1
|
Orand T, Jensen MR. Binding mechanisms of intrinsically disordered proteins: Insights from experimental studies and structural predictions. Curr Opin Struct Biol 2025; 90:102958. [PMID: 39740355 DOI: 10.1016/j.sbi.2024.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
Advances in the characterization of intrinsically disordered proteins (IDPs) have unveiled a remarkably complex and diverse interaction landscape, including coupled folding and binding, highly dynamic complexes, multivalent interactions, and even interactions between entirely disordered proteins. Here we review recent examples of IDP binding mechanisms elucidated by experimental techniques such as nuclear magnetic resonance spectroscopy, single-molecule Förster resonance energy transfer, and stopped-flow fluorescence. These techniques provide insights into the structural details of transition pathways and complex intermediates, and they capture the dynamics of IDPs within complexes. Furthermore, we discuss the growing role of artificial intelligence, exemplified by AlphaFold, in identifying interaction sites within IDPs and predicting their bound-state structures. Our review highlights the powerful complementarity between experimental methods and artificial intelligence-based approaches in advancing our understanding of the intricate interaction landscape of IDPs.
Collapse
|
2
|
Meng F, Kim JY, Louis JM, Chung HS. Single-Molecule Characterization of Heterogeneous Oligomer Formation during Co-Aggregation of 40- and 42-Residue Amyloid-β. J Am Chem Soc 2024; 146:24426-24439. [PMID: 39177153 DOI: 10.1021/jacs.4c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The two most abundant isoforms of amyloid-β (Aβ) are the 40- (Aβ40) and 42-residue (Aβ42) peptides. Since they coexist and there is a correlation between toxicity and the ratio of the two isoforms, quantitative characterization of their interactions is crucial for understanding the Aβ aggregation mechanism. In this work, we follow the aggregation of individual isoforms in a mixture using single-molecule FRET spectroscopy by labeling Aβ42 and Aβ40 with the donor and acceptor fluorophores, respectively. We found that there are two phases of aggregation. The first phase consists of coaggregation of Aβ42 with a small amount of Aβ40, while the second phase results mostly from aggregation of Aβ40. We also found that the aggregation of Aβ42 is slowed by Aβ40 while the aggregation of Aβ40 is accelerated by Aβ42 in a concentration-dependent manner. The formation of oligomers was monitored by incubating mixtures in a plate reader and performing a single-molecule free-diffusion experiment at several different stages of aggregation. The detailed properties of the oligomers were obtained by maximum likelihood analysis of fluorescence bursts. The FRET efficiency distribution is much broader than that of the Aβ42 oligomers, indicating the diversity in isoform composition of the oligomers. Pulsed interleaved excitation experiments estimate that the fraction of Aβ40 in the co-oligomers in a 1:1 mixture of Aβ42 and Aβ40 varies between 0 and 20%. The detected oligomers were mostly co-oligomers especially at the physiological ratio of Aβ42 and Aβ40 (1:10), suggesting the critical role of Aβ40 in oligomer formation and aggregation.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
3
|
Morffy N, Van den Broeck L, Miller C, Emenecker RJ, Bryant JA, Lee TM, Sageman-Furnas K, Wilkinson EG, Pathak S, Kotha SR, Lam A, Mahatma S, Pande V, Waoo A, Wright RC, Holehouse AS, Staller MV, Sozzani R, Strader LC. Identification of plant transcriptional activation domains. Nature 2024; 632:166-173. [PMID: 39020176 PMCID: PMC11589624 DOI: 10.1038/s41586-024-07707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs1. To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.
Collapse
Affiliation(s)
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Caelan Miller
- Department of Biology, Duke University, Durham, NC, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - John A Bryant
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tyler M Lee
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Sunita Pathak
- Department of Biology, Duke University, Durham, NC, USA
| | - Sanjana R Kotha
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Angelica Lam
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Saloni Mahatma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Vikram Pande
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Aman Waoo
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - R Clay Wright
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Max V Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
4
|
Gopich IV, Chung HS. Unraveling Burst Selection Bias in Single-Molecule FRET of Species with Unequal Brightness and Diffusivity. J Phys Chem B 2024; 128:5576-5589. [PMID: 38833567 DOI: 10.1021/acs.jpcb.4c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Single-molecule free diffusion experiments enable accurate quantification of coexisting species or states. However, unequal brightness and diffusivity introduce a burst selection bias and affect the interpretation of experimental results. We address this issue with a photon-by-photon maximum likelihood method, burstML, which explicitly considers burst selection criteria. BurstML accurately estimates parameters, including photon count rates, diffusion times, Förster resonance energy transfer (FRET) efficiencies, and population, even in cases where species are poorly distinguished in FRET efficiency histograms. We develop a quantitative theory that determines the fraction of photon bursts corresponding to each species and thus obtain accurate species populations from the measured burst fractions. In addition, we provide a simple approximate formula for burst fractions and establish the range of parameters where unequal brightness and diffusivity can significantly affect the results obtained by conventional methods. The performance of the burstML method is compared with that of a maximum likelihood method that assumes equal species brightness and diffusivity, as well as standard Gaussian fitting of FRET efficiency histograms, using both simulated and real single-molecule data for cold-shock protein, protein L, and protein G. The burstML method enhances the accuracy of parameter estimation in single-molecule fluorescence studies.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Morales-Inostroza L, Folz J, Kühnemuth R, Felekyan S, Wieser FF, Seidel CAM, Götzinger S, Sandoghdar V. An optofluidic antenna for enhancing the sensitivity of single-emitter measurements. Nat Commun 2024; 15:2545. [PMID: 38514627 PMCID: PMC10957926 DOI: 10.1038/s41467-024-46730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Many single-molecule investigations are performed in fluidic environments, for example, to avoid unwanted consequences of contact with surfaces. Diffusion of molecules in this arrangement limits the observation time and the number of collected photons, thus, compromising studies of processes with fast or slow dynamics. Here, we introduce a planar optofluidic antenna (OFA), which enhances the fluorescence signal from molecules by about 5 times per passage, leads to about 7-fold more frequent returns to the observation volume, and significantly lengthens the diffusion time within one passage. We use single-molecule multi-parameter fluorescence detection (sm-MFD), fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) measurements to characterize our OFAs. The antenna advantages are showcased by examining both the slow (ms) and fast (50 μs) dynamics of DNA four-way (Holliday) junctions with real-time resolution. The FRET trajectories provide evidence for the absence of an intermediate conformational state and introduce an upper bound for its lifetime. The ease of implementation and compatibility with various microscopy modalities make OFAs broadly applicable to a diverse range of studies.
Collapse
Affiliation(s)
- Luis Morales-Inostroza
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Julian Folz
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ralf Kühnemuth
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Suren Felekyan
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Franz-Ferdinand Wieser
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Claus A M Seidel
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Stephan Götzinger
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany.
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.
| |
Collapse
|
6
|
Udupa A, Kotha SR, Staller MV. Commonly asked questions about transcriptional activation domains. Curr Opin Struct Biol 2024; 84:102732. [PMID: 38056064 PMCID: PMC11193542 DOI: 10.1016/j.sbi.2023.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Eukaryotic transcription factors activate gene expression with their DNA-binding domains and activation domains. DNA-binding domains bind the genome by recognizing structurally related DNA sequences; they are structured, conserved, and predictable from protein sequences. Activation domains recruit chromatin modifiers, coactivator complexes, or basal transcriptional machinery via structurally diverse protein-protein interactions. Activation domains and DNA-binding domains have been called independent, modular units, but there are many departures from modularity, including interactions between these regions and overlap in function. Compared to DNA-binding domains, activation domains are poorly understood because they are poorly conserved, intrinsically disordered, and difficult to predict from protein sequences. This review, organized around commonly asked questions, describes recent progress that the field has made in understanding the sequence features that control activation domains and predicting them from sequence.
Collapse
Affiliation(s)
- Aditya Udupa
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | - Sanjana R Kotha
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA; Center for Computational Biology, University of California, Berkeley, 94720, USA
| | - Max V Staller
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA; Center for Computational Biology, University of California, Berkeley, 94720, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Bhatia S, Udgaonkar JB. Understanding the heterogeneity intrinsic to protein folding. Curr Opin Struct Biol 2024; 84:102738. [PMID: 38041993 DOI: 10.1016/j.sbi.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023]
Abstract
Relating the native fold of a protein to its amino acid sequence remains a fundamental problem in biology. While computer algorithms have demonstrated recently their prowess in predicting what structure a particular amino acid sequence will fold to, an understanding of how and why a specific protein fold is achieved remains elusive. A major challenge is to define the role of conformational heterogeneity during protein folding. Recent experimental studies, utilizing time-resolved FRET, hydrogen-exchange coupled to mass spectrometry, and single-molecule force spectroscopy, often in conjunction with simulation, have begun to reveal how conformational heterogeneity evolves during folding, and whether an intermediate ensemble of defined free energy consists of different sub-populations of molecules that may differ significantly in conformation, energy and entropy.
Collapse
Affiliation(s)
- Sandhya Bhatia
- Department of Biophysics, Howard Hughes Medical Institute UT Southwestern Medical Center, Dallas 75390, United States. https://twitter.com/Sandhyabhatia_5
| | - Jayant B Udgaonkar
- Department of Biology, Indian Institute of Science Education and Research Pune, Pashan, Pune 41008, India.
| |
Collapse
|
8
|
Kotha SR, Staller MV. Clusters of acidic and hydrophobic residues can predict acidic transcriptional activation domains from protein sequence. Genetics 2023; 225:iyad131. [PMID: 37462277 PMCID: PMC10550315 DOI: 10.1093/genetics/iyad131] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 10/06/2023] Open
Abstract
Transcription factors activate gene expression in development, homeostasis, and stress with DNA binding domains and activation domains. Although there exist excellent computational models for predicting DNA binding domains from protein sequence, models for predicting activation domains from protein sequence have lagged, particularly in metazoans. We recently developed a simple and accurate predictor of acidic activation domains on human transcription factors. Here, we show how the accuracy of this human predictor arises from the clustering of aromatic, leucine, and acidic residues, which together are necessary for acidic activation domain function. When we combine our predictor with the predictions of convolutional neural network (CNN) models trained in yeast, the intersection is more accurate than individual models, emphasizing that each approach carries orthogonal information. We synthesize these findings into a new set of activation domain predictions on human transcription factors.
Collapse
Affiliation(s)
- Sanjana R Kotha
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Max Valentín Staller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Gopich IV, Kim JY, Chung HS. Analysis of photon trajectories from diffusing single molecules. J Chem Phys 2023; 159:024119. [PMID: 37431909 PMCID: PMC10474944 DOI: 10.1063/5.0153114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
In single-molecule free diffusion experiments, molecules spend most of the time outside a laser spot and generate bursts of photons when they diffuse through the focal spot. Only these bursts contain meaningful information and, therefore, are selected using physically reasonable criteria. The analysis of the bursts must take into account the precise way they were chosen. We present new methods that allow one to accurately determine the brightness and diffusivity of individual molecule species from the photon arrival times of selected bursts. We derive analytical expressions for the distribution of inter-photon times (with and without burst selection), the distribution of the number of photons in a burst, and the distribution of photons in a burst with recorded arrival times. The theory accurately treats the bias introduced due to the burst selection criteria. We use a Maximum Likelihood (ML) method to find the molecule's photon count rate and diffusion coefficient from three kinds of data, i.e., the bursts of photons with recorded arrival times (burstML), inter-photon times in bursts (iptML), and the numbers of photon counts in a burst (pcML). The performance of these new methods is tested on simulated photon trajectories and on an experimental system, the fluorophore Atto 488.
Collapse
Affiliation(s)
- Irina V. Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Song K, Makarov DE, Vouga E. The effect of time resolution on the observed first passage times in diffusive dynamics. J Chem Phys 2023; 158:111101. [PMID: 36948823 DOI: 10.1063/5.0142166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Single-molecule and single-particle tracking experiments are typically unable to resolve fine details of thermal motion at short timescales where trajectories are continuous. We show that, when a diffusive trajectory xt is sampled at finite time intervals δt, the resulting error in measuring the first passage time to a given domain can exceed the time resolution of the measurement by more than an order of magnitude. Such surprisingly large errors originate from the fact that the trajectory may enter and exit the domain while being unobserved, thereby lengthening the apparent first passage time by an amount that is larger than δt. Such systematic errors are particularly important in single-molecule studies of barrier crossing dynamics. We show that the correct first passage times, as well as other properties of the trajectories such as splitting probabilities, can be recovered via a stochastic algorithm that reintroduces unobserved first passage events probabilistically.
Collapse
Affiliation(s)
- Kevin Song
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Etienne Vouga
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
11
|
Godec A, Makarov DE. Challenges in Inferring the Directionality of Active Molecular Processes from Single-Molecule Fluorescence Resonance Energy Transfer Trajectories. J Phys Chem Lett 2023; 14:49-56. [PMID: 36566432 DOI: 10.1021/acs.jpclett.2c03244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We discuss some of the practical challenges that one faces in using stochastic thermodynamics to infer directionality of molecular machines from experimental single-molecule trajectories. Because of the limited spatiotemporal resolution of single-molecule experiments and because both forward and backward transitions between the same pairs of states cannot always be detected, differentiating between the forward and backward directions of, e.g., an ATP-consuming molecular machine that operates periodically, turns out to be a nontrivial task. Using a simple extension of a Markov-state model that is commonly employed to analyze single-molecule transition-path measurements, we illustrate how irreversibility can be hidden from such measurements but in some cases can be uncovered when non-Markov effects in low-dimensional single-molecule trajectories are considered.
Collapse
Affiliation(s)
- Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077Göttingen, Germany
| | | |
Collapse
|
12
|
The biophysics of disordered proteins from the point of view of single-molecule fluorescence spectroscopy. Essays Biochem 2022; 66:875-890. [PMID: 36416865 PMCID: PMC9760427 DOI: 10.1042/ebc20220065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) have emerged as key players across many biological functions and diseases. Differently from structured proteins, disordered proteins lack stable structure and are particularly sensitive to changes in the surrounding environment. Investigation of disordered ensembles requires new approaches and concepts for quantifying conformations, dynamics, and interactions. Here, we provide a short description of the fundamental biophysical properties of disordered proteins as understood through the lens of single-molecule fluorescence observations. Single-molecule Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) provides an extensive and versatile toolbox for quantifying the characteristics of conformational distributions and the dynamics of disordered proteins across many different solution conditions, both in vitro and in living cells.
Collapse
|
13
|
Makarov DE, Berezhkovskii A, Haran G, Pollak E. The Effect of Time Resolution on Apparent Transition Path Times Observed in Single-Molecule Studies of Biomolecules. J Phys Chem B 2022; 126:7966-7974. [PMID: 36194758 PMCID: PMC9574923 DOI: 10.1021/acs.jpcb.2c05550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Single-molecule experiments have now achieved a time resolution allowing observation of transition paths, the brief trajectory segments where the molecule undergoing an unfolding or folding transition enters the energetically or entropically unfavorable barrier region from the folded/unfolded side and exits to the unfolded/folded side, thereby completing the transition. This resolution, however, is yet insufficient to identify the precise entrance/exit events that mark the beginning and the end of a transition path: the nature of the diffusive dynamics is such that a molecular trajectory will recross the boundary between the barrier region and the folded/unfolded state, multiple times, at a time scale much shorter than that of the typical experimental resolution. Here we use theory and Brownian dynamics simulations to show that, as a result of such recrossings, the apparent transition path times are generally longer than the true ones. We quantify this effect using a simple model where the observed dynamics is a moving average of the true dynamics and discuss experimental implications of our results.
Collapse
Affiliation(s)
- Dmitrii E. Makarov
- Depatment
of Chemistry and Oden Institute for Computational Engineering and
Sciences, University of Texas at Austin, Austin, Texas78712, United States
| | - Alexander Berezhkovskii
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Gilad Haran
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Eli Pollak
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| |
Collapse
|
14
|
Staller MV, Ramirez E, Kotha SR, Holehouse AS, Pappu RV, Cohen BA. Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains. Cell Syst 2022; 13:334-345.e5. [PMID: 35120642 PMCID: PMC9241528 DOI: 10.1016/j.cels.2022.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023]
Abstract
Acidic activation domains are intrinsically disordered regions of the transcription factors that bind coactivators. The intrinsic disorder and low evolutionary conservation of activation domains have made it difficult to identify the sequence features that control activity. To address this problem, we designed thousands of variants in seven acidic activation domains and measured their activities with a high-throughput assay in human cell culture. We found that strong activation domain activity requires a balance between the number of acidic residues and aromatic and leucine residues. These findings motivated a predictor of acidic activation domains that scans the human proteome for clusters of aromatic and leucine residues embedded in regions of high acidity. This predictor identifies known activation domains and accurately predicts previously unidentified ones. Our results support a flexible acidic exposure model of activation domains in which the acidic residues solubilize hydrophobic motifs so that they can interact with coactivators. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Max V Staller
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Center for Computational Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Eddie Ramirez
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Sanjana R Kotha
- Center for Computational Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Barak A Cohen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
15
|
Whaley-Mayda L, Guha A, Tokmakoff A. Resonance conditions, detection quality, and single-molecule sensitivity in fluorescence-encoded infrared vibrational spectroscopy. J Chem Phys 2022; 156:174202. [DOI: 10.1063/5.0088435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fluorescence-encoded Infrared (FEIR) spectroscopy is a vibrational spectroscopy technique that has recently demonstrated the capability of single-molecule sensitivity in solution without near-field enhancement. This work explores the practical experimental factors that are required for successful FEIR measurements in both the single-molecule and bulk regimes. We investigate the role of resonance conditions by performing measurements on a series of coumarin fluorophores of varying electronic transition frequencies. To analyze variations in signal strength and signal to background between molecules, we introduce an FEIR brightness metric that normalizes out measurement-specific parameters. We find that the effect of the resonance condition on FEIR brightness can be reasonably well described by the electronic absorption spectrum. We discuss strategies for optimizing detection quality and sensitivity in bulk and single-molecule experiments.
Collapse
Affiliation(s)
| | - Abhirup Guha
- The University of Chicago, United States of America
| | - Andrei Tokmakoff
- Department of Chemistry, University of Chicago, United States of America
| |
Collapse
|
16
|
Rico-Pasto M, Zaltron A, Davis SJ, Frutos S, Ritort F. Molten globule-like transition state of protein barnase measured with calorimetric force spectroscopy. Proc Natl Acad Sci U S A 2022; 119:e2112382119. [PMID: 35271392 PMCID: PMC8931224 DOI: 10.1073/pnas.2112382119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
SignificanceUnderstanding the molecular forces driving the unfolded polypeptide chain to self-assemble into a functional native structure remains an open question. However, identifying the states visited during protein folding (e.g., the transition state between the unfolded and native states) is tricky due to their transient nature. Here, we introduce calorimetric force spectroscopy in a temperature jump optical trap to determine the enthalpy, entropy, and heat capacity of the transition state of protein barnase. We find that the transition state has the properties of a dry molten globule, that is, high free energy and low configurational entropy, being structurally similar to the native state. This experimental single-molecule study characterizes the thermodynamic properties of the transition state in funneled energy landscapes.
Collapse
Affiliation(s)
- Marc Rico-Pasto
- Small Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, 08028 Barcelona, Spain
| | - Annamaria Zaltron
- Physics and Astronomy Department, University of Padova, 35131 Padova, Italy
| | - Sebastian J. Davis
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
17
|
Wei S, Thakur N, Ray AP, Jin B, Obeng S, McCurdy CR, McMahon LR, Gutiérrez-de-Terán H, Eddy MT, Lamichhane R. Slow conformational dynamics of the human A 2A adenosine receptor are temporally ordered. Structure 2022; 30:329-337.e5. [PMID: 34895472 PMCID: PMC8897252 DOI: 10.1016/j.str.2021.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/26/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023]
Abstract
A more complete depiction of protein energy landscapes includes the identification of different function-related conformational states and the determination of the pathways connecting them. We used total internal reflection fluorescence (TIRF) imaging to investigate the conformational dynamics of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), at the single-molecule level. Slow, reversible conformational exchange was observed among three different fluorescence emission states populated for agonist-bound A2AAR. Transitions among these states predominantly occurred in a specific order, and exchange between inactive and active-like conformations proceeded through an intermediate state. Models derived from molecular dynamics simulations with available A2AAR structures rationalized the relative fluorescence emission intensities for the highest and lowest emission states but not the transition state. This suggests that the functionally critical intermediate state required to achieve activation is not currently visualized among available A2AAR structures.
Collapse
Affiliation(s)
- Shushu Wei
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA
| | - Naveen Thakur
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka P Ray
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Beining Jin
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, B.M.C., Box 596, Uppsala 751 24, Sweden
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA.
| |
Collapse
|
18
|
Rippe K, Papantonis A. Functional organization of RNA polymerase II in nuclear subcompartments. Curr Opin Cell Biol 2022; 74:88-96. [PMID: 35217398 DOI: 10.1016/j.ceb.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/22/2022]
Abstract
Distinct clusters of RNA polymerase II are responsible for gene transcription inside eukaryotic cell nuclei. Despite the functional implications of such subnuclear organization, the attributes of these clusters and the mechanisms underlying their formation remain only partially understood. Recently, the concept of proteins and RNA phase-separating into liquid-like droplets was proposed to drive the formation of transcriptionally-active subcompartments. Here, we attempt to reconcile previous with more recent findings, and discuss how the different ways of assembling the active RNA polymerase II transcriptional machinery relate to nuclear compartmentalization.
Collapse
Affiliation(s)
- Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
19
|
Berezhkovskii AM, Makarov DE. On distributions of barrier crossing times as observed in single-molecule studies of biomolecules. BIOPHYSICAL REPORTS 2021; 1:100029. [PMID: 36425456 PMCID: PMC9680812 DOI: 10.1016/j.bpr.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule experiments that monitor time evolution of molecular observables in real time have expanded beyond measuring transition rates toward measuring distributions of times of various molecular events. Of particular interest is the first-passage time for making a transition from one molecular configuration ( a ) to another ( b ) and conditional first-passage times such as the transition path time, which is the first-passage time from a to b conditional upon not leaving the transition region intervening between a and b . Another experimentally accessible (but not yet studied experimentally) observable is the conditional exit time, i.e., the time to leave the transition region through a specified boundary. The distributions of such times contain a wealth of mechanistic information about the transitions in question. Here, we use the first and the second (and, if desired, higher) moments of these distributions to characterize their relative width for the model in which the experimental observable undergoes Brownian motion in a potential of mean force. We show that although the distributions of transition path times are always narrower than exponential (in that the ratio of the standard deviation to the distribution's mean is always less than 1), distributions of first-passage times and of conditional exit times can be either narrow or broad, in some cases displaying long power-law tails. The conditional exit time studied here provides a generalization of the transition path time that also allows one to characterize the temporal scales of failed barrier crossing attempts.
Collapse
Affiliation(s)
- Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Dmitrii E. Makarov
- Department of Chemistry and Biochemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
20
|
Observing the base-by-base search for native structure along transition paths during the folding of single nucleic acid hairpins. Proc Natl Acad Sci U S A 2021; 118:2101006118. [PMID: 34853166 DOI: 10.1073/pnas.2101006118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
Biomolecular folding involves searching among myriad possibilities for the native conformation, but the elementary steps expected from theory for this search have never been detected directly. We probed the dynamics of folding at high resolution using optical tweezers, measuring individual trajectories as nucleic acid hairpins passed through the high-energy transition states that dominate kinetics and define folding mechanisms. We observed brief but ubiquitous pauses in the transition states, with a dwell time distribution that matched microscopic theories of folding quantitatively. The sequence dependence suggested that pauses were dominated by microbarriers from nonnative conformations during the search by each nucleotide residue for the native base-pairing conformation. Furthermore, the pauses were position dependent, revealing subtle local variations in energy-landscape roughness and allowing the diffusion coefficient describing the microscopic dynamics within the barrier to be found without reconstructing the shape of the energy landscape. These results show how high-resolution measurements can elucidate key microscopic events during folding to test fundamental theories of folding.
Collapse
|
21
|
Mothi N, Muñoz V. Protein Folding Dynamics as Diffusion on a Free Energy Surface: Rate Equation Terms, Transition Paths, and Analysis of Single-Molecule Photon Trajectories. J Phys Chem B 2021; 125:12413-12425. [PMID: 34735144 DOI: 10.1021/acs.jpcb.1c05401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rates of protein (un)folding are often described as diffusion on the projection of a hyperdimensional energy landscape onto a few (ideally one) order parameters. Testing such an approximation by experiment requires resolving the reactive transition paths of individual molecules, which is now becoming feasible with advanced single-molecule spectroscopic techniques. This has also sparked the interest of theorists in better understanding reactive transition paths. Here we focus on these issues aiming to establish (i) practical guidelines for the mechanistic interpretation of transition path times (TPT) and (ii) methods to extract the free energy surface and protein dynamics from the maximum likelihood analysis of photon trajectories (MLA-PT). We represent the (un)folding rates as diffusion on a 1D free energy surface with the FRET efficiency as a reaction coordinate proxy. We then perform diffusive kinetic simulations on surfaces with two minima and a barrier, but with different shapes (curvatures, barrier height, and symmetry), coupled to stochastic simulations of photon emissions that reproduce current SM-FRET experiments. From the analysis of transition paths, we find that the TPT is inversely proportional to the barrier height (difference in free energy between minimum and barrier top) for any given surface shape, and that dividing the TPT into climb and descent segments provides key information about the barrier's symmetry. We also find that the original MLA-PT procedure used to determine the TPT from experiments underestimates its value, particularly for the cases with smaller barriers (e.g., fast folders), and we suggest a simple strategy to correct for this bias. Importantly, we also demonstrate that photon trajectories contain enough information to extract the 1D free energy surface's shape and dynamics (if TPT is >4-5-fold longer than the interphoton time) using the MLA-PT directly implemented with a diffusive free energy surface model. When dealing with real (unknown) experimental data, the comparison between the likelihoods of the free energy surface and discrete kinetic three-state models can be used to evaluate the statistical significance of the estimated free energy surface.
Collapse
Affiliation(s)
- Nivin Mothi
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, 95343 California, United States.,Chemistry and Chemical Biology Graduate Program, University of California, Merced, 95343 California, United States
| | - Victor Muñoz
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, 95343 California, United States.,Chemistry and Chemical Biology Graduate Program, University of California, Merced, 95343 California, United States.,Department of Bioengineering, University of California, Merced, 95343 California, United States
| |
Collapse
|
22
|
The A39G FF domain folds on a volcano-shaped free energy surface via separate pathways. Proc Natl Acad Sci U S A 2021; 118:2115113118. [PMID: 34764225 DOI: 10.1073/pnas.2115113118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect "invisible" minor states on the energy landscape of the A39G mutant FF domain that exhibited "two-state" folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s-1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 μs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.
Collapse
|
23
|
Shimogawa M, Petersson EJ. New strategies for fluorescently labeling proteins in the study of amyloids. Curr Opin Chem Biol 2021; 64:57-66. [PMID: 34091264 PMCID: PMC8585672 DOI: 10.1016/j.cbpa.2021.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/25/2023]
Abstract
Amyloid proteins are widely studied, both for their unusual biophysical properties and their association with disorders such as Alzheimer's and Parkinson's disease. Fluorescence-based methods using site-specifically labeled proteins can provide information on the details of their structural dynamics and their roles in specific biological processes. Here, we describe the application of different labeling methods and novel fluorescent probe strategies to the study of amyloid proteins, both for in vitro biophysical experiments and for in vivo imaging. These labeling tools can be elegantly used to answer important questions on the function and pathology of amyloid proteins.
Collapse
Affiliation(s)
- Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Abstract
Flexibility in complexes between intrinsically disordered proteins and folded ligands is widespread in nature. However, timescales and spatial amplitudes of such dynamics remained unexplored for most systems. Our results show that the disordered cytoplasmic tail of the cell adhesion protein E-cadherin diffuses across the entire surface of its folded binding partner β-catenin at fast submillisecond timescales. The nanometer amplitude of these motions could allow kinases to access their recognition motifs without requiring a dissociation of the complex. We expect that the rugged energy landscape found in the E-cadherin/β-catenin complex is a defining feature of dynamic and partially disordered protein complexes. Intrinsically disordered proteins often form dynamic complexes with their ligands. Yet, the speed and amplitude of these motions are hidden in classical binding kinetics. Here, we directly measure the dynamics in an exceptionally mobile, high-affinity complex. We show that the disordered tail of the cell adhesion protein E-cadherin dynamically samples a large surface area of the protooncogene β-catenin. Single-molecule experiments and molecular simulations resolve these motions with high resolution in space and time. Contacts break and form within hundreds of microseconds without a dissociation of the complex. The energy landscape of this complex is rugged with many small barriers (3 to 4 kBT) and reconciles specificity, high affinity, and extreme disorder. A few persistent contacts provide specificity, whereas unspecific interactions boost affinity.
Collapse
|
25
|
Benke S, Holla A, Wunderlich B, Soranno A, Nettels D, Schuler B. Combining Rapid Microfluidic Mixing and Three-Color Single-Molecule FRET for Probing the Kinetics of Protein Conformational Changes. J Phys Chem B 2021; 125:6617-6628. [PMID: 34125545 DOI: 10.1021/acs.jpcb.1c02370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Single-molecule Förster resonance energy transfer (FRET) is well suited for studying the kinetics of protein conformational changes, owing to its high sensitivity and ability to resolve individual subpopulations in heterogeneous systems. However, the most common approach employing two fluorophores can only monitor one distance at a time, and the use of three fluorophores for simultaneously monitoring multiple distances has largely been limited to equilibrium fluctuations. Here we show that three-color single-molecule FRET can be combined with rapid microfluidic mixing to investigate conformational changes in a protein from milliseconds to minutes. In combination with manual mixing, we extended the kinetics to 1 h, corresponding to a total range of 5 orders of magnitude in time. We studied the monomer-to-protomer conversion of the pore-forming toxin cytolysin A (ClyA), one of the largest protein conformational transitions known. Site-specific labeling of ClyA with three fluorophores enabled us to follow the kinetics of three intramolecular distances at the same time and revealed a previously undetected intermediate. The combination of three-color single-molecule FRET with rapid microfluidic mixing thus provides an approach for probing the mechanisms of complex biomolecular processes with high time resolution.
Collapse
Affiliation(s)
- Stephan Benke
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Holla
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bengt Wunderlich
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Soranno
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Biochemistry and Molecular Biophysics, Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Physics, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Wee WA, Yum JH, Hirashima S, Sugiyama H, Park S. Synthesis and application of a 19F-labeled fluorescent nucleoside as a dual-mode probe for i-motif DNAs. RSC Chem Biol 2021; 2:876-882. [PMID: 34458815 PMCID: PMC8382138 DOI: 10.1039/d1cb00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Because of their stable orientations and their minimal interference with native DNA interactions and folding, emissive isomorphic nucleoside analogues are versatile tools for the accurate analysis of DNA structural heterogeneity. Here, we report on a bifunctional trifluoromethylphenylpyrrolocytidine derivative (FPdC) that displays an unprecedented quantum yield and highly sensitive 19F NMR signal. This is the first report of a cytosine-based dual-purpose probe for both fluorescence and 19F NMR spectroscopic DNA analysis. FPdC and FPdC-containing DNA were synthesized and characterized; our robust dual probe was successfully used to investigate the noncanonical DNA structure, i-motifs, through changes in fluorescence intensity and 19F chemical shift in response to i-motif formation. The utility of FPdC was exemplified through reversible fluorescence switching of an FPdC-containing i-motif oligonucleotide in the presence of Ag(i) and cysteine.
Collapse
Affiliation(s)
- Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
27
|
From folding to function: complex macromolecular reactions unraveled one-by-one with optical tweezers. Essays Biochem 2021; 65:129-142. [PMID: 33438724 DOI: 10.1042/ebc20200024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Single-molecule manipulation with optical tweezers has uncovered macromolecular behaviour hidden to other experimental techniques. Recent instrumental improvements have made it possible to expand the range of systems accessible to optical tweezers. Beyond focusing on the folding and structural changes of isolated single molecules, optical tweezers studies have evolved into unraveling the basic principles of complex molecular processes such as co-translational folding on the ribosome, kinase activation dynamics, ligand-receptor binding, chaperone-assisted protein folding, and even dynamics of intrinsically disordered proteins (IDPs). In this mini-review, we illustrate the methodological principles of optical tweezers before highlighting recent advances in studying complex protein conformational dynamics - from protein synthesis to physiological function - as well as emerging future issues that are beginning to be addressed with novel approaches.
Collapse
|
28
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
29
|
Freitas FC, Ferreira PHB, Favaro DC, Oliveira RJD. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. J Chem Inf Model 2021; 61:1226-1243. [PMID: 33619962 PMCID: PMC7931628 DOI: 10.1021/acs.jcim.0c01320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 01/07/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor that locks onto the surface spike protein of the 2002 SARS coronavirus (SARS-CoV-1) and of the novel, highly transmissible and deadly 2019 SARS-CoV-2, responsible for the COVID-19 pandemic. One strategy to avoid the virus infection is to design peptides by extracting the human ACE2 peptidase domain α1-helix, which would bind to the coronavirus surface protein, preventing the virus entry into the host cells. The natural α1-helix peptide has a stronger affinity to SARS-CoV-2 than to SARS-CoV-1. Another peptide was designed by joining α1 with the second portion of ACE2 that is far in the peptidase sequence yet grafted in the spike protein interface with ACE2. Previous studies have shown that, among several α1-based peptides, the hybrid peptidic scaffold is the one with the highest/strongest affinity for SARS-CoV-1, which is comparable to the full-length ACE2 affinity. In this work, binding and folding dynamics of the natural and designed ACE2-based peptides were simulated by the well-known coarse-grained structure-based model, with the computed thermodynamic quantities correlating with the experimental binding affinity data. Furthermore, theoretical kinetic analysis of native contact formation revealed the distinction between these processes in the presence of the different binding partners SARS-CoV-1 and SARS-CoV-2 spike domains. Additionally, our results indicate the existence of a two-state folding mechanism for the designed peptide en route to bind to the spike proteins, in contrast to a downhill mechanism for the natural α1-helix peptides. The presented low-cost simulation protocol demonstrated its efficiency in evaluating binding affinities and identifying the mechanisms involved in the neutralization of spike-ACE2 interaction by designed peptides. Finally, the protocol can be used as a computer-based screening of more potent designed peptides by experimentalists searching for new therapeutics against COVID-19.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Paulo Henrique Borges Ferreira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Denize Cristina Favaro
- Departamento de Química Orgânica,
Instituto de Química, Universidade Estadual de
Campinas, São Paulo, SP 13083-970, Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
30
|
Berezhkovskii AM, Bezrukov SM, Makarov DE. Localized potential well vs binding site: Mapping solute dynamics in a membrane channel onto one-dimensional description. J Chem Phys 2021; 154:111101. [PMID: 33752368 DOI: 10.1063/5.0044044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the one-dimensional description, the interaction of a solute molecule with the channel wall is characterized by the potential of mean force U(x), where the x-coordinate is measured along the channel axis. When the molecule can reversibly bind to certain amino acid(s) of the protein forming the channel, this results in a localized well in the potential U(x). Alternatively, this binding can be modeled by introducing a discrete localized site, in addition to the continuum of states along x. Although both models may predict identical equilibrium distributions of the coordinate x, there is a fundamental difference between the two: in the first model, the molecule passing through the channel unavoidably visits the potential well, while in the latter, it may traverse the channel without being trapped at the discrete site. Here, we show that when the two models are parameterized to have the same thermodynamic properties, they automatically yield identical translocation probabilities and mean translocation times, yet they predict qualitatively different shapes of the translocation time distribution. Specifically, the potential well model yields a narrower distribution than the model with a discrete site, a difference that can be quantified by the distribution's coefficient of variation. This coefficient turns out to be always smaller than unity in the potential well model, whereas it may exceed unity when a discrete trapping site is present. Analysis of the translocation time distribution beyond its mean thus offers a way to differentiate between distinct translocation mechanisms.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
31
|
Taumoefolau GH, Best RB. Estimating transition path times and shapes from single-molecule photon trajectories: A simulation analysis. J Chem Phys 2021; 154:115101. [PMID: 33752373 DOI: 10.1063/5.0040949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In a two-state molecular system, transition paths comprise the portions of trajectories during which the system transits from one stable state to the other. Because of their low population, it is essentially impossible to obtain information on transition paths from experiments on a large sample of molecules. However, single-molecule experiments such as laser optical tweezers or Förster resonance energy transfer (FRET) spectroscopy have allowed transition-path durations to be estimated. Here, we use molecular simulations to test the methodology for obtaining information on transition paths in single-molecule FRET by generating photon trajectories from the distance trajectories obtained in the simulation. Encouragingly, we find that this maximum likelihood analysis yields transition-path times within a factor of 2-4 of the values estimated using a good coordinate for folding, but tends to systematically underestimate them. The underestimation can be attributed partly to the fact that the large changes in the end-end distance occur mostly early in a folding trajectory. However, even if the transfer efficiency is a good reaction coordinate for folding, the assumption that the transition-path shape is a step function still leads to an underestimation of the transition-path time as defined here. We find that allowing more flexibility in the form of the transition path model allows more accurate transition-path times to be extracted and points the way toward further improvements in methods for estimating transition-path time and transition-path shape.
Collapse
Affiliation(s)
- Grace H Taumoefolau
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
32
|
Abstract
Chemists visualize chemical reactions as motion along one-dimensional "reaction coordinates" over free energy barriers. Various rate theories, such as transition state theory and the Kramers theory of diffusive barrier crossing, differ in their assumptions regarding the mathematical specifics of this motion. Direct experimental observation of the motion along reaction coordinates requires single-molecule experiments performed with unprecedented time resolution. Toward this goal, recent single-molecule studies achieved time resolution sufficient to catch biomolecules in the act of crossing free energy barriers as they fold, bind to their targets, or undergo other large structural changes, offering a window into the elusive reaction "mechanisms". This Perspective describes what we can learn (and what we have already learned) about barrier crossing dynamics through synergy of single-molecule experiments, theory, and molecular simulations. In particular, I will discuss how emerging experimental data can be used to answer several questions of principle. For example, is motion along the reaction coordinate diffusive, is there conformational memory, and is reduction to just one degree of freedom to represent the reaction mechanism justified? It turns out that these questions can be formulated as experimentally testable mathematical inequalities, and their application to experimental and simulated data has already led to a number of insights. I will also discuss open issues and current challenges in this fast evolving field of research.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
33
|
Palopoli N, Marchetti J, Monzon AM, Zea DJ, Tosatto SCE, Fornasari MS, Parisi G. Intrinsically Disordered Protein Ensembles Shape Evolutionary Rates Revealing Conformational Patterns. J Mol Biol 2020; 433:166751. [PMID: 33310020 DOI: 10.1016/j.jmb.2020.166751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack stable tertiary structure under physiological conditions. The unique composition and complex dynamical behaviour of IDPs make them a challenge for structural biology and molecular evolution studies. Using NMR ensembles, we found that IDPs evolve under a strong site-specific evolutionary rate heterogeneity, mainly originated by different constraints derived from their inter-residue contacts. Evolutionary rate profiles correlate with the experimentally observed conformational diversity of the protein, allowing the description of different conformational patterns possibly related to their structure-function relationships. The correlation between evolutionary rates and contact information improves when structural information is taken not from any individual conformer or the whole ensemble, but from combining a limited number of conformers. Our results suggest that residue contacts in disordered regions constrain evolutionary rates to conserve the dynamic behaviour of the ensemble and that evolutionary rates can be used as a proxy for the conformational diversity of IDPs.
Collapse
Affiliation(s)
- Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | | | - Diego J Zea
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | | | - Maria S Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Regmi R, Srinivasan S, Latham AP, Kukshal V, Cui W, Zhang B, Bose R, Schlau-Cohen GS. Phosphorylation-Dependent Conformations of the Disordered Carboxyl-Terminus Domain in the Epidermal Growth Factor Receptor. J Phys Chem Lett 2020; 11:10037-10044. [PMID: 33179922 PMCID: PMC8063277 DOI: 10.1021/acs.jpclett.0c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, regulates basic cellular functions and is a major target for anticancer therapeutics. The carboxyl-terminus domain is a disordered region of EGFR that contains the tyrosine residues, which undergo autophosphorylation followed by docking of signaling proteins. Local phosphorylation-dependent secondary structure has been identified and is thought to be associated with the signaling cascade. Deciphering and distinguishing the overall conformations, however, have been challenging because of the disordered nature of the carboxyl-terminus domain and resultant lack of well-defined three-dimensional structure for most of the domain. We investigated the overall conformational states of the isolated EGFR carboxyl-terminus domain using single-molecule Förster resonance energy transfer and coarse-grained simulations. Our results suggest that electrostatic interactions between charged residues emerge within the disordered domain upon phosphorylation, producing a looplike conformation. This conformation may enable binding of downstream signaling proteins and potentially reflect a general mechanism in which electrostatics transiently generate functional architectures in disordered regions of a well-folded protein.
Collapse
Affiliation(s)
- Raju Regmi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shwetha Srinivasan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vandna Kukshal
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ron Bose
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Broad distributions of transition-path times are fingerprints of multidimensionality of the underlying free energy landscapes. Proc Natl Acad Sci U S A 2020; 117:27116-27123. [PMID: 33087575 DOI: 10.1073/pnas.2008307117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent single-molecule experiments have observed transition paths, i.e., brief events where molecules (particularly biomolecules) are caught in the act of surmounting activation barriers. Such measurements offer unprecedented mechanistic insights into the dynamics of biomolecular folding and binding, molecular machines, and biological membrane channels. A key challenge to these studies is to infer the complex details of the multidimensional energy landscape traversed by the transition paths from inherently low-dimensional experimental signals. A common minimalist model attempting to do so is that of one-dimensional diffusion along a reaction coordinate, yet its validity has been called into question. Here, we show that the distribution of the transition path time, which is a common experimental observable, can be used to differentiate between the dynamics described by models of one-dimensional diffusion from the dynamics in which multidimensionality is essential. Specifically, we prove that the coefficient of variation obtained from this distribution cannot possibly exceed 1 for any one-dimensional diffusive model, no matter how rugged its underlying free energy landscape is: In other words, this distribution cannot be broader than the single-exponential one. Thus, a coefficient of variation exceeding 1 is a fingerprint of multidimensional dynamics. Analysis of transition paths in atomistic simulations of proteins shows that this coefficient often exceeds 1, signifying essential multidimensionality of those systems.
Collapse
|