in a controlled manner by simply manipulating the Cu2+ ions as additives opens up a promising strategy for creating chiral nanomaterials with increasing architectural diversity for chirality-dependent optical and catalytic applications.
Collapse
Affiliation(s)
- Jinling Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yahui Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Zheng R, Zhao M, Du JS, Sudarshan TR, Zhou Y, Paravastu AK, De Yoreo JJ, Ferguson AL, Chen CL. Assembly of short amphiphilic peptoids into nanohelices with controllable supramolecular chirality. Nat Commun 2024; 15:3264. [PMID: 38627405 PMCID: PMC11021492 DOI: 10.1038/s41467-024-46839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
A long-standing challenge in bioinspired materials is to design and synthesize synthetic materials that mimic the sophisticated structures and functions of natural biomaterials, such as helical protein assemblies that are important in biological systems. Herein, we report the formation of a series of nanohelices from a type of well-developed protein-mimetics called peptoids. We demonstrate that nanohelix structures and supramolecular chirality can be well-controlled through the side-chain chemistry. Specifically, the ionic effects on peptoids from varying the polar side-chain groups result in the formation of either single helical fiber or hierarchically stacked helical bundles. We also demonstrate that the supramolecular chirality of assembled peptoid helices can be controlled by modifying assembling peptoids with a single chiral amino acid side chain. Computational simulations and theoretical modeling predict that minimizing exposure of hydrophobic domains within a twisted helical form presents the most thermodynamically favorable packing of these amphiphilic peptoids and suggests a key role for both polar and hydrophobic domains on nanohelix formation. Our findings establish a platform to design and synthesize chiral functional materials using sequence-defined synthetic polymers.
Collapse
Affiliation(s)
- Renyu Zheng
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jingshan S Du
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tarunya Rao Sudarshan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Materials Science, University of Washington, Seattle, WA, 98195, USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
16
|
Sun X, Sun L, Lin L, Guo S, Yang Y, Zhang B, Liu C, Tao Y, Zhang Q. Tuning the Geometry and Optical Chirality of Pentatwinned Au Nanoparticles with 5-Fold Rotational Symmetry. ACS NANO 2024; 18:9543-9556. [PMID: 38518176 DOI: 10.1021/acsnano.3c12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Chirality transfer from chiral molecules to chiral nanomaterials represents an important topic for exploring the origin of chirality in many natural and artificial systems. Moreover, developing a promising class of chiral nanomaterials holds great significance for various applications, including sensing, photonics, catalysis, and biomedicine. Here we demonstrate the geometric control and tunable optical chirality of chiral pentatwinned Au nanoparticles with 5-fold rotational symmetry using the seed-mediated chiral growth method. A distinctive growth pathway and optical chirality are observed using pentatwinned decahedra as seeds, in comparison with the single-crystal Au seeds. By employing different peptides as chiral inducers, pentatwinned Au nanoparticles with two distinct geometric chirality (pentagonal nanostars and pentagonal prisms) are obtained. The intriguing formation and evolution of geometric chirality with the twinned structure are analyzed from a crystallographic perspective upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. Moreover, the interesting effects of the molecular structure of peptides on tuning the geometric chirality of pentatwinned Au nanoparticles are also explored. Finally, we theoretically and experimentally investigate the far-field and near-field optical properties of chiral pentatwinned Au nanoparticles through numerical simulations and single-particle chiroptical measurements. The ability to tune the geometric chirality in a controlled manner represents an important step toward the development of chiral nanomaterials with increasing architectural complexity for chiroptical applications.
Collapse
Affiliation(s)
- Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lifei Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shaoyuan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yiming Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Wang Z, Huang J, Liu W, Xiong C, Hu B. Automatically Aligned and Environment-Friendly Twisted Stacking Terahertz Chiral Metasurface with Giant Circular Dichroism for Rapid Biosensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38491983 DOI: 10.1021/acsami.3c18947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Chiral metasurfaces are capable of generating a huge superchiral field, which has great potential in optoelectronics and biosensing. However, the conventional fabrication process suffers greatly from time consumption, high cost, and difficult multilayer alignment, which hinder its commercial application. Herein, we propose a twisted stacking carbon-based terahertz (THz) chiral metasurface (TCM) based on laser-induced graphene (LIG) technology. By repeating a two-step process of sticking a polyimide film, followed by laser direct writing, the two layers of the TCM are aligned automatically in the fabrication. Laser manufacturing also brings such high processing speed that a TCM with a size of 15 × 15 mm can be prepared in 60 s. In addition, due to the greater dissipation of LIG than that of metals in the THz band, a giant circular dichroism (CD) of +99.5 to -99.6% is experimentally realized. The THz biosensing of bovine serum albumin enhanced by the proposed TCMs is then demonstrated. A wide sensing range (0.5-50 mg mL-1) and a good sensitivity [ΔCD: 2.09% (mg mL-1)-1, Δf: 0.0034 THz (mg mL-1)-1] are proved. This LIG-based TCM provides an environment-friendly platform for chiral research and has great application potential in rapid and low-cost commercial biosensing.
Collapse
Affiliation(s)
- Zongyuan Wang
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Jianzhou Huang
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Weiguang Liu
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Chenjie Xiong
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Hu
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
18
|
Lee S, Fan C, Movsesyan A, Bürger J, Wendisch FJ, de S Menezes L, Maier SA, Ren H, Liedl T, Besteiro LV, Govorov AO, Cortés E. Unraveling the Chirality Transfer from Circularly Polarized Light to Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202319920. [PMID: 38236010 DOI: 10.1002/anie.202319920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
Due to their broken symmetry, chiral plasmonic nanostructures have unique optical properties and numerous applications. However, there is still a lack of comprehension regarding how chirality transfer occurs between circularly polarized light (CPL) and these structures. Here, we thoroughly investigate the plasmon-assisted growth of chiral nanoparticles from achiral Au nanocubes (AuNCs) via CPL without the involvement of any chiral molecule stimulators. We identify the structural chirality of our synthesized chiral plasmonic nanostructures using circular differential scattering (CDS) spectroscopy, which is correlated with scanning electron microscopy imaging at both the single-particle and ensemble levels. Theoretical simulations, including hot-electron surface maps, reveal that the plasmon-induced chirality transfer is mediated by the asymmetric distribution of hot electrons on achiral AuNCs under CPL excitation. Furthermore, we shed light on how this plasmon-induced chirality transfer can also be utilized for chiral growth in bimetallic systems, such as Ag or Pd on AuNCs. The results presented here uncover fundamental aspects of chiral light-matter interaction and have implications for the future design and optimization of chiral sensors and chiral catalysis, among others.
Collapse
Affiliation(s)
- Seunghoon Lee
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- Department of Chemistry, Dong-A University, Busan, 49315, South Korea
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan, 49315, South Korea)
| | - Chenghao Fan
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Artur Movsesyan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Fedja J Wendisch
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
- Faculty of Physics and Center for Nanoscience, Ludwig-Maximilians-University München, 80539, München, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
- The Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
| | - Tim Liedl
- Department of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, 80799, München, Germany
| | | | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio, 45701, United States
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| |
Collapse
|
19
|
Qu A, Sun M, Xu L, Liu L, Guo L, Chen P, Wang Q, Du Z, Wu Z, Xu C, Kuang H. Chiral Nanomaterials for Cancer Vaccines. SMALL METHODS 2024; 8:e2301332. [PMID: 37997213 DOI: 10.1002/smtd.202301332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Chirality is a fundamental characteristic of living organisms and is commonly observed at the biomolecule, cellular, and tissue levels. Chiral nanomaterials play an irreplaceable role in nanomedicine and nanobiology because of their unique enantioselectivity with biological components. Here, research progress relating to chiral nanomaterials in the field of vaccines is reviewed, including antigen presenting systems, immune adjuvants, and cancer vaccines. First, the common synthesis methods are outlined for different types of chiral nanomaterials, as well as their chiral sources, optical properties, and potential biological applications. Then, the application of chiral nanomaterials are discussed in the field of vaccines with reference to the promotion of antigen presentation and activation of the immune system for tumor immunotherapy. Finally, the current obstacles and future research directions of chiral nanomaterials are revealed with regard to regulating the immune system.
Collapse
Affiliation(s)
- Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Qing Wang
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, 214002, P. R. China
| | - Zhiyong Du
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, 214002, P. R. China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
20
|
Qiao T, Bordoloi P, Miyashita T, Dionne JA, Tang ML. Tuning the Chiral Growth of Plasmonic Bipyramids via the Wavelength and Polarization of Light. NANO LETTERS 2024; 24:2611-2618. [PMID: 38357869 DOI: 10.1021/acs.nanolett.3c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Circularly polarized light (CPL) is a versatile tool to prepare chiral nanostructures, but the mechanism for inducing enantioselectivity is not well understood. This work shows that the energy and polarization of visible photons can initiate photodeposition at different sites on plasmonic nanocrystals. Here, CPL on achiral gold bipyramids (AuBPs) creates hot holes that oxidatively deposit PbO2 asymmetrically. We show for the first time that the location of PbO2 photodeposition and hence optical dissymmetry depends on the CPL wavelength. Specifically, 488 and 532 nm CPL induce PbO2 growth in the middle of AuBPs, whereas 660 nm CPL induces PbO2 growth at the tips. Our observations show that wavelength-dependent plasmonic field distributions are more important than surface lightning rod effects in localizing plasmon-mediated photochemistry. The largest optical dissymmetry occurs at excitation wavelengths between the transverse and longitudinal resonances of the AuBPs because higher-order modes are required to induce chiral electric fields.
Collapse
Affiliation(s)
- Tian Qiao
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Priyanuj Bordoloi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Tsumugi Miyashita
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Ming Lee Tang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
21
|
Chen PG, Gao H, Tang B, Jin W, Rogach AL, Lei D. Universal Chiral-Plasmon-Induced Upward and Downward Transfer of Circular Dichroism to Achiral Molecules. NANO LETTERS 2024; 24:2488-2495. [PMID: 38198618 DOI: 10.1021/acs.nanolett.3c04219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Electromagnetic chirality transfer represents an effective means of the nanoscale manipulation of optical chirality. While most of the previous reports have exclusively focused on the circular dichroism (CD) transfer from UV-responsive chiral molecules toward visible-resonant achiral colloidal nanoparticles, here we demonstrate a reverse process in which plasmonic chirality can be transferred to achiral molecules, either upward from visible to UV or downward from visible to near infrared (NIR). By hybridizing achiral UV- or NIR-responsive dye molecules with chiral metal nanoparticles in solution, we observe a chiral-plasmon-induced CD (CPICD) signal at the intrinsically achiral molecular absorption bands. Full-wave electromagnetic modeling reveals that both near-field Coulomb interaction and far-field radiative coupling contribute to the observed CPICD, indicating that the mechanism considered here is universal for different material systems and types of optical resonances. Our study provides a set of design guidelines for broadband nanophotonic chiral sensing from the UV to NIR spectral regime.
Collapse
Affiliation(s)
- Pei-Gang Chen
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Han Gao
- Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Bing Tang
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Wei Jin
- Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
22
|
Chattopadhyay S, Lipok M, Pfaffenberger ZJ, Olesiak-Bańska J, Biteen JS. Single-Particle Photoluminescence Measures a Heterogeneous Distribution of Differential Circular Absorbance of Gold Nanoparticle Aggregates near Constricted Thioflavin T Molecules. J Phys Chem Lett 2024; 15:1618-1622. [PMID: 38306468 DOI: 10.1021/acs.jpclett.3c03450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The chirality of biomacromolecules is critical for their function, but the optical signal of this chirality is small in the visible range. Plasmonic nanoparticles are antennas that can couple to this chiral signal. Here, we examine the molecular-scale mechanism behind the induced circular dichroism of gold nanorods (AuNRs) in solution with insulin fibrils and the fibril-intercalating dye thioflavin T (ThT) with polarization-resolved single-molecule fluorescence and single-particle photoluminescence (PL) imaging. We compared the PL upon excitation by left- and right-handed circularly polarized light to calculate the differential absorbance of AuNRs near insulin fibrils with and without ThT. Overall, our results indicate that AuNRs do not act as chiral absorbers near constricted ThT molecules. Instead, we hypothesize that fibrils promote AuNR aggregation, and this templating is mediated by subtle changes in the solution conditions; under the right conditions, only a few chiral aggregates with significantly higher circular dichroism signal contribute to a large net circular dichroism.
Collapse
Affiliation(s)
- Saaj Chattopadhyay
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Maciej Lipok
- Institute of Advanced Materials, Wroclaw University of Science and Technology, 50-37044 Wroclaw, Poland
| | | | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, 50-37044 Wroclaw, Poland
| | - Julie S Biteen
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
23
|
Zhu F, Wang XW, Chen H, Wen J. Chiral nanopesticides: the invincible opponent of plant viruses. TRENDS IN PLANT SCIENCE 2024; 29:120-122. [PMID: 37993373 DOI: 10.1016/j.tplants.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Viral diseases of plants are exceptionally difficult to control in agriculture production. Recently, Gao et al. discovered that engineered site-selective nanoparticles (NPs), incorporating metal ion-based proteolytic activity and nanoscale chirality, can be used as potent, nontoxic, and environmentally friendly antiviral agents to kill plant viruses.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xiao-Wen Wang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Huan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA.
| |
Collapse
|
24
|
Yang G, Sun L, Zhang Q. Multicomponent chiral plasmonic hybrid nanomaterials: recent advances in synthesis and applications. NANOSCALE ADVANCES 2024; 6:318-336. [PMID: 38235081 PMCID: PMC10790966 DOI: 10.1039/d3na00808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Chiral hybrid nanomaterials with multiple components provide a highly promising approach for the integration of desired chirality with other functionalities into one single nanoscale entity. However, precise control over multicomponent chiral plasmonic hybrid nanomaterials to enable their application in diverse and complex scenarios remains a significant challenge. In this review, our focus lies on the recent advances in the preparation and application of multicomponent chiral plasmonic hybrid nanomaterials, with an emphasis on synthetic strategies and emerging applications. We first systematically elucidate preparation methods for multicomponent chiral plasmonic hybrid nanomaterials encompassing the following approaches: physical deposition approach, galvanic replacement reaction, chiral molecule-mediated, chiral heterostructure, circularly polarized light-mediated, magnetically induced, and chiral assembly. Furthermore, we highlight emerging applications of multicomponent chiral plasmonic hybrid nanomaterials in chirality sensing, enantioselective catalysis, and biomedicine. Finally, we provide an outlook on the challenges and opportunities in the field of multicomponent chiral plasmonic hybrid nanomaterials. In-depth investigations of these multicomponent chiral hybrid nanomaterials will pave the way for the rational design of chiral hybrid nanostructures with desirable functionalities for emerging technological applications.
Collapse
Affiliation(s)
- Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
25
|
Wang F, Wang X, Lu X, Huang C. Nanophotonic Enhanced Chiral Sensing and Its Biomedical Applications. BIOSENSORS 2024; 14:39. [PMID: 38248416 PMCID: PMC11154488 DOI: 10.3390/bios14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Chiral sensing is crucial in the fields of biology and the pharmaceutical industry. Many naturally occurring biomolecules, i.e., amino acids, sugars, and nucleotides, are inherently chiral. Their enantiomers are strongly associated with the pharmacological effects of chiral drugs. Owing to the extremely weak chiral light-matter interactions, chiral sensing at an optical frequency is challenging, especially when trace amounts of molecules are involved. The nanophotonic platform allows for a stronger interaction between the chiral molecules and light to enhance chiral sensing. Here, we review the recent progress in nanophotonic-enhanced chiral sensing, with a focus on the superchiral near-field and enhanced circular dichroism (CD) spectroscopy generated in both the dielectric and in plasmonic structures. In addition, the recent applications of chiral sensing in biomedical fields are discussed, including the detection and treatment of difficult diseases, i.e., Alzheimer's disease, diabetes, and cancer.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
| | - Xinchao Lu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Zhang C, Hu H, Ma C, Li Y, Wang X, Li D, Movsesyan A, Wang Z, Govorov A, Gan Q, Ding T. Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections. Nat Commun 2024; 15:2. [PMID: 38169462 PMCID: PMC10762144 DOI: 10.1038/s41467-023-42719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024] Open
Abstract
Chiral sensing of single molecules is vital for the understanding of chirality and their applications in biomedicine. However, current technologies face severe limitations in achieving single-molecule sensitivity. Here we overcome these limitations by designing a tunable chiral supramolecular plasmonic system made of helical oligoamide sequences (OS) and nanoparticle-on-mirror (NPoM) resonator, which works across the classical and quantum regimes. Our design enhances the chiral sensitivity in the quantum tunnelling regime despite of the reduced local E-field, which is due to the strong Coulomb interactions between the chiral OSs and the achiral NPoMs and the additional enhancement from tunnelling electrons. A minimum of four molecules per single-Au particle can be detected, which allows for the detection of an enantiomeric excess within a monolayer, manifesting great potential for the chiral sensing of single molecules.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, 430205, Wuhan, China
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, LE, 73010, Italy
| | - Chunmiao Ma
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yawen Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Xujie Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Dongyao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Artur Movsesyan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Alexander Govorov
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| | - Quan Gan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
27
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
28
|
Zhang L, Chen Y, Zheng J, Lewis GR, Xia X, Ringe E, Zhang W, Wang J. Chiral Gold Nanorods with Five-Fold Rotational Symmetry and Orientation-Dependent Chiroptical Properties of Their Monomers and Dimers. Angew Chem Int Ed Engl 2023; 62:e202312615. [PMID: 37945530 DOI: 10.1002/anie.202312615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Chiral plasmonic nanoparticles have attracted much attention because of their strong chiroptical responses and broad scientific applications. However, the types of chiral plasmonic nanoparticles have remained limited. Herein we report on a new type of chiral nanoparticle, chiral Au nanorod (NR) with five-fold rotational symmetry, which is synthesized using chiral molecules. Three different types of Au seeds (Au elongated nanodecahedrons, nanodecahedrons, and nanobipyramids) are used to study the growth behaviors. Different synthesis parameters, including the chiral molecules, surfactant, reductant, seeds, and Au precursor, are systematically varied to optimize the chiroptical responses of the chiral Au NRs. The chiral scattering measurements on the individual chiral Au NRs and their dimers are performed. Intriguingly, the chiroptical signals of the individual chiral Au NRs and their end-to-end dimers are similar, while those of the side-by-side dimers are largely reduced. Theoretical calculations and numerical simulations reveal that the different chiroptical responses of the chiral NR dimers are originated from the coupling effect between the plasmon resonance modes. Our study enriches chiral plasmonic nanoparticles and provides valuable insight for the design of plasmonic nanostructures with desired chiroptical properties.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Yilin Chen
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - George R Lewis
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| |
Collapse
|
29
|
Lipok M, Obstarczyk P, Żak A, Olesiak-Bańska J. Single Gold Nanobipyramids Sensing the Chirality of Amyloids. J Phys Chem Lett 2023; 14:11084-11091. [PMID: 38051220 DOI: 10.1021/acs.jpclett.3c02762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Plasmonic nanoparticles, due to their sensitivity to small changes in their closest environment and plasmon resonance, can sense the chirality of the surrounding molecules. Therefore, plasmonic nanoparticles can be applied as a next-generation biosensor for peptides or proteins. In this work, we explore the interaction between chiral, ordered protein aggregates (amyloids) and small gold nanobipyramids. We show how the morphology, structure, and chiroptical properties of amyloids induce circular dichroism in the plasmon resonance wavelengths from individual plasmonic nanoparticles upon binding to the chiral amyloid template. Moreover, using the data from microscopic and spectroscopic analyses of formed heterostructures, we propose the most probable mechanism behind the induction of chirality in this system and discuss which specific feature of insulin protein aggregates is sensed by nanobipyramids.
Collapse
Affiliation(s)
- Maciej Lipok
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Patryk Obstarczyk
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej Żak
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
30
|
Duan Y, Che S. Chiral Mesostructured Inorganic Materials with Optical Chiral Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205088. [PMID: 36245314 DOI: 10.1002/adma.202205088] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Fabricating chiral inorganic materials and revealing their unique quantum confinement-determined optical chiral responses are crucial tasks in the multidisciplinary fields of chemistry, physics, and biology. The field of chiral mesostructured inorganic materials started from the synthesis of individual nanocrystals and evolved to include their assembly from metals, semiconductors, ceramics, and inorganic salts endowed with various chiral structures ranging from atomic to micron scales. This tutorial review highlights the recent research on chiral mesostructured inorganic materials, especially the novel expression of mesostructured chirality and endowed optical chiral response, and it may inspire us with new strategies for the design of chiral inorganic materials and new opportunities beyond the traditional applications of chirality. Fabrication methods for chiral mesostructured inorganic materials are classified according to chirality type, scale, and symmetry-breaking mechanism. Special attention is given to highlight systems with original discoveries, exceptional phenomena, or unique mechanisms of optical chiral response for left- and right-handedness.
Collapse
Affiliation(s)
- Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Matrix Composite, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
31
|
Cheng Q, Yang J, Sun L, Liu C, Yang G, Tao Y, Sun X, Zhang B, Xu H, Zhang Q. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles. NANO LETTERS 2023. [PMID: 38038244 DOI: 10.1021/acs.nanolett.3c04265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Constructing chiral plexcitonic systems with tunable plasmon-exciton coupling may advance the scientific exploitation of strong light-matter interactions. Because of their intriguing chiroptical properties, chiral plasmonic materials have shown promising applications in photonics, sensing, and biomedicine. However, the strong coupling of chiral plasmonic nanoparticles with excitons remains largely unexplored. Here we demonstrate the construction of a chiral plasmon-exciton system using chiral AuAg nanorods and J aggregates for tuning the plexcitonic optical chirality. Circular dichroism spectroscopy was employed to characterize chiral plasmon-exciton coupling, in which Rabi splitting and anticrossing behaviors were observed, whereas the extinction spectra exhibited less prominent phenomena. By controlling the number of molecular excitons and the energy detuning between plasmons and excitons, we have been able to fine-tune the plexcitonic optical chirality. The ability to fine-tune the plexcitonic optical chirality opens up unique opportunities for exploring chiral light-matter interactions and boosting the development of emerging chiroptical devices.
Collapse
Affiliation(s)
- Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
32
|
Tadgell B, Liz-Marzán LM. Probing Interactions between Chiral Plasmonic Nanoparticles and Biomolecules. Chemistry 2023; 29:e202301691. [PMID: 37581332 DOI: 10.1002/chem.202301691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/16/2023]
Abstract
Chiral plasmonic nanoparticles (and their assemblies) interact with biomolecules in a variety of different ways, resulting in distinct optical signatures when probed by circular dichroism spectroscopy. These systems show promise for biosensing applications and offer several advantages over achiral plasmonic systems. Arguably the most notable advantage is that chiral nanoparticles can differentiate between molecular enantiomers and can, therefore, act as sensors for enantiomeric purity. Furthermore, chiral nanoparticles can couple more effectively to chiral biomolecules in biological systems if they have a matching handedness, improving their effectiveness as biomedical agents. In this article, we review the different types of interactions that occur between chiral plasmonic nanoparticle systems and biomolecules, and discuss how circular dichroism spectroscopy can probe these interactions and inform how to optimize systems for biosensing and biomedical applications.
Collapse
Affiliation(s)
- Ben Tadgell
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Networking Biomedical Research Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, 48009, Bilbao, Spain
- Cinbio, Universidade de Vigo, Campus Universitario, 36310, Vigo, Spain
| |
Collapse
|
33
|
He Y, Li H, Steiner AM, Fery A, Zhang Y, Ye C. Tunable Chiral Plasmonic Activities Enabled via Stimuli Responsive Micro-Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303595. [PMID: 37489842 DOI: 10.1002/adma.202303595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Chiral plasmonic nanomaterials with distinctive circularly polarized light-dependent optical responses over a broad range of frequency have great potential for photonic and biomedical applications. However, it still remains challenging to fabricate 3D plasmonic chiral micro-constructs with readily modulated chiroptical properties over the magnitude of ellipticity, mode frequency, and switchable handedness, especially in the vis-NIR range. In this study, polymeric micro-origami-based 3D plasmonic chiral structures are constructed through self-rolling of gold nanospheres (AuNSs)-decorated polymeric micro-sheets. Spherical AuNSs are assembled as highly ordered linear chains on 2D rectangular micro-sheets by polydimethylsiloxane-wrinkle assisted assembly. Upon rolling the micro-sheets to micro-tubules, the AuNS chains transform into 3D helices. The AuNS-assembled helices induce collective plasmonic modes propagating in a helical manner, leading to a strong chiral response over the vis-NIR range. The circular dichroism (CD) is measured to be as high as hundreds of millidegree, and the position and sign of CD peaks are actively modulated by controlling the orientated angle of AuNS chains, enabled by tuning the collective plasmonic modes. This micro-origami-based strategy incorporates the incompatible 2D assembly technique with 3D chiral structures, opening up an intriguing way toward constructing chiral plasmonic structures and modulating chiroptical effects based on responsive polymeric materials.
Collapse
Affiliation(s)
- Yisheng He
- School of Physical Science and Technology, Shanghai Tech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, China
| | - Haoyu Li
- Department of Physics, University of Science and Technology Beijing, 30 Xueyuan Rd., Beijing, 10008, China
| | - Anja Maria Steiner
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
| | - Yuan Zhang
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, 100 Kexue Ave., Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, 266 Mingli Rd., Zhengzhou, 450046, China
| | - Chunhong Ye
- School of Physical Science and Technology, Shanghai Tech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, China
| |
Collapse
|
34
|
Guo X, Li C, Zhang J, Sun M, Xu J, Xu C, Kuang H, Xu L. Chiral nanoparticle-remodeled gut microbiota alleviates neurodegeneration via the gut-brain axis. NATURE AGING 2023; 3:1415-1429. [PMID: 37946041 DOI: 10.1038/s43587-023-00516-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β accumulation in the brain and hyperphosphorylated tau aggregation, as well as neuroinflammation. The gut-brain axis has emerged as a therapeutic target in neurodegenerative diseases by modulating metabolic activity, neuroimmune functions and sensory neuronal signaling. Here we investigate interactions between orally ingested chiral Au nanoparticles and the gut microbiota in AD mice. Oral administration of chiral Au nanoparticles restored cognitive abilities and ameliorated amyloid-β and hyperphosphorylated tau pathologies in AD mice via alterations in the gut microbiome composition and an increase in the gut metabolite, indole-3-acetic acid, which was lower in serum and cerebrospinal fluid of patients with AD compared with age-matched controls. Oral administration of indole-3-acetic acid was able to penetrate the blood-brain barrier and alleviated cognitive decline and pathology including neuroinflammation in AD mice. These findings provide a promising therapeutic target for the amelioration of neuroinflammation and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China
| | - Chen Li
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China
| | - Jia Zhang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China.
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
35
|
Yamanishi J, Ahn HY, Okamoto H. Nanoscopic Observation of Chiro-Optical Force. NANO LETTERS 2023; 23:9347-9352. [PMID: 37792311 PMCID: PMC10607231 DOI: 10.1021/acs.nanolett.3c02534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Nanoscopic observation of chiro-optical phenomena is essential in wide scientific areas but has measurement difficulties; hence, its physics is still unknown. To obtain a full understanding of the physics of chiro-optical systems and derive the full potentials, it is essential to perform an in situ observation of the chiro-optical effect from the individual parts because the macroscopic chiro-optical effect cannot be translated directly into microscopic effects. In the present study, we observed the chiro-optical responses at the nanoscale level by detecting the chiro-optical forces, which were generated by illumination of the material-probe system with circularly polarized light. The induced optical force was dependent on the handedness and wavelength of the incident circularly polarized light and was well correlated to the electromagnetically simulated differential intensity of the longitudinal electric field. Our results facilitate the clarification of chiro-optical phenomena at the nanoscale level and could innovate chiro-optical nanotechnologies.
Collapse
Affiliation(s)
- Junsuke Yamanishi
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hyo-Yong Ahn
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Center
for Novel Science Initiatives, National
Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Hiromi Okamoto
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The
Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
36
|
He C, Guo J, Jin L, Deng X, Li J, Liang X, Liang K, Yu L. The Mechanism and Fine-Tuning of Chiral Plexcitons in the Strong Coupling Regime. NANO LETTERS 2023; 23:9428-9436. [PMID: 37823692 DOI: 10.1021/acs.nanolett.3c02835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Chiral plexcitons, produced by the strong interaction between plasmonic nanocavities and chiral molecules, can provide a promising direction for controlling chiroptical responses on the nanoscale. Here, we reveal the chiral origin and electromagnetic hybridization process in chiral strongly coupled systems. The mechanism and unique advantages of chiral plexcitons for fine-tuning circular dichroism (CD) responses are demonstrated, providing a rule for controlling chiral light-matter interactions in complex chiral nanosystems. Furthermore, we experimentally demonstrate the fine-tuning of chiral plexcitons in hybrid systems consisting of plasmonic nanoparticles and chiral J-aggregates. Continuous and precise tuning of the CD resonance positions was successfully achieved in a given structure. Compared with the previous work, the CD spectral tuning accuracy has been improved by an order of magnitude, which can reach the level of 1 nm. Our findings provide a feasible strategy and theoretical basis for accurately controlling chirality in multiple dimensions.
Collapse
Affiliation(s)
- Chengmao He
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Jiaqi Guo
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
| | - Lei Jin
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xuyan Deng
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Junqiang Li
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xiongyu Liang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Kun Liang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
37
|
Hong T, Zhou W, Tan S, Cai Z. A cooperation tale of biomolecules and nanomaterials in nanoscale chiral sensing and separation. NANOSCALE HORIZONS 2023; 8:1485-1508. [PMID: 37656443 DOI: 10.1039/d3nh00133d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The cooperative relationship between biomolecules and nanomaterials makes up a beautiful tale about nanoscale chiral sensing and separation. Biomolecules are considered a fabulous chirality 'donor' to develop chiral sensors and separation systems. Nature has endowed biomolecules with mysterious chirality. Various nanomaterials with specific physicochemical attributes can realize the transmission and amplification of this chirality. We focus on highlighting the advantages of combining biomolecules and nanomaterials in nanoscale chirality. To enhance the sensors' detection sensitivity, novel cooperation approaches between nanomaterials and biomolecules have attracted tremendous attention. Moreover, innovative biomolecule-based nanocomposites possess great importance in developing chiral separation systems with improved assay performance. This review describes the formation of a network based on nanomaterials and biomolecules mainly including DNA, proteins, peptides, amino acids, and polysaccharides. We hope this tale will record the perpetual relation between biomolecules and nanomaterials in nanoscale chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| |
Collapse
|
38
|
Jiang Y, Li Y, Fu X, Wu Y, Wang R, Zhao M, Mao C, Shi S. Interplay between G protein-coupled receptors and nanotechnology. Acta Biomater 2023; 169:1-18. [PMID: 37517621 DOI: 10.1016/j.actbio.2023.07.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
G protein-coupled receptors (GPCRs), as the largest family of membrane receptors, actively modulate plasma membrane and endosomal signalling. Importantly, GPCRs are naturally nanosized, and spontaneously formed nanoaggregates of GPCRs (natural nano-GPCRs) may enhance GPCR-related signalling and functions. Although GPCRs are the molecular targets of the majority of marketed drugs, the poor pharmacokinetics and physicochemical properties of GPCR ligands greatly limit their clinical applicability. Nanotechnology, as versatile techniques, can encapsulate GPCR ligands to assemble synthetic nano-GPCRs to overcome their obstacles, robustly elevating drug efficacy and safety. Moreover, endosomal delivery of GPCR ligands by nanoparticles can precisely initiate sustained endosomal signal transduction, while nanotechnology has been widely utilized for isolation, diagnosis, and detection of GPCRs. In turn, due to overexpression of GPCRs on the surface of various types of cells, GPCR ligands can endow nanoparticles with active targeting capacity for specific cells via ligand-receptor binding and mediate receptor-dependent endocytosis of nanoparticles. This significantly enhances the potency of nanoparticle delivery systems. Therefore, emerging evidence has revealed the interplay between GPCRs and nanoparticles, although investigations into their relationship have been inadequate. This review aims to summarize the interaction between GPCRs and nanotechnology for understanding their mutual influences and utilizing their interplay for biomedical applications. It will provide a fundamental platform for developing powerful and safe GPCR-targeted drugs and nanoparticle systems. STATEMENT OF SIGNIFICANCE: GPCRs as molecular targets for the majority of marketed drugs are naturally nanosized, and even spontaneously form nano aggregations (nano-GPCRs). Nanotechnology has also been applied to construct synthetic nano-GPCRs or detect GPCRs, while endosomal delivery of GPCR ligands by nanoparticles can magnify endosomal signalling. Meanwhile, molecular engineering of nanoparticles with GPCRs or their ligands can modulate membrane binding and endocytosis, powerfully improving the efficacy of nanoparticle system. However, there are rare summaries on the interaction between GPCRs and nanoparticles. This review will not only provide a versatile platform for utilizing nanoparticles to modulate or detect GPCRs, but also facilitate better understanding of the designated value of GPCRs for molecular engineering of biomaterials with GPCRs in therapeutical application.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
39
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
40
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
41
|
Liu R, Feng Z, Yan X, Lv Y, Wei J, Hao J, Yang Z. Small Molecules Mediated the Chirality Transfer in Self-Assembled Nanocomposites with Strong Circularly Polarized Luminescence. J Am Chem Soc 2023; 145:17274-17283. [PMID: 37493589 DOI: 10.1021/jacs.3c04615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Manipulation of the chirality at all scales has a cross-disciplinary importance and may address key challenges at the heart of physical sciences. One critical question in this field is how the chirality of one entity can be transferred to the asymmetry of another entity. Here, we find that small molecules play a crucial role in the chirality transfer from chiral organic molecules to CdSe/CdS nanorods, where the handedness of the nanorod assemblies either agrees or disagrees with that of the molecular assemblies, leading to the positive or inverse chirality transfer. The assembling mode of nanorods on the molecular assemblies, where the nanorods are either lying or standing, is closely associated with the handedness of the nanorod assemblies, resulting in opposite chirality. Furthermore, we have found that circularly polarized emission from chiral assemblies of nanorods is dependent on molecular additives. The promoted luminescence dissymmetry factor (glum) of the nanocomposites with a high value of ∼0.3 could be attained under optimal conditions.
Collapse
Affiliation(s)
- Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhenyu Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xiangyu Yan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yujia Lv
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
42
|
Jiang S, Kotov NA. Circular Polarized Light Emission in Chiral Inorganic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108431. [PMID: 35023219 DOI: 10.1002/adma.202108431] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Chiral inorganic nanostructures strongly interact with photons changing their polarization state. The resulting circularly polarized light emission (CPLE) has cross-disciplinary importance for a variety of chemical/biological processes and is essential for development of chiral photonics. However, the polarization effects are often complex and their interpretation is dependent on the several structural parameters of the chiral nanostructure. CPLE in nanostructured media has multiple origins and several optical effects are typically convoluted into a single output. Analyzing CPLE data obtained for nanoclusters, nanoparticles, nanoassemblies, and nanocomposites from metals, chalcogenides, perovskite, and other nanostructures, it is shown here that there are several distinct groups of nanomaterials for which CPLE is dominated either by circularly polarized luminescence (CPL) or circularly polarized scattering (CPS); there are also many nanomaterials for which they are comparable. The following points are also demonstrated: 1) CPL and CPS contributions involve light-matter interactions at different structural levels; 2) contribution from CPS is especially strong for nanostructured microparticles, nanoassemblies, and composites; and 3) engineering of materials with strongly polarized light emission requires synergistic implementation of CPL and CPS effects. These findings are expected to guide development of CPLE materials in a variety of technological fields, including 3D displays, information storage, biosensors, optical spintronics, and biological probes.
Collapse
Affiliation(s)
- Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin, 300350, P. R. China
- Department of Chemical Engineering, Biointerfaces Institute, Department of Materials Science and Engineering, Department of Biomedical Engineering and Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicholas A Kotov
- Department of Chemical Engineering, Biointerfaces Institute, Department of Materials Science and Engineering, Department of Biomedical Engineering and Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
43
|
Zheng J, Boukouvala C, Lewis GR, Ma Y, Chen Y, Ringe E, Shao L, Huang Z, Wang J. Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry. Nat Commun 2023; 14:3783. [PMID: 37355650 DOI: 10.1038/s41467-023-39456-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Enriching the library of chiral plasmonic nanoparticles that can be chemically mass-produced will greatly facilitate the applications of chiral plasmonics in areas ranging from constructing optical metamaterials to sensing chiral molecules and activating immune cells. Here we report on a halide-assisted differential growth strategy that can direct the anisotropic growth of chiral Au nanoparticles with tunable sizes and diverse morphologies. Anisotropic Au nanodisks are employed as seeds to yield triskelion-shaped chiral nanoparticles with threefold rotational symmetry and high dissymmetry factors. The averaged scattering g-factors of the L- and D-nanotriskelions are as large as 0.57 and - 0.49 at 650 nm, respectively. The Au nanotriskelions have been applied in chiral optical switching devices and chiral nanoemitters. We also demonstrate that the manipulation of the directional growth rate enables the generation of a variety of chiral morphologies in the presence of homochiral ligands.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Christina Boukouvala
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom
| | - George R Lewis
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom
| | - Yicong Ma
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yang Chen
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom.
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom.
| | - Lei Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhifeng Huang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
44
|
Lin X, Zhou Y, Pan X, Zhang Q, Hu N, Li H, Wang L, Xue Q, Zhang W, Ni W. Trace detection of chiral J-aggregated molecules adsorbed on single Au nanorods. NANOSCALE 2023. [PMID: 37314106 DOI: 10.1039/d3nr01147j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trace detection of chiral molecules, which is of great significance in chemical, biological, medical and pharmaceutical sciences, requires microscopic techniques at the single-particle or single-molecule level. Although ensemble experiments show that the circular dichroism of chiral molecules can be amplified by plasmonic nanocrystals, trace detection of small chiral molecules remains challenging due to weak signals that are far below the detection limit. Herein, we demonstrate trace detection of chiral J-aggregated molecules adsorbed on individual Au nanorods (NRs) using single-particle circular differential scattering (CDS) spectroscopy. Through measuring the single-particle CDS spectra, we identified dip-peak bisignatures and further determined the chirality by matching them with calculations modelled with chiral media. We therefore find that plasmonic nanocrystals can dramatically amplify the circular dichroism of strongly coupled molecules to a detectable level so that the detection limit is as low as 3.9 × 103 molecules on an individual plasmonic nanoparticle, whereas 2.5 × 1012 molecules free in solution are barely detectable using a commercial circular dichroism instrument, suggesting a significant amplification factor of 108. Our method provides a promising strategy with a high amplification factor, shedding light on the trace detection of chiral molecules using optical microscopic methods.
Collapse
Affiliation(s)
- Xingyue Lin
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Yuhan Zhou
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Xinyang Pan
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Qin Zhang
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Ningneng Hu
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Hao Li
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Le Wang
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Qi Xue
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
45
|
Abstract
ConspectusChirality is ubiquitous in the universe and in living creatures over detectable length scales from the subatomic to the galactic, as exemplified in the two extremes by subatomic particles (neutrinos) and spiral galaxies. Between them are living creatures that display multiple levels of chirality emerging from hierarchically assembled asymmetric building blocks. Not too far from the bottom of this pyramid are the foundational building blocks with chiral atomic centers on sp3 carbon atoms exemplified by l-amino acids and d-sugars that are self-assembled into higher-order structures with increasing dimensions forming highly complex, amazingly functional, and energy-efficient living systems. The organization and materials employed in their construction inspired scientists to replicate complex living systems via the self-assembly of chiral components. Multiple studies pointed to unexpected and unique electromagnetic properties of chiral structures with nanoscale and microscale dimensions, including giant circular dichroism and collective circularly polarized scattering that their constituent units did not possess.To address the wide variety of chiral geometries observed in continuous materials, singular particles, and their complex systems, multiple analytic techniques are needed. Simultaneously, their spectroscopic properties create a pathway to multiple applications. For example, mirror-asymmetric vibrations at chiral centers formed by sp3 carbon atoms lead to optical activity for the infrared (IR) wavelength regions. At the same time, understanding the optical activity in, for example, the IR region enables biomedical applications because multiple modalities of biomedical imaging and vibrational optical activity (VOA) of biomolecules are known for IR range. In turn, VOA can be realized in both absorption and emission modalities due to large magnetic transition moments, as vibrational circular dichroism (VCD) or Raman optical activity (ROA) spectroscopy. In addition to the VOA, in the range of longer wavelengths, lattice vibrational mode or phononic behavior occurs in chiral crystals and nanoassemblies, which can be readily detected by terahertz circular dichroism (TCD) spectroscopy. Meanwhile, chiral self-assembly can induce circularly polarized light emission (CPLE) regardless of the existence of chirality in coassembled fluorophores. The CPLE from self-assembled chiral materials is particularly interesting because the CPLE can originate from both circularly polarized luminescence and circularly polarized scattering (CPS). Furthermore, because self-assembled nanostructures often exhibit stronger optical activity than their building blocks owing to dimension and resonance effects, the optical activity of single assembled nanostructures can be investigated by using microscopic technology combined with chiral optics. Here, we describe the state of the art for spectroscopic methods for the comprehensive analysis of chiral nanomaterials at various photon wavelengths, addressed with special attention given to new tools emerging both for materials with self-organized hierarchical chirality and single-particle spectroscopy.
Collapse
Affiliation(s)
- Junyoung Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Jin Choi
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Department of Materials Science and Engineering, Department of Chemical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Materials Science and Engineering, Department of Chemical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
46
|
Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem 2023; 7:355-373. [PMID: 37117811 PMCID: PMC10175202 DOI: 10.1038/s41570-023-00476-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 04/30/2023]
Abstract
The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zilong Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX, USA.
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
47
|
McCarthy L, Verma O, Naidu GN, Bursi L, Alabastri A, Nordlander P, Link S. Chiral Plasmonic Pinwheels Exhibit Orientation-Independent Linear Differential Scattering under Asymmetric Illumination. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:30-39. [PMID: 37122830 PMCID: PMC10131493 DOI: 10.1021/cbmi.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/02/2023]
Abstract
Plasmonic nanoantennas have considerably stronger polarization-dependent optical properties than their molecular counterparts, inspiring photonic platforms for enhancing molecular dichroism and providing fundamental insight into light-matter interactions. One such insight is that even achiral nanoparticles can yield strong optical activity when they are asymmetrically illuminated from a single oblique angle instead of evenly illuminated. This effect, called extrinsic chirality, results from the overall chirality of the experimental geometry and strongly depends on the orientation of the incident light. Although extrinsic chirality has been well-characterized, an analogous effect involving linear polarization sensitivity has not yet been discussed. In this study, we investigate the differential scattering of rotationally symmetric chiral plasmonic pinwheels when asymmetrically irradiated with linearly polarized light. Despite their high rotational symmetry, we observe substantial linear differential scattering that is maintained over all pinwheel orientations. We demonstrate that this orientation-independent linear differential scattering arises from the broken mirror and rotational symmetries of our overall experimental geometry. Our results underscore the necessity of considering both the rotational symmetry of the nanoantenna and the experimental setup, including illumination direction and angle, when performing plasmon-enhanced chiroptical characterizations. Our results demonstrate spectroscopic signatures of an effect analogous to extrinsic chirality for linear polarizations.
Collapse
Affiliation(s)
- Lauren
A. McCarthy
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ojasvi Verma
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Gopal Narmada Naidu
- Department
of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Luca Bursi
- Department
of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department
of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Stephan Link
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| |
Collapse
|
48
|
Tao Y, Sun L, Liu C, Yang G, Sun X, Zhang Q. Site-Selective Chiral Growth of Anisotropic Au Triangular Nanoplates for Tuning the Optical Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301218. [PMID: 37029697 DOI: 10.1002/smll.202301218] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Site-selective chiral growth of anisotropic nanoparticles is of great importance to realize the plasmonic nanostructures with delicate geometry and desired optical chirality; however, it remains largely unexplored. This work demonstrates a controlled site-selective chiral growth system based on the seed-mediated growth of anisotropic Au triangular nanoplates. The site-selective chiral growth involves two distinct underlying pathways, faceted growth and island growth, which are interswitchable upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. The pathway switch governs the geometric and chirality evolution of Au triangular nanoplates, giving rise to tailorable circular dichroism spectra. The ability to tune the optical chirality in a controlled manner by manipulating the site-selective chiral growth pathway opens up a promising strategy for exploiting chiral metamaterials with increasing architectural complexity in chiroptical applications.
Collapse
Affiliation(s)
- Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
49
|
Jedrych A, Pawlak M, Gorecka E, Lewandowski W, Wojcik MM. Light-Responsive Supramolecular Nanotubes-Based Chiral Plasmonic Assemblies. ACS NANO 2023; 17:5548-5560. [PMID: 36897199 PMCID: PMC10062029 DOI: 10.1021/acsnano.2c10955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
We describe the fabrication of dual-responsive (thermo/light) chiral plasmonic films. The idea is based on using photoswitchable achiral liquid crystal (LCs) forming chiral nanotubes for templating helical assemblies of Au NPs. Circular dichroism spectroscopy (CD) confirms chiroptical properties coming from the arrangement of organic and inorganic components, with up to 0.2 dissymmetry factor (g-factor). Upon exposure to UV light, organic molecules isomerize, resulting in controlled melting of organic nanotubes and/or inorganic nanohelices. The process can be reversed using visible light and further modified by varying the temperature, offering a control of chiroptical response of the composite material. These properties can play a key role in the future development of chiral plasmonics, metamaterials, and optoelectronic devices.
Collapse
|
50
|
Liu H, Vladár AE, Wang PP, Ouyang M. Tuning Geometric Chirality in Metallic and Hybrid Nanostructures by Controlled Nanoscale Crystal Symmetry Breaking. J Am Chem Soc 2023; 145:7495-7503. [PMID: 36952630 DOI: 10.1021/jacs.3c00503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Understanding and controlling chirality in inorganic crystalline materials at the nanoscale is crucial in elucidating fundamental chirality-dependent physical and chemical processes as well as advancing new technological prospects, but significant challenges remain due to the lack of material control. Here, we have developed a facile and general bottom-up synthetic strategy for achieving chiral plasmonic Au nanostructures, including nanocubes and nanorods with fine chirality control. The underlying chiral mechanism enabled by the chiral boundary morphology is substantiated by theoretical modeling and finite element method (FEM) simulation. Because of the robustness of induced handedness and their small size, these as-synthesized chiral nanostructures can be further employed as building blocks toward the formation of complex chiral nanostructures. We have demonstrated a new class of chiral hybrid metal-semiconductor nanostructures that can allow integration of chirality with other properties and functionalities. All of these together have paved the way to engineer nanoscale inorganic chirality and thus study various emerging chirality-entangled effects with practical technological applications.
Collapse
Affiliation(s)
- Hanyu Liu
- Department of Physics and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, United States
| | - András E Vladár
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Peng-Peng Wang
- Department of Physics and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, United States
| | - Min Ouyang
- Department of Physics and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|