1
|
Firth JA, Albery GF, Bouwhuis S, Brent LJN, Salguero-Gómez R. Understanding age and society using natural populations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220469. [PMID: 39463246 PMCID: PMC11513640 DOI: 10.1098/rstb.2022.0469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Ageing affects almost all aspects of life and therefore is an important process across societies, human and non-human animal alike. This article introduces new research exploring the complex interplay between individual-level ageing and demography, and the consequences this interplay holds for the structure and functioning of societies across various natural populations. We discuss how this Special Issue provides a foundation for integrating perspectives from evolutionary biology, behavioural ecology and demography to provide new insights into how ageing shapes individuals' social behaviour and social associations, and how this in turn impacts social networks, social processes (such as disease or information transfer) and fitness. Through examining these topics across taxa, from invertebrates to birds and mammals, we outline how contemporary studies are using natural populations to advance our understanding of the relationship between age and society in innovative ways. We highlight key emerging research themes from this Special Issue, such as how sociality affects lifespan and health, the genetic and ecological underpinnings of social ageing and the adaptive strategies employed by different species. We conclude that this Special Issue underscores the importance of studying social ageing using diverse systems and interdisciplinary approaches for advancing evolutionary and ecological insights into both ageing and sociality more generally.This article is part of the discussion meeting issue 'Understanding age and society using natural populations '.
Collapse
Affiliation(s)
- Josh A. Firth
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Department of Biology, Oxford University, Oxford, UK
| | - Gregory F. Albery
- School of Natural Sciences, Trinity College Dublin, Dublin, Republic of Ireland
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | |
Collapse
|
2
|
Godoy I, Korsten P, Perry SE. Mother of all bonds: Influences on spatial association across the lifespan in capuchins. Dev Sci 2024; 27:e13486. [PMID: 38414216 DOI: 10.1111/desc.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
In humans, being more socially integrated is associated with better physical and mental health and/or with lower mortality. This link between sociality and health may have ancient roots: sociality also predicts survival or reproduction in other mammals, such as rats, dolphins, and non-human primates. A key question, therefore, is which factors influence the degree of sociality over the life course. Longitudinal data can provide valuable insight into how environmental variability drives individual differences in sociality and associated outcomes. The first year of life-when long-lived mammals are the most reliant on others for nourishment and protection-is likely to play an important role in how individuals learn to integrate into groups. Using behavioral, demographic, and pedigree information on 376 wild capuchin monkeys (Cebus imitator) across 20 years, we address how changes in group composition influence spatial association. We further try to determine the extent to which early maternal social environments have downstream effects on sociality across the juvenile and (sub)adult stages. We find a positive effect of early maternal spatial association, where female infants whose mothers spent more time around others also later spent more time around others as juveniles and subadults. Our results also highlight the importance of kin availability and other aspects of group composition (e.g., group size) in dynamically influencing spatial association across developmental stages. We bring attention to the importance of-and difficulty in-determining the social versus genetic influences that parents have on offspring phenotypes. RESEARCH HIGHLIGHTS: Having more maternal kin (mother and siblings) is associated with spending more time near others across developmental stages in both male and female capuchins. Having more offspring as a subadult or adult female is additionally associated with spending more time near others. A mother's average sociality (time near others) is predictive of how social her daughters (but not sons) become as juveniles and subadults (a between-mother effect). Additional variation within sibling sets in this same maternal phenotype is not predictive of how social they become later relative to each other (no within-mother effect).
Collapse
Affiliation(s)
- Irene Godoy
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Guanacaste, Costa Rica
| | - Peter Korsten
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Susan E Perry
- Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Guanacaste, Costa Rica
- Department of Anthropology, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Bartolomucci A, Tung J, Harris KM. The fortunes and misfortunes of social life across the life course: A new era of research from field, laboratory and comparative studies. Neurosci Biobehav Rev 2024; 162:105655. [PMID: 38583652 DOI: 10.1016/j.neubiorev.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Social gradients in health and aging have been reported in studies across many human populations, and - as the papers included in this special collection highlight - also occur across species. This paper serves as a general introduction to the special collection of Neuroscience and Biobehavioral Reviews entitled "Social dimensions of health and aging: population studies, preclinical research, and comparative research using animal models". Authors of the fourteen reviews are primarily members of a National Institute of Aging-supported High Priority Research Network on "Animal Models for the Social Dimensions of Health and Aging". The collection is introduced by a foreword, commentaries, and opinion pieces by leading experts in related fields. The fourteen reviews are divided into four sections: Section 1: Biodemography and life course studies; Section 2: Social behavior and healthy aging in nonhuman primates; Section 3: Social factors, stress, and hallmarks of aging; Section 4: Neuroscience and social behavior.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham, NC, USA; Canadian Institute for Advanced Research, Toronto, Canada; Duke Population Research Institute, Duke University, Durham, NC, USA.
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Ross CT, McElreath R, Redhead D. Modelling animal network data in R using STRAND. J Anim Ecol 2024; 93:254-266. [PMID: 37936514 DOI: 10.1111/1365-2656.14021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023]
Abstract
There have been recent calls for wider application of generative modelling approaches in applied social network analysis. At present, however, it remains difficult for typical end users-for example, field researchers-to implement generative network models, as there is a dearth of openly available software packages that make application of such models as simple as other, permutation-based approaches. Here, we outline the STRAND R package, which provides a suite of generative models for Bayesian analysis of animal social network data that can be implemented using simple, base R syntax. To facilitate ease of use, we provide a tutorial demonstrating how STRAND can be used to model proportion, count or binary network data using stochastic block models, social relation models or a combination of the two modelling frameworks. STRAND facilitates the application of generative network models to a broad range of data found in the animal social networks literature.
Collapse
Affiliation(s)
- Cody T Ross
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Richard McElreath
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Daniel Redhead
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
5
|
Catitti B, Grüebler MU, Farine DR, Kormann UG. Natal legacies cause social and spatial marginalization during dispersal. Ecol Lett 2024; 27:e14366. [PMID: 38332501 DOI: 10.1111/ele.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
Early-life experiences can drive subsequent variation in social behaviours, but how differences among individuals emerge remains unknown. We combined experimental manipulations with GPS-tracking to investigate the pathways through which developmental conditions affect social network position during the early dispersal of wild red kites (Milvus milvus). Across 211 juveniles from 140 broods, last-hatched chicks-the least competitive-had the fewest number of peer encounters after fledging. However, when food supplemented, they had more encounters than all others. Using 4425 bird-days of GPS data, we revealed that this was driven by differential responses to competition, with less competitive individuals naturally spreading out into marginal areas, and clustering in central foraging areas when food supplemented. Our results suggest that early-life adversities can cause significant natal legacies on individual behaviour beyond independence, with potentially far-reaching consequences on the social and spatial structure of animal populations.
Collapse
Affiliation(s)
- Benedetta Catitti
- Swiss Ornithological Institute, Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Urs G Kormann
- Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
6
|
Kerjean E, van de Waal E, Canteloup C. Social dynamics of vervet monkeys are dependent upon group identity. iScience 2024; 27:108591. [PMID: 38299029 PMCID: PMC10829874 DOI: 10.1016/j.isci.2023.108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/22/2023] [Accepted: 11/27/2023] [Indexed: 02/02/2024] Open
Abstract
Traditions are widespread across the animal realm. Here, we investigated inter-group variability of social dynamics in wild vervet monkeys (Chlorocebus pygerythrus). We analyzed 84,704 social interactions involving 247 individuals collected over nine years in three neighboring groups of wild vervet monkeys. We found that in one group - Ankhase - individuals had a higher propensity to be affiliative (i.e., sociality) and grooming interactions were more reciprocal. Despite yearly fluctuations in sociality, differences between groups remained stable over time. Moreover, our statistical model predictions confirmed that these findings were maintained for similar sex ratios, age distributions, and group sizes. Strikingly, our results suggested that dispersing males adapted their sociality to the sociality of the group they integrated with. As a whole, our study sheds light on the existence of stable social dynamics dependent upon group identity in wild vervet monkeys and suggests that at least part of this variability is socially mediated.
Collapse
Affiliation(s)
- Elena Kerjean
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Vaud, Switzerland
- Research Center on Animal Cognition, Center of Integrative Biology, University of Toulouse III - Paul Sabatier, Toulouse, France
| | - Erica van de Waal
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Vaud, Switzerland
- Inkawu Vervet Project, Mawana Game Reserve, KwaZulu-Natal, South Africa
- Center for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
- The Sense Innovation and Research Center, Lausanne and Sion, Vaud, Switzerland
| | - Charlotte Canteloup
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Vaud, Switzerland
- Inkawu Vervet Project, Mawana Game Reserve, KwaZulu-Natal, South Africa
- Center for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
- The Sense Innovation and Research Center, Lausanne and Sion, Vaud, Switzerland
- Laboratory of Cognitive & Adaptive Neurosciences, CNRS - UMR 7364, University of Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Frère CH, Class B, Potvin DA, Ilany A. Social inheritance of avoidances shapes the structure of animal social networks. Behav Ecol 2024; 35:arad088. [PMID: 38193013 PMCID: PMC10773302 DOI: 10.1093/beheco/arad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/02/2023] [Accepted: 10/08/2023] [Indexed: 01/10/2024] Open
Abstract
Social structure can have significant effects on selection, affecting both individual fitness traits and population-level processes. As such, research into its dynamics and evolution has spiked in the last decade, where theoretical and computational advances in social network analysis have increased our understanding of its ecological and inheritance underpinnings. Yet, the processes that shape the formation of structure within social networks are poorly understood and the role of social avoidances unknown. Social avoidances are an alternate of social affiliation in animal societies, which, although invisible, likely play a role in shaping animal social networks. Assuming social avoidances evolve under similar constraints as affiliative behavior, we extended a previous model of social inheritance of affiliations to investigate the impact of social inheritance of avoidances on social network structure. We modeled avoidances as relationships that individuals can copy from their mothers or from their mother's social environment and varied the degrees to which individuals inherit social affiliates and avoidances to test their combined influence on social network structure. We found that inheriting avoidances via maternal social environments made social networks less dense and more modular, thereby demonstrating how social avoidance can shape the evolution of animal social networks.
Collapse
Affiliation(s)
- Celine H Frère
- School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Barbara Class
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD 4502, Australia
- Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Dominique A Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD 4502, Australia
| | - Amiyaal Ilany
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 590002, Israel
| |
Collapse
|
8
|
Beck KB, Farine DR, Firth JA, Sheldon BC. Variation in local population size predicts social network structure in wild songbirds. J Anim Ecol 2023; 92:2348-2362. [PMID: 37837224 PMCID: PMC10952437 DOI: 10.1111/1365-2656.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
The structure of animal societies is a key determinant of many ecological and evolutionary processes. Yet, we know relatively little about the factors and mechanisms that underpin detailed social structure. Among other factors, social structure can be influenced by habitat configuration. By shaping animal movement decisions, heterogeneity in habitat features, such as vegetation and the availability of resources, can influence the spatiotemporal distribution of individuals and subsequently key socioecological properties such as the local population size and density. Differences in local population size and density can impact opportunities for social associations and may thus drive substantial variation in local social structure. Here, we investigated spatiotemporal variation in population size at 65 distinct locations in a small songbird, the great tit (Parus major) and its effect on social network structure. We first explored the within-location consistency of population size from weekly samples and whether the observed variation in local population size was predicted by the underlying habitat configuration. Next, we created social networks from the birds' foraging associations at each location for each week and examined if local population size affected social structure. We show that population size is highly repeatable within locations across weeks and years and that some of the observed variation in local population size was predicted by the underlying habitat, with locations closer to the forest edge having on average larger population sizes. Furthermore, we show that local population size affected social structure inferred by four global network metrics. Using simple simulations, we then reveal that much of the observed social structure is shaped by social processes. Across different population sizes, the birds' social structure was largely explained by their preference to forage in flocks. In addition, over and above effects of social foraging, social preferences between birds (i.e. social relationships) shaped certain network features such as the extent of realized social connections. Our findings thus suggest that individual social decisions substantially contribute to shaping certain social network features over and above effects of population size alone.
Collapse
Affiliation(s)
- Kristina B. Beck
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Josh A. Firth
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Ben C. Sheldon
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Li Z, Chen S, Wei S, Komdeur J, Lu X. Should sons breed independently or help? Local relatedness matters. J Anim Ecol 2023; 92:2189-2200. [PMID: 37766488 DOI: 10.1111/1365-2656.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
In cooperatively breeding birds, why do some individuals breed independently but others have to help at home? This question has been rarely addressed despite its fundamental importance for understanding the evolution of social cooperation. We address it using 15 years of data from Tibetan ground tits Pseudopodoces humilis where helpers consist of younger males. Since whether younger males successfully breed depends critically on their chances to occupy territories nearby home, our analytic strategy is to identify the determinants of individual differences in gaining territory ownership among these ready-to-breed males. Across widowed, last-year helper and yearling males, an age advantage was evident in inheriting resident territories, occupying adjacent vacancies and budding off part of adjacent territories, which left some last-year helpers and most yearling males to take the latter two routes. These males were more likely to acquire a territory if they were genetically related to the previous or current territory owners; otherwise they remained on natal territories as helpers. The relatedness effect can arise from the prior residence advantage established in the preceding winter when younger males followed their parents to perform kin-directed off-territory forays. Our research highlights the key role of local kinship in determining younger males' territory acquisition and thus their fate in terms of independent reproduction versus help. This finding provides insight into the formation of kin-based, facultative cooperative societies prevailing among vertebrates.
Collapse
Affiliation(s)
- Zhibing Li
- Institute for Advanced Studies, Wuhan University, Wuhan, China
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shicheng Chen
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sai Wei
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Xin Lu
- Institute for Advanced Studies, Wuhan University, Wuhan, China
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Mainwaring MC, Tobalske BW, Hartley IR. Born without a Silver Spoon: A Review of the Causes and Consequences of Adversity during Early Life. Integr Comp Biol 2023; 63:742-757. [PMID: 37280184 PMCID: PMC10805381 DOI: 10.1093/icb/icad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
A huge amount of research attention has focused on the evolution of life histories, but most research focuses on dominant individuals that acquire a disproportionate level of reproductive success, while the life histories and reproductive tactics of subordinate individuals have received less attention. Here, we review the links between early life adversity and performance during adulthood in birds, and highlight instances in which subordinate individuals outperform dominant conspecifics. Subordinate individuals are those from broods raised under high risk of predation, with low availability of food, and/or with many parasites. Meanwhile, the broods of many species hatch or are born asynchronously and mitigation of the asynchrony is generally lacking from variation in maternal effects such as egg size and hormone deposition or genetic effects such as offspring sex or parentage. Subordinate individuals employ patterns of differential growth to attempt to mitigate the adversity they experience during early life, yet they overwhelmingly fail to overcome their initial handicap. In terms of surviving through to adulthood, subordinate individuals employ other "suboptimal" tactics, such as adaptively timing foraging behaviors to avoid dominant individuals. During adulthood, meanwhile, subordinate individuals rely on "suboptimal" tactics, such as adaptive dispersal behaviors and competing for partners at optimal times, because they represent the best options available to them to acquire copulations whenever possible. We conclude that there is a gap in knowledge for direct links between early life adversity and subordination during adulthood, meaning that further research should test for links. There are instances, however, where subordinate individuals employ "suboptimal" tactics that allow them to outperform dominant conspecifics during adulthood.
Collapse
Affiliation(s)
- Mark C Mainwaring
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Bret W Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Ian R Hartley
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
11
|
Smith JE, Natterson-Horowitz B, Mueller MM, Alfaro ME. Mechanisms of equality and inequality in mammalian societies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220307. [PMID: 37381860 PMCID: PMC10291435 DOI: 10.1098/rstb.2022.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023] Open
Abstract
The extent of (in)equality is highly diverse across species of social mammals, but we have a poor understanding of the factors that produce or inhibit equitable social organizations. Here, we adopt a comparative evolutionary perspective to test whether the evolution of social dominance hierarchies, a measure of social inequality in animals, exhibits phylogenetic conservatism and whether interspecific variation in these traits can be explained by sex, age or captivity. We find that hierarchy steepness and directional consistency evolve rapidly without any apparent constraint from evolutionary history. Given this extraordinary variability, we next consider multiple factors that have evolved to mitigate social inequality. Social networks, coalitionary support and knowledge transfer advantage to privilege some individuals over others. Nutritional access and prenatal stressors can impact the development of offspring, generating health disparities with intergenerational consequences. Intergenerational transfer of material resources (e.g. stone tools, food stashes, territories) advantage those who receive. Nonetheless, many of the same social species that experience unequal access to food (survival) and mates (reproduction) engage in levelling mechanisms such as food sharing, adoption, revolutionary coalitions, forgiveness and inequity aversion. Taken together, mammals rely upon a suite of mechanisms of (in)equality to balance the costs and benefits of group living. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- Jennifer E. Smith
- Biology Department, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, WI 54702, USA
| | - Barbara Natterson-Horowitz
- School of Medicine, Division of Cardiology, University of California, 650 Charles Young Drive South, A2-237 CHS, Los Angeles, CA 90095, USA
| | - Maddison M. Mueller
- Biology Department, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, WI 54702, USA
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology, University of California, 2149 Terasaki Life Sciences Building, 612 Charles E. Young Drive South, Box 957246, Los Angeles, CA 90095-7246, USA
| |
Collapse
|
12
|
Strauss ED. Demographic turnover can be a leading driver of hierarchy dynamics, and social inheritance modifies its effects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220308. [PMID: 37381857 PMCID: PMC10291429 DOI: 10.1098/rstb.2022.0308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 06/30/2023] Open
Abstract
Individuals and societies are linked through a feedback loop of mutual influence. Demographic turnover shapes group composition and structure by adding and removing individuals, and social inheritance shapes social structure through the transmission of social traits from parents to offspring. Here I examine how these drivers of social structure feedback to influence individual outcomes. I explore these society-to-individual effects in systems with social inheritance of hierarchy position, as occur in many primates and spotted hyenas. Applying Markov chain models to empirical and simulated data reveals how demography and social inheritance interact to strongly shape individual hierarchy positions. In hyena societies, demographic processes-not status seeking-account for the majority of hierarchy dynamics and cause an on-average lifetime decline in social hierarchy position. Simulated societies clarify how social inheritance alters demographic effects-demographic processes cause hierarchy position to regress to the mean, but the addition of social inheritance modifies this pattern. Notably, the combination of social inheritance and rank-related reproductive success causes individuals to decline in rank over their lifespans, as seen in the hyena data. Further analyses explore how 'queens' escape this pattern of decline, and how variation in social inheritance generates variability in reproductive inequality. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Baden-Württemberg, 78464, Germany
- Ecology of Animal Societies Department, Max Planck Institute of Animal Behavior, Radolfzell, Baden-Württemberg, 78315, Germany
- Collective Behavior Department, Max Planck Institute of Animal Behavior, Radolfzell, Baden-Württemberg, 78315, Germany
- Integrative Biology Department, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
13
|
Roatti V, Cowlishaw G, Huchard E, Carter A. Social network inheritance and differentiation in wild baboons. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230219. [PMID: 37234491 PMCID: PMC10206475 DOI: 10.1098/rsos.230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Immatures' social development may be fundamental to understand important biological processes, such as social information transmission through groups, that can vary with age and sex. Our aim was to determine how social networks change with age and differ between sexes in wild immature baboons, group-living primates that readily learn socially. Our results show that immature baboons inherited their mothers' networks and differentiated from them as they aged, increasing their association with partners of similar age and the same sex. Males were less bonded to their matriline and became more peripheral with age compared to females. Our results may pave the way to further studies testing a new hypothetical framework: in female-philopatric societies, social information transmission may be constrained at the matrilineal level by age- and sex-driven social clustering.
Collapse
Affiliation(s)
- Vittoria Roatti
- Anthropology Department, University College London, London WC1E 6BT, UK
- Zoological Society of London, Institute of Zoology, London NW1 4RY, UK
| | - Guy Cowlishaw
- Zoological Society of London, Institute of Zoology, London NW1 4RY, UK
| | - Elise Huchard
- Institut des Sciences de l'Evolution de Montpellier, CNRS, University of Montpellier, 34095 Montpellier Cedex 5, France
| | - Alecia Carter
- Anthropology Department, University College London, London WC1E 6BT, UK
| |
Collapse
|
14
|
Jiménez R, Burgos M, Barrionuevo FJ. The Biology and Evolution of Fierce Females (Moles and Hyenas). Annu Rev Anim Biosci 2023; 11:141-162. [PMID: 36130099 DOI: 10.1146/annurev-animal-050622-043424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Talpid moles and spotted hyenas have become the paradigms of anatomical and behavioral female masculinization. Females of many mole species develop ovotestes that produce testosterone, show external genitalia that resemble that of males, and close their vaginal orifice after every estrus, and female spotted hyenas lack an external vaginal orifice and develop a pseudoscrotum and a large pseudopenis through which they urinate, mate, and give birth. We review current knowledge about several significant aspects of the biology and evolution of these females, including (a) their specific study methods; (b) their unique anatomical features, and how these peculiarities influence certain physiological functions; and (c) the role that steroid hormones as well as genetic and environmental factors may have in urogenital system development, aggressive behavior, and social dominance. Nevertheless, both mole and hyena females are exceptionally efficient mothers, so their peculiar genitalia should not call into question their femininity.
Collapse
Affiliation(s)
- Rafael Jiménez
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| | - Miguel Burgos
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| | - Francisco J Barrionuevo
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| |
Collapse
|
15
|
Simpson CR, Power EA. Dynamics of cooperative networks associated with gender among South Indian Tamils. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210437. [PMID: 36440558 PMCID: PMC9703249 DOI: 10.1098/rstb.2021.0437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Helping behaviour is thought to play a major role in the evolution of group-living animals. Yet, it is unclear to what extent human males and human females use the same strategies to secure support. Accordingly, we investigate help-seeking over a 5-year period in relation to gender using data from virtually all adults in two Tamil villages (N = 782). Simulations of network dynamics (i.e. stochastic actor-oriented models) calibrated to these data broadly indicate that women are more inclined than men to create and maintain supportive bonds via multiple mechanisms of cooperation (e.g. reciprocity, kin bias, friend bias, generalized exchange). However, gender-related differences in the simulated dynamics of help-seeking are modest, vary based on structural position (e.g. out-degree), and do not appear to translate to divergence in the observed structure of respondents' egocentric networks. Findings ultimately suggest that men and women in the two villages are similarly social but channel their sociality differently. This article is part of the theme issue 'Cooperation among women: evolutionary and cross-cultural perspectives'.
Collapse
Affiliation(s)
- Cohen R. Simpson
- Nuffield College, University of Oxford, Oxford OX1 1NF, UK
- Department of Methodology, The London School of Economics and Political Science, London WC2A 2AE, UK
| | - Eleanor A. Power
- Department of Methodology, The London School of Economics and Political Science, London WC2A 2AE, UK
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
16
|
Walmsley SF, Boutin S, Dantzer B, Lane JE, Coltman DW, McAdam AG. Benefits of living closer to kin vary by genealogical relationship in a territorial mammal. Proc Biol Sci 2023; 290:20221569. [PMID: 36629099 PMCID: PMC9832554 DOI: 10.1098/rspb.2022.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
While cooperative interactions among kin are a key building block in the societies of group-living species, their importance for species with more variable social environments is unclear. North American red squirrels (Tamiasciurus hudsonicus) defend individual territories in dynamic neighbourhoods and are known to benefit from living among familiar conspecifics, but not relatives. However, kin-directed behaviours may be restricted to specific genealogical relationships or strongly mediated by geographical distance, masking their influence at broader scales. Using distance between territories as a proxy for the ability of individuals to interact, we estimated the influence of primary kin (parents, offspring, siblings) on the annual survival and reproductive success of red squirrels. This approach revealed associations between fitness and access to kin, but only for certain genealogical relationships and fitness components. For example, females had enhanced annual survival when living closer to their daughters, though the reverse was not true. Most surprising was the finding that males had higher annual reproductive success when living closer to their father, suggesting possible recognition and cooperation among fathers and sons. Together, these findings point to unexpected nuance in the fitness consequences of kinship dynamics for a species that is territorial and largely solitary.
Collapse
Affiliation(s)
- Sam F. Walmsley
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO 80309, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2E9
| | - Ben Dantzer
- Department of Psychology, University of Michigan, 500 South State Street, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, 500 South State Street, Ann Arbor, MI 48109, USA
| | - Jeffrey E. Lane
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Canada S7N 5E2
| | - David W. Coltman
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2E9
- Biology Department, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Andrew G. McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO 80309, USA
| |
Collapse
|
17
|
Penndorf J, Ewart KM, Klump BC, Martin JM, Aplin LM. Social network analysis reveals context-dependent kin relationships in wild sulphur-crested cockatoos Cacatua galerita. J Anim Ecol 2023; 92:171-182. [PMID: 36349451 DOI: 10.1111/1365-2656.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022]
Abstract
A preference to associate with kin facilitates inclusive fitness benefits, and increased tolerance or cooperation between kin may be an added benefit of group living. Many species exhibit preferred associations with kin; however, it is often hard to disentangle active preferences from passive overlap, for example caused by limited dispersal or inheritance of social position. Many parrots exhibit social systems consisting of pair-bonded individuals foraging in variably sized fission-fusion flocks within larger communal roosts of hundreds of individuals. Previous work has shown that, despite these fission-fusion dynamics, individuals can exhibit long-term preferred foraging associations outside their pair bonds. Yet the underlying drivers of these social preferences remain largely unknown. In this study, we use a network approach to examine the influence of kinship on social associations and interactions in wild, communally roosting sulphur-crested cockatoos, Cacatua galerita. We recorded roost co-membership, social associations and interactions in 561 individually marked birds across three neighbouring roosts. We then collected genetic samples from 205 cockatoos, and conducted a relationship analysis to construct a kinship network. Finally, we tested correlations between kinship and four social networks: association, affiliative, low-intensity aggression and high-intensity aggression. Our result showed that while roosting groups were clearly defined, they showed little genetic differentiation or kin structuring. Between roost movement was high, with juveniles, especially females, repeatedly moving between roosts. Both within roosting communities, and when visiting different roosts, individuals preferentially associated with kin. Supporting this, individuals were also more likely to allopreen kin. However, contrary to expectation, individuals preferred to direct aggression towards kin, with this effect only observed when individuals shared roost membership. By measuring social networks within and between large roosting groups, we could remove potential effects of passive spatial overlap on kin structuring. Our study reveals that sulphur-crested cockatoos actively prefer to associate with kin, both within and between roosting groups. By examining this across different interaction types, we further demonstrate that sulphur-crested cockatoos exhibit behavioural and context-dependent interaction rules towards kin. Our results help reveal the drivers of social association in this species, while adding to the evidence for social complexity in parrots.
Collapse
Affiliation(s)
- Julia Penndorf
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Kyle M Ewart
- Australian Museum Research Institute, Sydney, New South Wales, Australia.,School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barbara Christina Klump
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - John M Martin
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia.,Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Lucy M Aplin
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
18
|
McCormick SK, Laubach ZM, Strauss ED, Montgomery TM, Holekamp KE. Evaluating drivers of female dominance in the spotted hyena. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.934659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IntroductionDominance relationships in which females dominate males are rare among mammals. Mechanistic hypotheses explaining the occurrence of female dominance suggest that females dominate males because (1) they are intrinsically more aggressive or less submissive than males, and/or (2) they have access to more social support than males.MethodsHere, we examine the determinants of female dominance across ontogenetic development in spotted hyenas (Crocuta crocuta) using 30 years of detailed behavioral observations from the Mara Hyena Project to evaluate these two hypotheses.ResultsAmong adult hyenas, we find that females spontaneously aggress at higher rates than males, whereas males spontaneously submit at higher rates than females. Once an aggressive interaction has been initiated, adult females are more likely than immigrant males to elicit submission from members of the opposite sex, and both adult natal and immigrant males are more likely than adult females to offer submission in response to an aggressive act. We also find that adult male aggressors are more likely to receive social support than are adult female aggressors, and that both adult natal and immigrant males are 2–3 times more likely to receive support when attacking a female than when attacking another male. Across all age classes, females are more likely than males to be targets of aggressive acts that occur with support. Further, receiving social support does slightly help immigrant males elicit submission from adult females compared to immigrant males acting alone, and it also helps females elicit submission from other females. However, adult females can dominate immigrant males with or without support far more often than immigrant males can dominate females, even when the immigrants are supported against females.DiscussionOverall, we find evidence for both mechanisms hypothesized to mediate female dominance in this species: (1) male and female hyenas clearly differ in their aggressive and submissive tendencies, and (2) realized social support plays an important role in shaping dominance relationships within a clan. Nevertheless, our results suggest that social support alone cannot explain sex-biased dominance in spotted hyenas. Although realized social support can certainly influence fight outcomes among females, adult females can easily dominate immigrant males without any support at all.
Collapse
|
19
|
Vilette C, Bonnell T, Dostie M, Henzi S, Barrett L. Network formation during social integration in juvenile vervet monkeys. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Simpson CR. Social Support and Network Formation in a Small-Scale Horticulturalist Population. Sci Data 2022; 9:570. [PMID: 36109560 PMCID: PMC9477840 DOI: 10.1038/s41597-022-01516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/29/2022] [Indexed: 11/11/2022] Open
Abstract
Evolutionary studies of cooperation in traditional human societies suggest that helping family and responding in kind when helped are the primary mechanisms for informally distributing resources vital to day-to-day survival (e.g., food, knowledge, money, childcare). However, these studies generally rely on forms of regression analysis that disregard complex interdependences between aid, resulting in the implicit assumption that kinship and reciprocity drive the emergence of entire networks of supportive social bonds. Here I evaluate this assumption using individual-oriented simulations of network formation (i.e., Stochastic Actor-Oriented Models). Specifically, I test standard predictions of cooperation derived from the evolutionary theories of kin selection and reciprocal altruism alongside well-established sociological predictions around the self-organisation of asymmetric relationships. Simulations are calibrated to exceptional public data on genetic relatedness and the provision of tangible aid amongst all 108 adult residents of a village of indigenous horticulturalists in Nicaragua (11,556 ordered dyads). Results indicate that relatedness and reciprocity are markedly less important to whom one helps compared to the supra-dyadic arrangement of the tangible aid network itself.
Collapse
Affiliation(s)
- Cohen R Simpson
- Department of Methodology, The London School of Economics and Political Science, London, UK.
- Nuffield College, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Demartsev V, Gersick AS, Jensen FH, Thomas M, Roch MA, Strandburg‐Peshkin A. Signalling in groups: New tools for the integration of animal communication and collective movement. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Vlad Demartsev
- Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Andrew S. Gersick
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA
| | | | - Mara Thomas
- Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Marie A. Roch
- Department of Computer Science San Diego State University San Diego CA USA
| | - Ariana Strandburg‐Peshkin
- Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| |
Collapse
|
22
|
Laubach ZM, Holekamp KE, Aris IM, Slopen N, Perng W. Applications of conceptual models from lifecourse epidemiology in ecology and evolutionary biology. Biol Lett 2022; 18:20220194. [PMID: 35855609 PMCID: PMC9297019 DOI: 10.1098/rsbl.2022.0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
In ecology and evolutionary biology (EEB), the study of developmental plasticity seeks to understand ontogenetic processes underlying the phenotypes upon which natural selection acts. A central challenge to this inquiry is ascertaining a causal effect of the exposure on the manifestation of later-life phenotype due to the time elapsed between the two events. The exposure is a potential cause of the outcome-i.e. an environmental stimulus or experience. The later phenotype might be a behaviour, physiological condition, morphology or life-history trait. The latency period between the exposure and outcome complicates causal inference due to the inevitable occurrence of additional events that may affect the relationship of interest. Here, we describe six distinct but non-mutually exclusive conceptual models from the field of lifecourse epidemiology and discuss their applications to EEB research. The models include Critical Period with No Later Modifiers, Critical Period with Later Modifiers, Accumulation of Risk with Independent Risk Exposures, Accumulation of Risk with Risk Clustering, Accumulation of Risk with Chains of Risk and Accumulation of Risk with Trigger Effect. These models, which have been widely used to test causal hypotheses regarding the early origins of adult-onset disease in humans, are directly relevant to research on developmental plasticity in EEB.
Collapse
Affiliation(s)
- Zachary M. Laubach
- Department of Ecology and Evolutionary Biology (EEB), University of Colorado Boulder, Boulder, CO, USA
- Mara Hyena Project, Karen, Nairobi, Kenya
| | - Kay E. Holekamp
- Mara Hyena Project, Karen, Nairobi, Kenya
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Izzuddin M. Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Natalie Slopen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
23
|
Kappeler PM, Fichtel C, Radespiel U. The Island of Female Power? Intersexual Dominance Relationships in the Lemurs of Madagascar. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.858859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The extant primates of Madagascar (Lemuriformes) represent the endpoints of an adaptive radiation following a single colonization event more than 50 million years ago. They have since evolved a diversity of life history traits, ecological adaptations and social systems that rivals that of all other living primates combined. Their social systems are characterized by a unique combination of traits, including the ability of adult females to dominate adult males. In fact, there is no other group of mammals in which female dominance is so widespread. Yet, recent research has indicated that there is more interspecific variation in lemur intersexual relationships than previously acknowledged. Here, we therefore review and summarize the relevant literature, quantifying the extent of sex-bias in intersexual dominance relations documented in observational and experimental studies in captivity and the wild. Female dominance is often, but not always, implemented by spontaneous male submission in the absence of female aggression and linked to female sexual maturation. We connect the available evidence to the hypotheses that have been proposed to explain the evolution of female dominance among lemurs. The occurrence of female dominance in all lemur families and the interspecific variation in its extent indicate that it has evolved soon after lemurs colonized Madagascar – presumably in response to particular ecological challenges – and that it has since been reduced in magnitude independently in some taxa. Our study contributes important comparative information on sex roles from an independent primate radiation and provides general insights into the conditions, opportunities and obstacles in the evolution of female-biased power.
Collapse
|
24
|
McCormick SK, Holekamp KE. Aggressiveness and submissiveness in spotted hyaenas: one trait or two? Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
25
|
Creel S. A retrospective view of early research on dominance, stress and reproduction in cooperatively breeding carnivores. Horm Behav 2022; 140:105119. [PMID: 35091153 DOI: 10.1016/j.yhbeh.2022.105119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/28/2023]
Abstract
Social carnivores have been central in studies of cooperative breeding, and research using noninvasive methods to examine behavioral and endocrine mechanisms of reproductive suppression started in the 1980s with dwarf mongooses in Serengeti National Park. Here, I synthesize the methods, findings and limitations of a research program that examined relationships between social dominance, age, mass, aggression, mating, gonadal steroids, glucocorticoids and reproduction in female and male dwarf mongooses, African wild dogs and wolves. Infanticide is a reliable backstop for reproductive suppression in females, and reproduction is energetically costly in these species. These conditions favor hypothalamic - pituitary - gonadal (HPG) adaptations that reduce the fertility of subordinate females to avoid the cost of producing doomed offspring. Infanticide also favors close synchronization of reproduction when subordinate females do become pregnant. In males, infanticide is a less reliable backstop and reproduction is less costly, so direct effects of subordination on fertility are less pronounced. Age is a strong predictor of social dominance in these species, but the evolutionary reason for this is not clear. In dwarf mongooses and wild dogs, alpha females were never deposed by younger packmates, but alpha males were: this difference is also not understood. Patterns of reproduction supported models predicting that alphas are less likely to share reproduction when the fitness costs of reproduction are high, when the fitness expected for dispersers is low, and with young subordinates to whom they are more closely related. Correlations between dominance and adrenal glucocorticoid concentrations varied between species and sexes, but did not support the hypothesis that chronic stress causes reproductive suppression.
Collapse
Affiliation(s)
- Scott Creel
- Department of Ecology, 310 Lewis Hall, Montana State University, Bozeman, MT 59717, USA; Institutionen Vilt, Fisk och Miljö, Sveriges lantbruksuniversitet, Umeå, Sweden; Zambian Carnivore Programme, P.O. Box 80, Mfuwe, Eastern Province, Zambia.
| |
Collapse
|
26
|
Bentzur A, Alon S, Shohat-Ophir G. Behavioral Neuroscience in the Era of Genomics: Tools and Lessons for Analyzing High-Dimensional Datasets. Int J Mol Sci 2022; 23:3811. [PMID: 35409169 PMCID: PMC8998543 DOI: 10.3390/ijms23073811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Behavioral neuroscience underwent a technology-driven revolution with the emergence of machine-vision and machine-learning technologies. These technological advances facilitated the generation of high-resolution, high-throughput capture and analysis of complex behaviors. Therefore, behavioral neuroscience is becoming a data-rich field. While behavioral researchers use advanced computational tools to analyze the resulting datasets, the search for robust and standardized analysis tools is still ongoing. At the same time, the field of genomics exploded with a plethora of technologies which enabled the generation of massive datasets. This growth of genomics data drove the emergence of powerful computational approaches to analyze these data. Here, we discuss the composition of a large behavioral dataset, and the differences and similarities between behavioral and genomics data. We then give examples of genomics-related tools that might be of use for behavioral analysis and discuss concepts that might emerge when considering the two fields together.
Collapse
Affiliation(s)
- Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel;
- The Alexander Kofkin Faculty of Engineering, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shahar Alon
- The Alexander Kofkin Faculty of Engineering, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel;
| |
Collapse
|
27
|
Bartel SL, Orrock JL. The important role of animal social status in vertebrate seed dispersal. Ecol Lett 2022; 25:1094-1109. [PMID: 35235713 DOI: 10.1111/ele.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Seed dispersal directly affects plant establishment, gene flow and fitness. Understanding patterns in seed dispersal is, therefore, fundamental to understanding plant ecology and evolution, as well as addressing challenges of extinction and global change. Our ability to understand dispersal is limited because seeds may be dispersed by multiple agents, and the effectiveness of these agents can be highly variable both among and within species. We provide a novel framework that links seed dispersal to animal social status, a key component of behaviour. Because social status affects individual resource access and movement, it provides a critical link to two factors that determine seed dispersal: the quantity of seeds dispersed and the spatial patterns of dispersal. Social status may have unappreciated effects on post-dispersal seed survival and recruitment when social status affects individual habitat use. Hence, environmental changes, such as selective harvesting and urbanisation, that affect animal social structure may have unappreciated consequences for seed dispersal. This framework highlights these exciting new hypotheses linking environmental change, social structure and seed dispersal. By outlining experimental approaches to test these hypotheses, we hope to facilitate studies across a wide diversity of plant-animal networks, which may uncover emerging hotspots or significant declines in seed dispersal.
Collapse
Affiliation(s)
- Savannah L Bartel
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Redhead D, Power EA. Social hierarchies and social networks in humans. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200440. [PMID: 35000451 PMCID: PMC8743884 DOI: 10.1098/rstb.2020.0440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 01/06/2023] Open
Abstract
Across species, social hierarchies are often governed by dominance relations. In humans, where there are multiple culturally valued axes of distinction, social hierarchies can take a variety of forms and need not rest on dominance relations. Consequently, humans navigate multiple domains of status, i.e. relative standing. Importantly, while these hierarchies may be constructed from dyadic interactions, they are often more fundamentally guided by subjective peer evaluations and group perceptions. Researchers have typically focused on the distinct elements that shape individuals' relative standing, with some emphasizing individual-level attributes and others outlining emergent macro-level structural outcomes. Here, we synthesize work across the social sciences to suggest that the dynamic interplay between individual-level and meso-level properties of the social networks in which individuals are embedded are crucial for understanding the diverse processes of status differentiation across groups. More specifically, we observe that humans not only navigate multiple social hierarchies at any given time but also simultaneously operate within multiple, overlapping social networks. There are important dynamic feedbacks between social hierarchies and the characteristics of social networks, as the types of social relationships, their structural properties, and the relative position of individuals within them both influence and are influenced by status differentiation. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Daniel Redhead
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Eleanor A. Power
- Department of Methodology, London School of Economics and Political Science, London WC2A 2AE, UK
| |
Collapse
|
29
|
Dehnen T, Arbon JJ, Farine DR, Boogert NJ. How feedback and feed-forward mechanisms link determinants of social dominance. Biol Rev Camb Philos Soc 2022; 97:1210-1230. [PMID: 35150197 DOI: 10.1111/brv.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
In many animal societies, individuals differ consistently in their ability to win agonistic interactions, resulting in dominance hierarchies. These differences arise due to a range of factors that can influence individuals' abilities to win agonistic interactions, spanning from genetically driven traits through to individuals' recent interaction history. Yet, despite a century of study since Schjelderup-Ebbe's seminal paper on social dominance, we still lack a general understanding of how these different factors work together to determine individuals' positions in hierarchies. Here, we first outline five widely studied factors that can influence interaction outcomes: intrinsic attributes, resource value asymmetry, winner-loser effects, dyadic interaction-outcome history and third-party support. A review of the evidence shows that a variety of factors are likely important to interaction outcomes, and thereby individuals' positions in dominance hierarchies, in diverse species. We propose that such factors are unlikely to determine dominance outcomes independently, but rather form part of feedback loops whereby the outcomes of previous agonistic interactions (e.g. access to food) impact factors that might be important in subsequent interactions (e.g. body condition). We provide a conceptual framework that illustrates the multitude potential routes through which such feedbacks can occur, and how the factors that determine the outcomes of dominance interactions are highly intertwined and thus rarely act independently of one another. Further, we generalise our framework to include multi-generational feed-forward mechanisms: how interaction outcomes in one generation can influence the factors determining interaction outcomes in the next generation via a range of parental effects. This general framework describes how interaction outcomes and the factors determining them are linked within generations via feedback loops, and between generations via feed-forward mechanisms. We then highlight methodological approaches that will facilitate the study of feedback loops and dominance dynamics. Lastly, we discuss how our framework could shape future research, including: how feedbacks generate variation in the factors discussed, and how this might be studied experimentally; how the relative importance of different feedback mechanisms varies across timescales; the role of social structure in modulating the effect of feedbacks on hierarchy structure and stability; and the routes of parental influence on the dominance status of offspring. Ultimately, by considering dominance interactions as part of a dynamic feedback system that also feeds forward into subsequent generations, we will understand better the factors that structure dominance hierarchies in animal groups.
Collapse
Affiliation(s)
- Tobit Dehnen
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Josh J Arbon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany
| | - Neeltje J Boogert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| |
Collapse
|
30
|
Ferreira SM, Viljoen P. African Large Carnivore Population Changes in Response to a Drought. AFRICAN JOURNAL OF WILDLIFE RESEARCH 2022. [DOI: 10.3957/056.052.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | - Pauli Viljoen
- Scientific Services, SANParks, Skukuza, 1350 South Africa
| |
Collapse
|
31
|
Smith JE, Natterson-Horowitz B, Alfaro ME. The nature of privilege: intergenerational wealth in animal societies. Behav Ecol 2021. [DOI: 10.1093/beheco/arab137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Wealth inequality is widespread across human societies, from pastoral and small-scale agricultural groups to large modern social structures. The intergenerational transfer of wealth privileges some individuals over others through the transmission of resources external to an individual organism. Privileged access to household wealth (e.g., land, shelter, silver) positively influences the destinies of some (and their descendants) over others in human societies. Strikingly parallel phenomena exist in animal societies. Inheritance of nongenetic commodities (e.g., a nest, territory, tool) external to an individual also contributes greatly to direct fitness in animals. Here, we illustrate the evolutionary diversity of privilege and its disparity-generating effects on the evolutionary trajectories of lineages across the Tree of Life. We propose that integration of approaches used to study these patterns in humans may offer new insights into a core principle from behavioral ecology—differential access to inherited resources—and help to establish a broad, comparative framework for studying inequality in animals.
Collapse
Affiliation(s)
| | - B Natterson-Horowitz
- School of Medicine, Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Firth JA, Sheldon BC. The long reach of family ties. Science 2021; 373:274-275. [PMID: 34437137 DOI: 10.1126/science.abj5234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Josh A Firth
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Ben C Sheldon
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|