1
|
Sandström E, Huysmans P, Giskes F, Laeven P, Van Nuffel S, Heeren RMA, Anthony IGM. Improvements in Fast Mass Microscopy for Large-Area Samples. Anal Chem 2024; 96:18037-18042. [PMID: 39467711 PMCID: PMC11561871 DOI: 10.1021/acs.analchem.4c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Mass spectrometry imaging (MSI) is a technique that analyzes the chemical information and spatial distribution of surface analytes. Most MSI studies are conducted in microprobe mode, in which a mass spectrum is collected for each pixel to create a mass image. Thus, the spatial resolution, sample imaging area, and imaging speed are linked. In this mode, halving the pixel size quadruples the analytical time, which presents a practical limit on the high spatial resolution MSI throughput. Fast mass microscopy (FMM) is, in contrast, a microscope-mode MSI technique that decouples spatial resolution and imaging speed. FMM circumvents the linear-quadratic relationship of pixel size and analytical time, which enables increased imaging size area and the analytical speed achievable. In this study, we implement instrument modifications to the FMM system, including the addition of linear encoders that enable roughly 8.5× faster imaging than was previously achieved, allowing a 42.5 × 26 mm2 sample area to be imaged at a 1 μm pixel size in <4.5 min. Linear encoders also enable the alignment of multipass images that increase image homogeneity and signal intensity. The applicability of FMM to large area samples has made it important to define the tolerance to height variations of the technique, which was determined to be at least 218 ± 0.03 (n = 3) μm.
Collapse
Affiliation(s)
- Edith Sandström
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Maastricht 6229 ER, The Netherlands
| | - Pascal Huysmans
- Instrument
Development, Engineering & Evaluation (IDEE), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Frans Giskes
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Maastricht 6229 ER, The Netherlands
| | - Paul Laeven
- Instrument
Development, Engineering & Evaluation (IDEE), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Sebastiaan Van Nuffel
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Maastricht 6229 ER, The Netherlands
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Maastricht 6229 ER, The Netherlands
| | - Ian G. M. Anthony
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Maastricht 6229 ER, The Netherlands
| |
Collapse
|
2
|
Min X, Zhao Y, Yu M, Zhang W, Jiang X, Guo K, Wang X, Huang J, Li T, Sun L, He J. Spatially resolved metabolomics: From metabolite mapping to function visualising. Clin Transl Med 2024; 14:e70031. [PMID: 39456123 PMCID: PMC11511672 DOI: 10.1002/ctm2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/28/2024] Open
Abstract
Mass spectrometry imaging (MSI)-based spatially resolved metabolomics addresses the limitations inherent in traditional liquid chromatography-tandem mass spectrometry (LC-MS)-based metabolomics, particularly the loss of spatial context within heterogeneous tissues. MSI not only enhances our understanding of disease aetiology but also aids in the identification of biomarkers and the assessment of drug toxicity and therapeutic efficacy by converting invisible metabolites and biological networks into visually rendered image data. In this comprehensive review, we illuminate the key advancements in MSI-driven spatially resolved metabolomics over the past few years. We first outline recent innovations in preprocessing methodologies and MSI instrumentation that improve the sensitivity and comprehensiveness of metabolite detection. We then delve into the progress made in functional visualization techniques, which enhance the precision of metabolite identification and annotation. Ultimately, we discuss the significant potential applications of spatially resolved metabolomics technology in translational medicine and drug development, offering new perspectives for future research and clinical translation. HIGHLIGHTS: MSI-driven spatial metabolomics preserves metabolite spatial information, enhancing disease analysis and biomarker discovery. Advances in MSI technology improve detection sensitivity and accuracy, expanding bioanalytical applications. Enhanced visualization techniques refine metabolite identification and spatial distribution analysis. Integration of MSI with AI promises to advance precision medicine and accelerate drug development.
Collapse
Affiliation(s)
- Xinyue Min
- School of PharmacyShenyang Pharmaceutical UniversityShenyangChina
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiran Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenchao Zhang
- School of PharmacyShenyang Pharmaceutical UniversityShenyangChina
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinyi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kaijing Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianpeng Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lixin Sun
- School of PharmacyShenyang Pharmaceutical UniversityShenyangChina
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Li Z, Dong X, Zhuang L, Jia K, Cheng H, Sun H, Cui Y, Ma W, Wei K, Zhang P, Xie H, Yi L, Chen Z, Lu L, Li T, Zhang R, Yan X. The de novo purine synthesis enzyme Adssl1 promotes cardiomyocyte proliferation and cardiac regeneration. Sci Signal 2024; 17:eadn3285. [PMID: 39471248 DOI: 10.1126/scisignal.adn3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/08/2024] [Indexed: 11/01/2024]
Abstract
There is a short window during which the neonatal heart has the proliferative capacity to completely repair damage, an ability that is lost in adulthood. Inducing proliferation in adult cardiomyocytes by reactivating cell cycle reentry after myocardial infarction (MI) improves cardiac function. De novo purine synthesis is a critical source of nucleotides for cell proliferation. Here, using loss- and gain-of-function genetic approaches, we explored the role of the muscle-specific de novo purine synthesis enzyme Adssl1 in cardiac regeneration. Deletion of Adssl1 in mouse neonatal hearts reduced cardiomyocyte proliferation and attenuated heart regeneration after apical resection. Conversely, cardiomyocyte-specific Adssl1 overexpression extended the postnatal regenerative window and induced robust cell cycle reentry after MI, which decreased fibrotic scar size and improved cardiac function. RNA sequencing analysis suggested that Adssl1 overexpression induced strong dedifferentiation and cell cycle entry. Moreover, LC-MS/MS analysis showed that Adssl1 overexpression was associated with increased amounts of purine metabolites, including inosine, which is in clinical use. Administration of exogenous inosine promoted cardiac repair after MI in adult mice. At a molecular level, the increase in purine metabolite production mediated by Adssl1 enhanced the activity of the proliferation-promoting mTORC1 pathway. Our study identifies a role for Adssl1 in supporting cardiomyocyte proliferation and cardiac regeneration.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xiaxi Dong
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Kangni Jia
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Haomai Cheng
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Hang Sun
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yuke Cui
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wenqi Ma
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Keying Wei
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Pupu Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Hongyang Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| |
Collapse
|
4
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Zhu B, Xiang K, Li T, Li X, Shi F. The signature of extracellular vesicles in hypoxic breast cancer and their therapeutic engineering. Cell Commun Signal 2024; 22:512. [PMID: 39434182 PMCID: PMC11492701 DOI: 10.1186/s12964-024-01870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Breast cancer (BC) currently ranks second in the global cancer incidence rate. Hypoxia is a common phenomenon in BC. Under hypoxic conditions, cells in the tumor microenvironment (TME) secrete numerous extracellular vesicles (EVs) to achieve intercellular communication and alter the metabolism of primary and metastatic tumors that shape the TME. In addition, emerging studies have indicated that hypoxia can promote resistance to tumor treatment. Engineered EVs are expected to become carriers for cancer treatment due to their high biocompatibility, low immunogenicity, high drug delivery efficiency, and ease of modification. In this review, we summarize the mechanisms of EVs in the primary TME and distant metastasis of BC under hypoxic conditions. Additionally, we highlight the potential applications of engineered EVs in mitigating the malignant phenotypes of BC cells under hypoxia.
Collapse
Affiliation(s)
- Baiheng Zhu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kehao Xiang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tanghua Li
- The First Clinical Medical School, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
6
|
Wenger ES, Schultz K, Marmorstein R, Christianson DW. Engineering substrate channeling in a bifunctional terpene synthase. Proc Natl Acad Sci U S A 2024; 121:e2408064121. [PMID: 39365814 PMCID: PMC11474042 DOI: 10.1073/pnas.2408064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024] Open
Abstract
Fusicoccadiene synthase from Phomopsis amygdala (PaFS) is a bifunctional terpene synthase. It contains a prenyltransferase (PT) domain that generates geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate, and a cyclase domain that converts GGPP into fusicoccadiene, a precursor of the diterpene glycoside Fusicoccin A. The two catalytic domains are connected by a flexible 69-residue linker. The PT domain mediates oligomerization to form predominantly octamers, with cyclase domains randomly splayed out around the PT core. Surprisingly, despite the random positioning of cyclase domains, substrate channeling is operative in catalysis since most of the GGPP generated by the PT remains on the enzyme for cyclization. Here, we demonstrate that covalent linkage of the PT and cyclase domains is not required for GGPP channeling, although covalent linkage may improve channeling efficiency. Moreover, GGPP competition experiments with other diterpene cyclases indicate that the PaFS PT and cyclase domains are preferential partners regardless of whether they are covalently linked or not. The cryoelectron microscopy structure of the 600-kD "linkerless" construct, in which the 69-residue linker is spliced out and replaced with the tripeptide PTQ, reveals that cyclase pairs associate with all four sides of the PT octamer and exhibit fascinating quaternary structural flexibility. These results suggest that optimal substrate channeling is achieved when a cyclase domain associates with the side of the PT octamer, regardless of whether the two domains are covalently linked and regardless of whether this interaction is transient or locked in place.
Collapse
Affiliation(s)
- Eliott S. Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| |
Collapse
|
7
|
Omini J, Dele-Osibanjo T, Kim H, Zhang J, Obata T. Is the TCA cycle malate dehydrogenase-citrate synthase metabolon an illusion? Essays Biochem 2024; 68:99-106. [PMID: 38958532 PMCID: PMC11461322 DOI: 10.1042/ebc20230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
This review discusses the intriguing yet controversial concept of metabolons, focusing on the malate dehydrogenase-citrate synthase (MDH-CISY) metabolon as a model. Metabolons are multienzyme complexes composed of enzymes that catalyze sequential reactions in metabolic pathways. Metabolons have been proposed to enhance metabolic pathway efficiency by facilitating substrate channeling. However, there is skepticism about the presence of metabolons and their functionality in physiological conditions in vivo. We address the skepticism by reviewing compelling evidence supporting the existence of the MDH-CISY metabolon and highlighting its potential functions in cellular metabolism. The electrostatic interaction between MDH and CISY and the intermediate oxaloacetate, channeled within the metabolon, has been demonstrated using various experimental techniques, including protein-protein interaction assays, isotope dilution studies, and enzyme coupling assays. Regardless of the wealth of in vitro evidence, further validation is required to elucidate the functionality of MDH-CISY metabolons in living systems using advanced structural and spatial analysis techniques.
Collapse
Affiliation(s)
- Joy Omini
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Taiwo Dele-Osibanjo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Heejeong Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Jing Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| |
Collapse
|
8
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2024:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
9
|
Hu X, Liu X, Feng D, Xu T, Li H, Hu C, Wang Z, Liu X, Yin P, Shi X, Shang D, Xu G. Polarization of Macrophages in Tumor Microenvironment Using High-Throughput Single-Cell Metabolomics. Anal Chem 2024; 96:14935-14943. [PMID: 39221578 DOI: 10.1021/acs.analchem.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Macrophages consist of a heterogeneous population of functionally distinct cells that participate in many physiological and pathological processes. They exhibit prominent plasticity by changing their different functional phenotypes represented by proinflammatory (M1) and anti-inflammatory (M2) in response to different environmental stimuli. Emerging evidence illustrates the importance of intracellular metabolic pathways in macrophage polarizations and functions. In the tumor microenvironment (TME), macrophages tend to M2 polarization, which promotes tumor growth and leads to adverse physiological effects. Due to the lack of highly specific antigens in M1 and M2 macrophages, significant challenges present in isolating these subtypes from clinical samples or in vitro coculture models of tumor-immune cells. In reverse, the single-cell technique provides the possibility to investigate the factors influencing macrophage polarization in the TME. In this research, we employed inertial microfluidic chip-mass spectrometry (IMC-MS) to conduct single-cell metabolomics analysis of macrophages polarized into the two major phenotypes, respectively, and 213 metabolites were identified in total. Subsequently, differential metabolites between macrophage phenotypes were analyzed using volcano plots and binary logistic regression models. Glutamine was pinpointed as a key metabolite for the M1 and M2 phenotypes. Experimental results from both monoculture and coculture cell models demonstrated that M1 polarization is more reliant on the presence of glutamine in the culture environment than M2 polarization. Glutamine deficiency resulted in failed M1 polarization, while its absence had a less pronounced effect on M2 polarization. Replenishing an appropriate amount of glutamine during the intermediate stages of coculture models significantly enhanced the proportion of M1 polarization and suppressed the growth of tumor cells. This research elucidated glutamine as a key factor influencing macrophage polarization in the TME via single-cell metabolomics based on IMC-MS, offering promising insights and targets for tumor therapies.
Collapse
Affiliation(s)
- Xuesen Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinlin Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Disheng Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhizhou Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Peiyuan Yin
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dong Shang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
10
|
Liu X, Li M, Woo S. Subcellular Drug Distribution: Exploring Organelle-Specific Characteristics for Enhanced Therapeutic Efficacy. Pharmaceutics 2024; 16:1167. [PMID: 39339204 PMCID: PMC11434838 DOI: 10.3390/pharmaceutics16091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The efficacy and potential toxicity of drug treatments depends on the drug concentration at its site of action, intricately linked to its distribution within diverse organelles of mammalian cells. These organelles, including the nucleus, endosome, lysosome, mitochondria, endoplasmic reticulum, Golgi apparatus, lipid droplets, exosomes, and membrane-less structures, create distinct sub-compartments within the cell, each with unique biological features. Certain structures within these sub-compartments possess the ability to selectively accumulate or exclude drugs based on their physicochemical attributes, directly impacting drug efficacy. Under pathological conditions, such as cancer, many cells undergo dynamic alterations in subcellular organelles, leading to changes in the active concentration of drugs. A mechanistic and quantitative understanding of how organelle characteristics and abundance alter drug partition coefficients is crucial. This review explores biological factors and physicochemical properties influencing subcellular drug distribution, alongside strategies for modulation to enhance efficacy. Additionally, we discuss physiologically based computational models for subcellular drug distribution, providing a quantifiable means to simulate and predict drug distribution at the subcellular level, with the potential to optimize drug development strategies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| | - Miaomiao Li
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210-1267, USA;
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| |
Collapse
|
11
|
Yin Z, Huang W, Li K, Fernie AR, Yan S. Advances in mass spectrometry imaging for plant metabolomics-Expanding the analytical toolbox. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2168-2180. [PMID: 38990529 DOI: 10.1111/tpj.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly popular in plant science due to its ability to characterize complex chemical, spatial, and temporal aspects of plant metabolism. Over the past decade, as the emerging and unique features of various MSI techniques have continued to support new discoveries in studies of plant metabolism closely associated with various aspects of plant function and physiology, spatial metabolomics based on MSI techniques has positioned it at the forefront of plant metabolic studies, providing the opportunity for far higher resolution than was previously available. Despite these efforts, profound challenges at the levels of spatial resolution, sensitivity, quantitative ability, chemical confidence, isomer discrimination, and spatial multi-omics integration, undoubtedly remain. In this Perspective, we provide a contemporary overview of the emergent MSI techniques widely used in the plant sciences, with particular emphasis on recent advances in methodological breakthroughs. Having established the detailed context of MSI, we outline both the golden opportunities and key challenges currently facing plant metabolomics, presenting our vision as to how the enormous potential of MSI technologies will contribute to progress in plant science in the coming years.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Institute of Advanced Science Facilities, Shenzhen, 518107, Guangdong, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Kun Li
- Guangdong Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| |
Collapse
|
12
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. EMBO Rep 2024; 25:3990-4012. [PMID: 39075237 PMCID: PMC11387764 DOI: 10.1038/s44319-024-00218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of a childhood neurodegenerative disorder caused by AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that mouse models of AMPD2 deficiency exhibit predominant degeneration of the hippocampal dentate gyrus, despite a general reduction of brain GTP levels. Neurodegeneration-resistant regions accumulate micron-sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis, while these filaments are barely detectable in the hippocampal dentate gyrus. Furthermore, we show that IMPDH2 filament disassembly reduces GTP levels and impairs growth of neural progenitor cells derived from individuals with human AMPD2 deficiency. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation, opening the possibility of exploring the induction of IMPDH2 assembly as a therapy for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Sha Z, Benkovic SJ. Purinosomes spatially co-localize with mitochondrial transporters. J Biol Chem 2024; 300:107620. [PMID: 39098527 PMCID: PMC11402301 DOI: 10.1016/j.jbc.2024.107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024] Open
Abstract
In this study, we advance our understanding of the spatial relationship between the purinosome, a liquid condensate consisting of six enzymes involved in de novo purine biosynthesis, and mitochondria. Previous research has shown that purinosomes move along tubulin toward mitochondria, suggesting a direct uptake of glycine from mitochondria. Here, we propose that the purinosome is located proximally to the mitochondrial transporters SLC25A13 and SLC25A38, facilitating the uptake of glycine, aspartate, and glutamate, essential factors for purine synthesis. We utilized the proximity ligation assay and APEX proximity labeling to investigate the association between purinosome proteins and mitochondrial transporters. Our results indicate that purinosome assembly occurs close to the mitochondrial membrane under purine-deficient conditions, with the transporters migrating to be adjacent to the purinosome. Furthermore, both targeted and non-targeted analyses suggest that the SLC25A13-APEX2-V5 probe accurately reflects endogenous cellular status. These findings provide insights into the spatial organization of purine biosynthesis and lay the groundwork for further investigations into additional proteins involved in this pathway.
Collapse
Affiliation(s)
- Zhou Sha
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
14
|
Bearne SL. Biochemical communication between filament-forming enzymes: Potential Regulatory Roles of Metabolites in Enzyme Co-assemblies with CTP Synthase. Bioessays 2024; 46:e2400063. [PMID: 38975656 DOI: 10.1002/bies.202400063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 07/09/2024]
Abstract
A host of metabolic enzymes reversibly self-assemble to form membrane-less, intracellular filaments under normal physiological conditions and in response to stress. Often, these enzymes reside at metabolic control points, suggesting that filament formation affords an additional regulatory mechanism. Examples include cytidine-5'-triphosphate (CTP) synthase (CTPS), which catalyzes the rate-limiting step for the de novo biosynthesis of CTP; inosine-5'-monophosphate dehydrogenase (IMPDH), which controls biosynthetic access to guanosine-5'-triphosphate (GTP); and ∆1-pyrroline-5-carboxylate (P5C) synthase (P5CS) that catalyzes the formation of P5C, which links the Krebs cycle, urea cycle, and proline metabolism. Intriguingly, CTPS can exist in co-assemblies with IMPDH or P5CS. Since GTP is an allosteric activator of CTPS, the association of CTPS and IMPDH filaments accords with the need to coordinate pyrimidine and purine biosynthesis. Herein, a hypothesis is presented furnishing a biochemical connection underlying co-assembly of CTPS and P5CS filaments - potent inhibition of CTPS by glutamate γ-semialdehyde, the open-chain form of P5C.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Zhang J, Mao Z, Zhang D, Guo L, Zhao H, Miao M. Mass spectrometry imaging as a promising analytical technique for herbal medicines: an updated review. Front Pharmacol 2024; 15:1442870. [PMID: 39148546 PMCID: PMC11324582 DOI: 10.3389/fphar.2024.1442870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Herbal medicines (HMs) have long played a pivotal role in preventing and treating various human diseases and have been studied widely. However, the complexities present in HM metabolites and their unclear mechanisms of action have posed significant challenges in the modernization of traditional Chinese medicine (TCM). Over the past two decades, mass spectrometry imaging (MSI) has garnered increasing attention as a robust analytical technique that enables the simultaneous execution of qualitative, quantitative, and localization analyses without complex sample pretreatment. With advances in technical solutions, MSI has been extensively applied in the field of HMs. MSI, a label-free ion imaging technique can comprehensively map the spatial distribution of HM metabolites in plant native tissues, thereby facilitating the effective quality control of HMs. Furthermore, the spatial dimension information of small molecule endogenous metabolites within animal tissues provided by MSI can also serve as a supplement to uncover pharmacological and toxicological mechanisms of HMs. In the review, we provide an overview of the three most common MSI techniques. In addition, representative applications in HM are highlighted. Finally, we discuss the current challenges and propose several potential solutions. We hope that the summary of recent findings will contribute to the application of MSI in exploring metabolites and mechanisms of action of HMs.
Collapse
Affiliation(s)
- Jinying Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Zhiguo Mao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Ding Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Lin Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Hui Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| |
Collapse
|
16
|
Zhang H, Lu KH, Ebbini M, Huang P, Lu H, Li L. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. NPJ IMAGING 2024; 2:20. [PMID: 39036554 PMCID: PMC11254763 DOI: 10.1038/s44303-024-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
The recent upswing in the integration of spatial multi-omics for conducting multidimensional information measurements is opening a new chapter in biological research. Mapping the landscape of various biomolecules including metabolites, proteins, nucleic acids, etc., and even deciphering their functional interactions and pathways is believed to provide a more holistic and nuanced exploration of the molecular intricacies within living systems. Mass spectrometry imaging (MSI) stands as a forefront technique for spatially mapping the metabolome, lipidome, and proteome within diverse tissue and cell samples. In this review, we offer a systematic survey delineating different MSI techniques for spatially resolved multi-omics analysis, elucidating their principles, capabilities, and limitations. Particularly, we focus on the advancements in methodologies aimed at augmenting the molecular sensitivity and specificity of MSI; and depict the burgeoning integration of MSI-based spatial metabolomics, lipidomics, and proteomics, encompassing the synergy with other imaging modalities. Furthermore, we offer speculative insights into the potential trajectory of MSI technology in the future.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Kelly H. Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Malik Ebbini
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
17
|
Taylor J, Ayres-Galhardo PH, Brown BL. Elucidating the Role of Human ALAS2 C-terminal Mutations Resulting in Loss of Function and Disease. Biochemistry 2024; 63:1636-1646. [PMID: 38888931 PMCID: PMC11223264 DOI: 10.1021/acs.biochem.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The conserved enzyme aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in certain bacteria and eukaryotes by catalyzing the condensation of glycine and succinyl-CoA to yield aminolevulinic acid. In humans, the ALAS isoform responsible for heme production during red blood cell development is the erythroid-specific ALAS2 isoform. Owing to its essential role in erythropoiesis, changes in human ALAS2 (hALAS2) function can lead to two different blood disorders. X-linked sideroblastic anemia results from loss of ALAS2 function, while X-linked protoporphyria results from gain of ALAS2 function. Interestingly, mutations in the ALAS2 C-terminal extension can be implicated in both diseases. Here, we investigate the molecular basis for enzyme dysfunction mediated by two previously reported C-terminal loss-of-function variants, hALAS2 V562A and M567I. We show that the mutations do not result in gross structural perturbations, but the enzyme stability for V562A is decreased. Additionally, we show that enzyme stability moderately increases with the addition of the pyridoxal 5'-phosphate (PLP) cofactor for both variants. The variants display differential binding to PLP and the individual substrates compared to wild-type hALAS2. Although hALAS2 V562A is a more active enzyme in vitro, it is less efficient concerning succinyl-CoA binding. In contrast, the M567I mutation significantly alters the cooperativity of substrate binding. In combination with previously reported cell-based studies, our work reveals the molecular basis by which hALAS2 C-terminal mutations negatively affect ALA production necessary for proper heme biosynthesis.
Collapse
Affiliation(s)
- Jessica
L. Taylor
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Pedro H. Ayres-Galhardo
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Breann L. Brown
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
18
|
Colley ME, Esselman AB, Scott CF, Spraggins JM. High-Specificity Imaging Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:1-24. [PMID: 38594938 DOI: 10.1146/annurev-anchem-083023-024546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Imaging mass spectrometry (IMS) enables highly multiplexed, untargeted tissue mapping for a broad range of molecular classes, facilitating in situ biological discovery. Yet, challenges persist in molecular specificity, which is the ability to discern one molecule from another, and spatial specificity, which is the ability to link untargeted imaging data to specific tissue features. Instrumental developments have dramatically improved IMS spatial resolution, allowing molecular observations to be more readily associated with distinct tissue features across spatial scales, ranging from larger anatomical regions to single cells. High-performance mass analyzers and systems integrating ion mobility technologies are also becoming more prevalent, further improving molecular coverage and the ability to discern chemical identity. This review provides an overview of recent advancements in high-specificity IMS that are providing critical biological context to untargeted molecular imaging, enabling integrated analyses, and addressing advanced biomedical research applications.
Collapse
Affiliation(s)
- Madeline E Colley
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison B Esselman
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Claire F Scott
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey M Spraggins
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- 5Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Yamada S, Mizukoshi T, Sato A, Sakakibara SI. Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review. Acta Histochem Cytochem 2024; 57:89-100. [PMID: 38988694 PMCID: PMC11231565 DOI: 10.1267/ahc.24-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 07/12/2024] Open
Abstract
Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the "purinosome." Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein-NACHT and WD repeat domain-containing 1 (Nwd1)-in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole-succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tomoya Mizukoshi
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Ayaka Sato
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
21
|
Qin S, Zhang Y, Shi M, Miao D, Lu J, Wen L, Bai Y. In-depth organic mass cytometry reveals differential contents of 3-hydroxybutanoic acid at the single-cell level. Nat Commun 2024; 15:4387. [PMID: 38782922 PMCID: PMC11116506 DOI: 10.1038/s41467-024-48865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Comprehensive single-cell metabolic profiling is critical for revealing phenotypic heterogeneity and elucidating the molecular mechanisms underlying biological processes. However, single-cell metabolomics remains challenging because of the limited metabolite coverage and inability to discriminate isomers. Herein, we establish a single-cell metabolomics platform for in-depth organic mass cytometry. Extended single-cell analysis time guarantees sufficient MS/MS acquisition for metabolite identification and the isomers discrimination while online sampling ensures the high-throughput of the method. The largest number of identified metabolites (approximately 600) are achieved in single cells and fine subtyping of MCF-7 cells is first demonstrated by an investigation on the differential levels of 3-hydroxybutanoic acid among clusters. Single-cell transcriptome analysis reveals differences in the expression of 3-hydroxybutanoic acid downstream antioxidative stress genes, such as metallothionein 2 (MT2A), while a fluorescence-activated cell sorting assay confirms the positive relationship between 3-hydroxybutanoic acid and target proteins; these results suggest that the heterogeneity of 3-hydroxybutanoic acid provides cancer cells with different ability to resist surrounding oxidative stress. Our method paves the way for deep single-cell metabolome profiling and investigations on the physiological and pathological processes that occur during cancer.
Collapse
Affiliation(s)
- Shaojie Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mingying Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Daiyu Miao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiansen Lu
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
22
|
E Drigo RA, Habashy A, Acree C, Kim KY, Deerinck T, Patterson E, Lantier L, McGuinness O, Ellisman M. Mesoscale Metabolic Channeling Revealed by Multimodal Microscopy. RESEARCH SQUARE 2024:rs.3.rs-4096781. [PMID: 38699373 PMCID: PMC11065083 DOI: 10.21203/rs.3.rs-4096781/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Metabolic homeostasis within cells and tissues requires engagement of catabolic and anabolic pathways consuming nutrients needed to generate energy to drive these and other subcellular processes. However, the current understanding of cell homeostasis and metabolism, including how cells utilize nutrients, comes largely from tissue and cell models analyzed after fractionation. These bulk strategies do not reveal the spatial characteristics of cell metabolism at the single cell level, and how these aspects relate to the location of cells and organelles within the complexity of the tissue they reside within. Here we pioneer the use of high-resolution electron and stable isotope microscopy (MIMS-EM) to quantitatively map the fate of nutrient-derived 13C atoms at subcellular scale. When combined with machine-learning image segmentation, our approach allows us to establish the cellular and organellar spatial pattern of glucose 13C flux in hepatocytes in situ. We applied network analysis algorithms to chart the landscape of organelle-organelle contact networks and identified subpopulations of mitochondria and lipid droplets that have distinct organelle interactions and 13C enrichment levels. In addition, we revealed a new relationship between the initiation of glycogenesis and proximity of lipid droplets. Our results establish MIMS-EM as a new tool for tracking and quantifying nutrient metabolism at the subcellular scale, and to identify the spatial channeling of nutrient-derived atoms in the context of organelle-organelle interactions in situ.
Collapse
|
23
|
Calise SJ, O’Neill AG, Burrell AL, Dickinson MS, Molfino J, Clarke C, Quispe J, Sokolov D, Buey RM, Kollman JM. Light-sensitive phosphorylation regulates retinal IMPDH1 activity and filament assembly. J Cell Biol 2024; 223:e202310139. [PMID: 38323936 PMCID: PMC10849882 DOI: 10.1083/jcb.202310139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in guanosine triphosphate (GTP) synthesis and assembles into filaments in cells, which desensitizes the enzyme to feedback inhibition and boosts nucleotide production. The vertebrate retina expresses two splice variants IMPDH1(546) and IMPDH1(595). In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of S477 phosphorylation. The S477D mutation resensitized both variants to GTP inhibition but only blocked assembly of IMPDH1(595) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of a high-activity assembly interface, still allowing assembly of low-activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, S477 phosphorylation acts as a mechanism for downregulating retinal GTP synthesis in the dark when nucleotide turnover is decreased.
Collapse
Affiliation(s)
- S. John Calise
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Audrey G. O’Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L. Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Josephine Molfino
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Charlie Clarke
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Sokolov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rubén M. Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Suvannapruk W, Fisher LE, Luckett JC, Edney MK, Kotowska AM, Kim D, Scurr DJ, Ghaemmaghami AM, Alexander MR. Spatially Resolved Molecular Analysis of Host Response to Medical Device Implantation Using the 3D OrbiSIMS Highlights a Critical Role for Lipids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306000. [PMID: 38356246 PMCID: PMC11022720 DOI: 10.1002/advs.202306000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/18/2024] [Indexed: 02/16/2024]
Abstract
A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in the modulation of the host immune response and are the cells responsible for persistent inflammatory reactions to implanted biomaterials. Two novel immune-instructive polymers that stimulate pro- or anti-inflammatory responses from macrophages in vitro are investigated. These also modulate in vivo foreign body responses (FBR) when implanted subcutaneously in mice. Immunofluorescent staining of tissue abutting the polymer reveals responses consistent with pro- or anti-inflammatory responses previously described for these polymers. Three Dimensional OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) analysis to spatially characterize the metabolites in the tissue surrounding the implant, providing molecular histology insight into the metabolite response in the host is applied. For the pro-inflammatory polymer, monoacylglycerols (MG) and diacylglycerols (DG) are observed at increased intensity, while for the anti-inflammatory coating, the number of phospholipid species detected decreased, and pyridine and pyrimidine levels are elevated. Small molecule signatures from single-cell studies of M2 macrophages in vitro correlate with the in vivo observations, suggesting potential for prediction. Metabolite characterization by the 3D OrbiSIMS is shown to provide insight into the mechanism of bio-instructive materials as medical devices and to inform on the FBR to biomaterials.
Collapse
Affiliation(s)
- Waraporn Suvannapruk
- Advanced Materials and Healthcare Technologies DivisionSchool of PharmacyUniversity of NottinghamUniversity Park NottinghamNottinghamNG7 2RDUK
- Present address:
National Metal and Materials Technology Center (MTEC)114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong LuangPathum Thani12120Thailand
| | - Leanne E Fisher
- Advanced Materials and Healthcare Technologies DivisionSchool of PharmacyUniversity of NottinghamUniversity Park NottinghamNottinghamNG7 2RDUK
| | - Jeni C Luckett
- School of Life SciencesFaculty of Medicine and Health ScienceUniversity of NottinghamUniversity Park NottinghamNottinghamNG7 2RDUK
| | - Max K Edney
- Department of Chemical and Environmental EngineeringFaculty of EngineeringUniversity of NottinghamUniversity Park NottinghamNottinghamNG7 2RDUK
| | - Anna M Kotowska
- Advanced Materials and Healthcare Technologies DivisionSchool of PharmacyUniversity of NottinghamUniversity Park NottinghamNottinghamNG7 2RDUK
| | - Dong‐Hyun Kim
- Advanced Materials and Healthcare Technologies DivisionSchool of PharmacyUniversity of NottinghamUniversity Park NottinghamNottinghamNG7 2RDUK
| | - David J Scurr
- Advanced Materials and Healthcare Technologies DivisionSchool of PharmacyUniversity of NottinghamUniversity Park NottinghamNottinghamNG7 2RDUK
| | - Amir M Ghaemmaghami
- Immunology & Immuno‐bioengineering GroupSchool of Life SciencesFaculty of Medicine and Health SciencesUniversity of NottinghamUniversity Park NottinghamNottinghamNG7 2RDUK
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies DivisionSchool of PharmacyUniversity of NottinghamUniversity Park NottinghamNottinghamNG7 2RDUK
| |
Collapse
|
25
|
Wenger ES, Schultz K, Marmorstein R, Christianson DW. Engineering Substrate Channeling in Assembly-Line Terpene Biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586617. [PMID: 38586022 PMCID: PMC10996616 DOI: 10.1101/2024.03.25.586617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Fusicoccadiene synthase from P. amygdala (PaFS) is a bifunctional assembly-line terpene synthase containing a prenyltransferase domain that generates geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate (DMAPP) and three equivalents of isopentenyl diphosphate (IPP), and a cyclase domain that converts GGPP into fusicoccadiene, a precursor of the diterpene glycoside Fusicoccin A. The two catalytic domains are linked by a flexible 69-residue polypeptide segment. The prenyltransferase domain mediates oligomerization to form predominantly octamers, and cyclase domains are randomly splayed out around the prenyltransferase core. Previous studies suggest that substrate channeling is operative in catalysis, since most of the GGPP formed by the prenyltransferase remains on the protein for the cyclization reaction. Here, we demonstrate that the flexible linker is not required for substrate channeling, nor must the prenyltransferase and cyclase domains be covalently linked to sustain substrate channeling. Moreover, substrate competition experiments with other diterpene cyclases indicate that the PaFS prenyltransferase and cyclase domains are preferential partners regardless of whether they are covalently linked or not. The cryo-EM structure of engineered "linkerless" construct PaFSLL, in which the 69-residue linker is spliced out and replaced with the tripeptide PTQ, reveals that cyclase pairs associate with all four sides of the prenyltransferase octamer. Taken together, these results suggest that optimal substrate channeling is achieved when a cyclase domain associates with the side of the prenyltransferase octamer, regardless of whether the two domains are covalently linked and regardless of whether this interaction is transient or locked in place.
Collapse
Affiliation(s)
- Eliott S. Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
26
|
Sun X, Yu Y, Qian K, Wang J, Huang L. Recent Progress in Mass Spectrometry-Based Single-Cell Metabolic Analysis. SMALL METHODS 2024; 8:e2301317. [PMID: 38032130 DOI: 10.1002/smtd.202301317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Single-cell analysis enables the measurement of biomolecules at the level of individual cells, facilitating in-depth investigations into cellular heterogeneity and precise interpretation of the related biological mechanisms. Among these biomolecules, cellular metabolites exhibit remarkable sensitivity to environmental and biochemical changes, unveiling a hidden world underlying cellular heterogeneity and allowing for the determination of cell physiological states. However, the metabolic analysis of single cells is challenging due to the extremely low concentrations, substantial content variations, and rapid turnover rates of cellular metabolites. Mass spectrometry (MS), characterized by its high sensitivity, wide dynamic range, and excellent selectivity, is employed in single-cell metabolic analysis. This review focuses on recent advances and applications of MS-based single-cell metabolic analysis, encompassing three key steps of single-cell isolation, detection, and application. It is anticipated that MS will bring profound implications in biomedical practices, serving as advanced tools to depict the single-cell metabolic landscape.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
27
|
Park JH, Och U, Braun T, Kriegel MF, Biskup S, Korall H, Uhlig CE, Marquardt T. Treatment of AICA ribosiduria by suppression of de novo purine synthesis. Mol Genet Metab 2024; 141:108124. [PMID: 38244287 DOI: 10.1016/j.ymgme.2023.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024]
Abstract
AICA ribosiduria is an ultra-rare disorder of de novo purine biosynthesis associated with developmental delay of varying severity, seizures, and varying degrees of visual impairment due to chorioretinal atrophy. Caused by biallelic pathogenic variants in ATIC, accumulation of AICA-riboside is the biochemical hallmark and presumed pathomechanism of the condition. In this study, we report the case of a teenage patient compound-heterozygous for the variants c.1277 A > G (p.K426R) and c.642G > C (p.Q214H) in ATIC, with the latter not previously reported. Excessive secretion of AICA-riboside and succinyladenosine was significantly reduced following the introduction of a purine-enriched diet. By suppressing de novo purine biosynthesis in favour of purine salvage, exogenous purine substitution represents a promising treatment approach for AICA ribosiduria. SYNOPSIS: Suppression of de novo purine biosynthesis by increased exogeneous purine supply leads to decreased accumulation of AICA-riboside and succinyl-adenosine and thus is a promising treatment approach for AICA ribosiduria.
Collapse
Affiliation(s)
- Julien H Park
- Department of General Pediatrics, University of Münster, Münster, Germany
| | - Ulrike Och
- Department of General Pediatrics, University of Münster, Münster, Germany
| | - Tim Braun
- Zentrum für Stoffwechseldiagnostik GmbH, Reutlingen, Germany
| | - Matthias F Kriegel
- Department of Ophthalmology, University of Münster Medical Centre, Münster, Germany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Herbert Korall
- Zentrum für Stoffwechseldiagnostik GmbH, Reutlingen, Germany
| | - Constantin E Uhlig
- Department of Ophthalmology, University of Münster Medical Centre, Münster, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, University of Münster, Münster, Germany.
| |
Collapse
|
28
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
29
|
Kambhampati S, Hubbard AH, Koley S, Gomez JD, Marsolais F, Evans BS, Young JD, Allen DK. SIMPEL: using stable isotopes to elucidate dynamics of context specific metabolism. Commun Biol 2024; 7:172. [PMID: 38347116 PMCID: PMC10861564 DOI: 10.1038/s42003-024-05844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
The capacity to leverage high resolution mass spectrometry (HRMS) with transient isotope labeling experiments is an untapped opportunity to derive insights on context-specific metabolism, that is difficult to assess quantitatively. Tools are needed to comprehensively mine isotopologue information in an automated, high-throughput way without errors. We describe a tool, Stable Isotope-assisted Metabolomics for Pathway Elucidation (SIMPEL), to simplify analysis and interpretation of isotope-enriched HRMS datasets. The efficacy of SIMPEL is demonstrated through examples of central carbon and lipid metabolism. In the first description, a dual-isotope labeling experiment is paired with SIMPEL and isotopically nonstationary metabolic flux analysis (INST-MFA) to resolve fluxes in central metabolism that would be otherwise challenging to quantify. In the second example, SIMPEL was paired with HRMS-based lipidomics data to describe lipid metabolism based on a single labeling experiment. Available as an R package, SIMPEL extends metabolomics analyses to include isotopologue signatures necessary to quantify metabolic flux.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Allen H Hubbard
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Javier D Gomez
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Frédéric Marsolais
- London Research and Development Center, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bradley S Evans
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Jamey D Young
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Agricultural Research Service, US Department of Agriculture, St. Louis, MO, 63132, USA.
| |
Collapse
|
30
|
Woulfe J, Munoz DG, Gray DA, Jinnah HA, Ivanova A. Inosine monophosphate dehydrogenase intranuclear inclusions are markers of aging and neuronal stress in the human substantia nigra. Neurobiol Aging 2024; 134:43-56. [PMID: 37992544 DOI: 10.1016/j.neurobiolaging.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
We explored mechanisms involved in the age-dependent degeneration of human substantia nigra (SN) dopamine (DA) neurons. Owing to its important metabolic functions in post-mitotic neurons, we investigated the developmental and age-associated changes in the purine biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH). Tissue microarrays prepared from post-mortem samples of SN from 85 neurologically intact participants humans spanning the age spectrum were immunostained for IMPDH combined with other proteins. SN DA neurons contained two types of IMPDH structures: cytoplasmic IMPDH filaments and intranuclear IMPDH inclusions. The former were not age-restricted and may represent functional units involved in sustaining purine nucleotide supply in these highly metabolically active cells. The latter showed age-associated changes, including crystallization, features reminiscent of pathological inclusion bodies, and spatial associations with Marinesco bodies; structures previously associated with SN neuron dysfunction and death. We postulate dichotomous roles for these two subcellularly distinct IMPDH structures and propose a nucleus-based model for a novel mechanism of SN senescence that is independent of previously known neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- John Woulfe
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - David G Munoz
- Li Ka Shing Knowledge Institute & Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, St. Michael's Hospital, Unity Health, University of Toronto, Toronto, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics & Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyona Ivanova
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children and Neurosurgery Research Department, St. Michael's Hospital, Toronto Unity Health, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Yin Y, Yu H, Wang X, Hu Q, Liu Z, Luo D, Yang X. Cytoophidia: a conserved yet promising mode of enzyme regulation in nucleotide metabolism. Mol Biol Rep 2024; 51:245. [PMID: 38300325 DOI: 10.1007/s11033-024-09208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Nucleotide biosynthesis encompasses both de novo and salvage synthesis pathways, each characterized by significant material and procedural distinctions. Despite these differences, cells with elevated nucleotide demands exhibit a preference for the more intricate de novo synthesis pathway, intricately linked to modes of enzyme regulation. In this study, we primarily scrutinize the biological importance of a conserved yet promising mode of enzyme regulation in nucleotide metabolism-cytoophidia. Cytoophidia, comprising cytidine triphosphate synthase or inosine monophosphate dehydrogenase, is explored across diverse biological models, including yeasts, Drosophila, mice, and human cancer cell lines. Additionally, we delineate potential biomedical applications of cytoophidia. As our understanding of cytoophidia deepens, the roles of enzyme compartmentalization and polymerization in various biochemical processes will unveil, promising profound impacts on both research and the treatment of metabolism-related diseases.
Collapse
Affiliation(s)
- Yue Yin
- School of Queen Mary, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Huanhuan Yu
- First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Xinyi Wang
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaohao Hu
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Jiangxi, China.
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Jiangxi, China.
| |
Collapse
|
32
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576443. [PMID: 38328116 PMCID: PMC10849482 DOI: 10.1101/2024.01.20.576443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that AMPD deficiency in mice primarily leads to hippocampal dentate gyrus degeneration despite causing a generalized reduction of brain GTP levels. Remarkably, we found that neurodegeneration resistant regions accumulate micron sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis. In contrast, IMPDH2 filaments are barely detectable in the hippocampal dentate gyrus, which shows a progressive neuroinflammation and neurodegeneration. Furthermore, using a human AMPD2 deficient neural cell culture model, we show that blocking IMPDH2 polymerization with a dominant negative IMPDH2 variant, impairs AMPD2 deficient neural progenitor growth. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation in neurons with available GTP precursor molecules, providing resistance to neurodegeneration. Our findings open the possibility of exploring the involvement of IMPDH2 assembly as a therapeutic intervention for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Zhao H, Shi C, Han W, Luo G, Huang Y, Fu Y, Lu W, Hu Q, Shang Z, Yang X. Advanced progress of spatial metabolomics in head and neck cancer research. Neoplasia 2024; 47:100958. [PMID: 38142528 PMCID: PMC10788507 DOI: 10.1016/j.neo.2023.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Head and neck cancer ranks as the sixth most prevalent malignancy, constituting 5 % of all cancer cases. Its inconspicuous onset often leads to advanced stage diagnoses, prompting the need for early detection to enhance patient prognosis. Currently, research into early diagnostic markers relies predominantly on genomics, proteomics, transcriptomics, and other methods, which, unfortunately, necessitate tumor tissue homogenization, resulting in the loss of temporal and spatial information. Emerging as a recent addition to the omics toolkit, spatial metabolomics stands out. This method conducts in situ mass spectrometry analyses on fresh tissue specimens while effectively preserving their spatiotemporal information. The utilization of spatial metabolomics in life science research offers distinct advantages. This article comprehensively reviews the progress of spatial metabolomics in head and neck cancer research, encompassing insights into cancer cell metabolic reprogramming. Various mass spectrometry imaging techniques, such as secondary ion mass spectrometry, stroma-assisted laser desorption/ionization, and desorption electrospray ionization, enable in situ metabolite analysis for head and neck cancer. Finally, significant emphasis is placed on the application of presently available techniques for early diagnosis, margin assessment, and prognosis of head and neck cancer.
Collapse
Affiliation(s)
- Huiting Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Guanfa Luo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Yumeng Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Yujuan Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China
| | - Wen Lu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | | | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
34
|
Bartman CR, Faubert B, Rabinowitz JD, DeBerardinis RJ. Metabolic pathway analysis using stable isotopes in patients with cancer. Nat Rev Cancer 2023; 23:863-878. [PMID: 37907620 PMCID: PMC11161207 DOI: 10.1038/s41568-023-00632-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/02/2023]
Abstract
Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.
Collapse
Affiliation(s)
- Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Brandon Faubert
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
35
|
Wan H, Wang W, Liu J, Zhang Y, Yang B, Hua R, Chen H, Chen S, Hua Q. Cochlear metabolomics, highlighting novel insights of purine metabolic alterations in age-related hearing loss. Hear Res 2023; 440:108913. [PMID: 37939412 DOI: 10.1016/j.heares.2023.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Aging is an inevitable phase in mammals that leads to health impairments, including hearing loss. Age-related hearing loss (AHL) leads to psychosocial problems and cognitive decline in the elderly. In this study, mean thresholds of auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE) increased at multiple frequencies in aged rats (14 months old) compared to young rats (2 months old). Using untargeted ultra-high performance liquid chromatography-mass spectroscopy (LC-MS), we quantified molecular metabolic markers in the cochlea of aged rats with hearing loss. A total of 137 different metabolites were identified in two groups, highlighting several prominent metabolic pathways related to purine metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; and pyrimidine metabolism. In addition, the beneficial effects of purine supplementation were demonstrated in a mimetic model of senescent marginal cells (MCs). Overall, altered metabolic profiling is both the cause and manifestation of pathology, and our results suggest that cellular senescence and dysfunctional cochlear metabolism may contribute to the progression of AHL. These findings are seminal in elucidating the pathophysiological mechanisms underlying AHL and serve as a basis for future clinical predictions and interventions in AHL.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Wenjing Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Jingchun Liu
- The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yunlong Zhang
- Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Bingqian Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Rongkai Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Huidong Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
36
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
37
|
Hijikata A, Oshima T, Yura K, Bessho Y. ThermusQ: Toward the cell simulation platform for Thermus thermophilus. J GEN APPL MICROBIOL 2023; 69:59-67. [PMID: 37460312 DOI: 10.2323/jgam.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
ThermusQ is a website (https://www.thermusq.net/) that aims to gather all the molecular information on Thermus thermophilus and to provide a platform to easily access the whole view of the bacterium. ThermusQ comprises the genome sequences of 22 strains from T. thermophilus and T. oshimai strains, plus the sequences of known Thermus phages. ThermusQ also contains information and map diagrams of pathways unique to Thermus strains. The website provides tools to retrieve sequence data in different ways. By gathering the whole data of T. thermophilus strains, the strainspecific characteristics was found. This bird's-eye view of the whole data will lead the research community to identify missing important data and the integration will provide a platform to conduct future biochemical simulations of the bacterium.
Collapse
Affiliation(s)
- Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
| | - Tairo Oshima
- Institute of Environmental Microbiology, Kyowa Kako Co., Ltd
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University
- Center for Interdisciplinary AI and Data Science, Ochanomizu University
- Graduate School of Advanced Science and Engineering, Waseda University
| | - Yoshitaka Bessho
- Center for Interdisciplinary AI and Data Science, Ochanomizu University
- RIKEN SPring-8 Center, Harima Institute
| |
Collapse
|
38
|
Alexandrov T, Saez‐Rodriguez J, Saka SK. Enablers and challenges of spatial omics, a melting pot of technologies. Mol Syst Biol 2023; 19:e10571. [PMID: 37842805 PMCID: PMC10632737 DOI: 10.15252/msb.202110571] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 10/17/2023] Open
Abstract
Spatial omics has emerged as a rapidly growing and fruitful field with hundreds of publications presenting novel methods for obtaining spatially resolved information for any omics data type on spatial scales ranging from subcellular to organismal. From a technology development perspective, spatial omics is a highly interdisciplinary field that integrates imaging and omics, spatial and molecular analyses, sequencing and mass spectrometry, and image analysis and bioinformatics. The emergence of this field has not only opened a window into spatial biology, but also created multiple novel opportunities, questions, and challenges for method developers. Here, we provide the perspective of technology developers on what makes the spatial omics field unique. After providing a brief overview of the state of the art, we discuss technological enablers and challenges and present our vision about the future applications and impact of this melting pot.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- BioInnovation InstituteCopenhagenDenmark
| | - Julio Saez‐Rodriguez
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Sinem K Saka
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
39
|
Wang Q, Shi B, Yang G, Zhu X, Shao H, Qian K, Ye J, Qin A. Metabolomic profiling of Marek's disease virus infection in host cell based on untargeted LC-MS. Front Microbiol 2023; 14:1270762. [PMID: 38029131 PMCID: PMC10666056 DOI: 10.3389/fmicb.2023.1270762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Marek's disease (MD) caused by Marek's disease virus (MDV), poses a serious threat to the poultry industry by inducing neurological disease and malignant lymphoma in infected chickens. However, the underlying mechanisms how MDV disrupts host cells and causes damage still remain elusive. Recently, the application of metabolomics has shown great potential for uncovering the complex mechanisms during virus-host interactions. In this study, chicken embryo fibroblasts (CEFs) infected with MDV were subjected to ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) and multivariate statistical analysis. The results showed that 261 metabolites were significantly altered upon MDV infection, with most changes occurring in amino acid metabolism, energy metabolism, nucleotide metabolism, and lipid metabolism. Notably, MDV infection induces an up-regulation of amino acids in host cells during the early stages of infection to provide the energy and intermediary metabolites necessary for efficient multiplication of its own replication. Taken together, these data not only hold promise in identifying the biochemical molecules utilized by MDV replication in host cells, but also provides a new insight into understanding MDV-host interactions.
Collapse
Affiliation(s)
- Qingsen Wang
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Bin Shi
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Guifu Yang
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Xueying Zhu
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Kun Qian
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Aijian Qin
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| |
Collapse
|
40
|
Schmidt D, Maier J, Bernauer H, Nesterov-Mueller A. Label-Free Imaging of Solid-Phase Peptide Synthesis Products and Their Modifications Tethered in Microspots Using Time-of-Flight Secondary Ion Mass Spectrometry. Int J Mol Sci 2023; 24:15945. [PMID: 37958928 PMCID: PMC10648460 DOI: 10.3390/ijms242115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Time-of-flight secondary ion mass spectrometry is used to analyze solid-phase synthesis products in 60 µm spots of high-density peptide arrays. As a result, a table of specific fragments for the individual detection of amino acids and their side chain protecting groups within peptides is compiled. The specific signal of an amino acid increases linearly as its number increases in the immobilized peptide. Mass-to-charge ratio values are identified that can distinguish between isomers such as leucine and isoleucine. The accessibility of the N-terminus of polyalanine will be studied depending on the number of its residues. The examples provided in the study demonstrate the significant potential of time-of-flight secondary ion mass spectrometry for high-throughput screening of functional groups and their accessibility to chemical reactions occurring simultaneously in hundreds of thousands of microreactors on a single microscope slide.
Collapse
Affiliation(s)
- Dimitry Schmidt
- Institute of Microstructure Technology, Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Josef Maier
- ATG:biosynthetics GmbH, Weberstraße 40, 79249 Merzhausen, Germany; (J.M.); (H.B.)
| | - Hubert Bernauer
- ATG:biosynthetics GmbH, Weberstraße 40, 79249 Merzhausen, Germany; (J.M.); (H.B.)
| | - Alexander Nesterov-Mueller
- Institute of Microstructure Technology, Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| |
Collapse
|
41
|
Ali ES, Ben-Sahra I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 2023; 33:950-966. [PMID: 36967301 PMCID: PMC10518033 DOI: 10.1016/j.tcb.2023.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Nucleotides are the foundational elements of life. Proliferative cells acquire nutrients for energy production and the synthesis of macromolecules, including proteins, lipids, and nucleic acids. Nucleotides are continuously replenished through the activation of the nucleotide synthesis pathways. Despite the importance of nucleotides in cell physiology, there is still much to learn about how the purine and pyrimidine synthesis pathways are regulated in response to intracellular and exogenous signals. Over the past decade, evidence has emerged that several signaling pathways [Akt, mechanistic target of rapamycin complex I (mTORC1), RAS, TP53, and Hippo-Yes-associated protein (YAP) signaling] alter nucleotide synthesis activity and influence cell function. Here, we examine the mechanisms by which these signaling networks affect de novo nucleotide synthesis in mammalian cells. We also discuss how these molecular links can be targeted in diseases such as cancers and immune disorders.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
42
|
Barut I, Fletcher JS. Cell and tissue imaging by secondary ion mass spectrometry. Biointerphases 2023; 18:061202. [PMID: 38108477 DOI: 10.1116/6.0003140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
This Tutorial focuses on the use of secondary ion mass spectrometry for the analysis of cellular and tissue samples. The Tutorial aims to cover the considerations in sample preparation analytical set up and some specific aspects of data interpretation associated with such analysis.
Collapse
Affiliation(s)
- Inci Barut
- Department of Pharmacy, Basic Pharmaceutical Sciences, Gazi University, Ankara 06330, Turkey
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 413 90, Sweden
| |
Collapse
|
43
|
Chen J, Yang S, Li Y, Ziwen X, Zhang P, Song Q, Yao Y, Pei H. De novo nucleotide biosynthetic pathway and cancer. Genes Dis 2023; 10:2331-2338. [PMID: 37554216 PMCID: PMC10404870 DOI: 10.1016/j.gendis.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022] Open
Abstract
De novo nucleotide biosynthetic pathway is a highly conserved and essential biochemical pathway in almost all organisms. Both purine nucleotides and pyrimidine nucleotides are necessary for cell metabolism and proliferation. Thus, the dysregulation of the de novo nucleotide biosynthetic pathway contributes to the development of many human diseases, such as cancer. It has been shown that many enzymes in this pathway are overactivated in different cancers. In this review, we summarize and update the current knowledge on the de novo nucleotide biosynthetic pathway, regulatory mechanisms, its role in tumorigenesis, and potential targeting opportunities.
Collapse
Affiliation(s)
- Jie Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Siqi Yang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Xu Ziwen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Huadong Pei
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| |
Collapse
|
44
|
Huo A, Xiong X. PAICS as a potential target for cancer therapy linking purine biosynthesis to cancer progression. Life Sci 2023; 331:122070. [PMID: 37673296 DOI: 10.1016/j.lfs.2023.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Tumor cells are required to undergo metabolic reprogramming for rapid development and progression, and one of the metabolic characteristics of cancer cells is the excessive synthesis and utilization of nucleotides. Abnormally increased nucleotides and their metabolites not only directly accelerate tumor cell progression but also indirectly act on stromal cells in the tumor microenvironment (TME) via a paracrine manner to regulate tumor progression. Purine nucleotides are mainly produced via de novo nucleotide synthesis in tumor cells; therefore, intervening in their synthesis has emerged as a promising strategy in anti-tumor therapy. De novo purine synthesis is a 10-step reaction catalyzed by six enzymes to synthesize inosine 5-monophosphate (IMP) and subsequently synthesize AMP and GMP. Phosphoribosylaminoimidazole carboxylase/phosphori-bosylaminoimidazole succinocarboxamide synthetase (PAICS) is a bifunctional enzyme that catalyzes de novo purine synthesis. Aberrantly elevated PAICS expression in various tumors is associated with poor prognosis. Evidence suggests that PAICS and its catalytic product, N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR), could inhibit tumor cell apoptosis and promote the growth, epithelial-mesenchymal transition (EMT), invasion, and metastasis by regulating signaling pathways such as pyruvate kinase M2 (PKM2), extracellular signal-related kinases 1 and 2 (ERK1/2), focal adhesion kinase (FAK) and so on. This review summarizes the structure, biological functions and the molecular mechanisms of PAICS in cancer development and discusses its potential to be a target for tumor therapy.
Collapse
Affiliation(s)
- Anqi Huo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
45
|
Wang Z, Zhu H, Xiong W. Advances in mass spectrometry-based multi-scale metabolomic methodologies and their applications in biological and clinical investigations. Sci Bull (Beijing) 2023; 68:2268-2284. [PMID: 37666722 DOI: 10.1016/j.scib.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Metabolomics is a nascent field of inquiry that emerged in the late 20th century. It encompasses the comprehensive profiling of metabolites across a spectrum of organisms, ranging from bacteria and cells to tissues. The rapid evolution of analytical methods and data analysis has greatly accelerated progress in this dynamic discipline over recent decades. Sophisticated techniques such as liquid chromatograph mass spectrometry (MS), gas chromatograph MS, capillary electrophoresis MS, and nuclear magnetic resonance serve as the cornerstone of metabolomic analysis. Building upon these methods, a plethora of modifications and combinations have emerged to propel the advancement of metabolomics. Despite this progress, scrutinizing metabolism at the single-cell or single-organelle level remains an arduous task over the decades. Some of the most thrilling advancements, such as single-cell and single-organelle metabolic profiling techniques, offer profound insights into the intricate mechanisms within cells and organelles. This allows for a comprehensive study of metabolic heterogeneity and its pivotal role in multiple biological processes. The progress made in MS imaging has enabled high-resolution in situ metabolic profiling of tissue sections and even individual cells. Spatial reconstruction techniques enable the direct representation of metabolic distribution and alteration in three-dimensional space. The application of novel metabolomic techniques has led to significant breakthroughs in biological and clinical studies, including the discovery of novel metabolic pathways, determination of cell fate in differentiation, anti-aging intervention through modulating metabolism, metabolomics-based clinicopathologic analysis, and surgical decision-making based on on-site intraoperative metabolic analysis. This review presents a comprehensive overview of both conventional and innovative metabolomic techniques, highlighting their applications in groundbreaking biological and clinical studies.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
46
|
Mizukoshi T, Yamada S, Sakakibara SI. Spatiotemporal Regulation of De Novo and Salvage Purine Synthesis during Brain Development. eNeuro 2023; 10:ENEURO.0159-23.2023. [PMID: 37770184 PMCID: PMC10566546 DOI: 10.1523/eneuro.0159-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
The levels of purines, essential molecules to sustain eukaryotic cell homeostasis, are regulated by the coordination of the de novo and salvage synthesis pathways. In the embryonic central nervous system (CNS), the de novo pathway is considered crucial to meet the requirements for the active proliferation of neural stem/progenitor cells (NSPCs). However, how these two pathways are balanced or separately used during CNS development remains poorly understood. In this study, we showed a dynamic shift in pathway utilization, with greater reliance on the de novo pathway during embryonic stages and on the salvage pathway in postnatal-adult mouse brain. The pharmacological effects of various purine synthesis inhibitors in vitro and the expression profile of purine synthesis enzymes indicated that NSPCs in the embryonic cerebrum mainly use the de novo pathway. Simultaneously, NSPCs in the cerebellum require both the de novo and the salvage pathways. In vivo administration of de novo inhibitors resulted in severe hypoplasia of the forebrain cortical region, indicating a gradient of purine demand along the anteroposterior axis of the embryonic brain, with cortical areas of the dorsal forebrain having higher purine requirements than ventral or posterior areas such as the striatum and thalamus. This histologic defect of the neocortex was accompanied by strong downregulation of the mechanistic target of rapamycin complex 1 (mTORC1)/ribosomal protein S6 kinase (S6K)/S6 signaling cascade, a crucial pathway for cell metabolism, growth, and survival. These findings indicate the importance of the spatiotemporal regulation of both purine pathways for mTORC1 signaling and proper brain development.
Collapse
Affiliation(s)
- Tomoya Mizukoshi
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| |
Collapse
|
47
|
Hu C, Wang J, Qi F, Liu Y, Zhao F, Wang J, Sun B. Untargeted metabolite profiling of serum in rats exposed to pyrraline. Food Sci Biotechnol 2023; 32:1541-1549. [PMID: 37637845 PMCID: PMC10449741 DOI: 10.1007/s10068-023-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Pyrraline, one of advanced glycation end-products, is formed in advanced Maillard reactions. It was reported that the presence of pyrraline was tested to be associated with nephropathy and diabetes. Pyrraline might result in potential health risks because many modern diets are heat processed. In the study, an integrated metabolomics by ultra-high-performance liquid chromatography with mass spectrometry was used to evaluate the effects of pyrraline on metabolism in rats. Thirty-two metabolites were identified as differential metabolites. Linolenic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, tyrosine metabolism and glycerophospholipid metabolism were the main perturbed networks in this pathological process. Differential metabolites and metabolic pathways we found give new insights into studying the toxic molecular mechanisms of pyrraline. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01256-7.
Collapse
Affiliation(s)
- Chuanqin Hu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Jiahui Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Fangyuan Qi
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Fen Zhao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| |
Collapse
|
48
|
Calise SJ, O’Neill AG, Burrell AL, Dickinson MS, Molfino J, Clarke C, Quispe J, Sokolov D, Buey RM, Kollman JM. Light-sensitive phosphorylation regulates enzyme activity and filament assembly of human IMPDH1 retinal splice variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558867. [PMID: 37790411 PMCID: PMC10542554 DOI: 10.1101/2023.09.21.558867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in de novo guanosine triphosphate (GTP) synthesis and is controlled by feedback inhibition and allosteric regulation. IMPDH assembles into micron-scale filaments in cells, which desensitizes the enzyme to feedback inhibition by GTP and boosts nucleotide production. The vertebrate retina expresses two tissue-specific splice variants IMPDH1(546) and IMPDH1(595). IMPDH1(546) filaments adopt high and low activity conformations, while IMPDH1(595) filaments maintain high activity. In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of phosphorylation in IMPDH1 variants. The S477D mutation re-sensitized both variants to GTP inhibition, but only blocked assembly of IMPDH1(595) filaments and not IMPDH1(546) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of the high activity assembly interface, still allowing assembly of low activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, phosphorylation at S477 acts as a mechanism for downregulating retinal GTP synthesis in the dark, when nucleotide turnover is decreased. Like IMPDH1, many other metabolic enzymes dynamically assemble filamentous polymers that allosterically regulate activity. Our work suggests that posttranslational modifications may be yet another layer of regulatory control to finely tune activity by modulating filament assembly in response to changing metabolic demands.
Collapse
Affiliation(s)
- S. John Calise
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Audrey G. O’Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L. Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Josephine Molfino
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Charlie Clarke
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Sokolov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rubén M. Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
49
|
Jia F, Zhao X, Zhao Y. Advancements in ToF-SIMS imaging for life sciences. Front Chem 2023; 11:1237408. [PMID: 37693171 PMCID: PMC10483116 DOI: 10.3389/fchem.2023.1237408] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
In the last 2 decades, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) has gained significant prominence as a powerful imaging technique in the field of life sciences. This comprehensive review provides an in-depth overview of recent advancements in ToF-SIMS instrument technology and its applications in metabolomics, lipidomics, and single-cell analysis. We highlight the use of ToF-SIMS imaging for studying lipid distribution, composition, and interactions in cells and tissues, and discuss its application in metabolomics, including the analysis of metabolic pathways. Furthermore, we review recent progress in single-cell analysis using ToF-SIMS, focusing on sample preparation techniques, in situ investigation for subcellular distribution of drugs, and interactions between drug molecules and biological targets. The high spatial resolution and potential for multimodal analysis of ToF-SIMS make it a promising tool for unraveling the complex molecular landscape of biological systems. We also discuss future prospects and potential advancements of ToF-SIMS in the research of life sciences, with the expectation of a significant impact in the field.
Collapse
Affiliation(s)
- Feifei Jia
- National Institutes for Food and Drug Control, Beijing, China
| | - Xia Zhao
- National Institutes for Food and Drug Control, Beijing, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Gao P. Exploring Single-Cell Exposomics by Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12201-12209. [PMID: 37561608 PMCID: PMC10448745 DOI: 10.1021/acs.est.3c04524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Single-cell exposomics, a revolutionary approach that investigates cell-environment interactions at cellular and subcellular levels, stands distinct from conventional bulk exposomics. Leveraging advancements in mass spectrometry, it provides a detailed perspective on cellular dynamics, interactions, and responses to environmental stimuli and their impacts on human health. This work delves into this innovative realm, highlighting the nuanced interplay between environmental stressors and biological responses at cellular and subcellular levels. The application of spatial mass spectrometry in single-cell exposomics is discussed, revealing the intricate spatial organization and molecular composition within individual cells. Cell-type-specific exposomics, shedding light on distinct susceptibilities and adaptive strategies of various cell types to environmental exposures, is also examined. The Perspective further emphasizes the integration with molecular and cellular biology approaches to validate hypotheses derived from single-cell exposomics in a comprehensive biological context. Looking toward the future, we anticipate continued technological advancements and convergence with other -omics approaches and discuss implications for environmental health research, disease progression studies, and precision medicine. The final emphasis is on the need for robust computational tools and interdisciplinary collaboration to fully leverage the potential of single-cell exposomics, acknowledging the complexities inherent to this paradigm.
Collapse
Affiliation(s)
- Peng Gao
- Department
of Environmental and Occupational Health and Department of Civil and
Environmental Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC
Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| |
Collapse
|