1
|
Zhang X, Zhao B, Zhang Y, Zhang J, Li Y, Zhong J, Diao J, Ma F, Liu H, Duan K. Sources, interactions, influencing factors and ecological risks of microplastics and antibiotic resistance genes in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175226. [PMID: 39098429 DOI: 10.1016/j.scitotenv.2024.175226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are gaining increasing attention as they pose a threat to the ecological environment and human health as emerging contaminants. MPs has been proved to be a hot spot in ARGs, and although it has been extensively studied in water environment, the results of bibliometrics statistical analysis in this paper showed that relevant studies in soil ecological environment are currently in the initial stage. In view of this, the paper provides a systematic review of the sources, interactions, influencing factors, and ecological risks associated with MPs and ARGs in soil environments. Additionally, the mechanism and influencing factors of plastisphere formation and resistance are elaborated in detail. The MPs properties, soil physicochemical properties, soil environmental factors and agricultural activities are the primarily factors affecting the interaction between MPs and ARGs in soil. Challenges and development directions of related research in the future are also prospected. It is hoped that the review could assist in a deeper comprehension and exploration of the interaction mechanism between MPs and ARGs in soil as well as the function of MPs in the transmission process of ARGs among diverse environmental media and organisms, and provide theory basis and reference for the MPs and ARGs pollution control and remediation in soil.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jinkui Zhong
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jingru Diao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Hui Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| |
Collapse
|
2
|
Zhi L, Zhang G, Li Z, Chen F, Qin Q, Huang Y, Huang X, Wang J. Polystyrene nanoplastics significantly facilitate largemouth bass ranavirus infection of host cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135597. [PMID: 39182289 DOI: 10.1016/j.jhazmat.2024.135597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Novel pollutants nanoplastics (NPs) are widely distributed in aquatic environments and may pose a health threat to aquatic organisms. Notably, the contribution of NPs to the occurrence of viral diseases in aquatic animals remains largely uncertain. In this study, the effects of polystyrene nanoplastics (PS-NPs) on Largemouth bass ranavirus (LMBV)-infected MsF cells were investigated. MsF cells took up PS-NPs in a time- and dose-dependent manner and significantly affect cell viability at an exposure concentration of 500 μg/mL. Western blot and qPCR assays indicated that exposure to PS-NPs accelerated LMBV replication in MsF cells. PS-NPs act synergistically with LMBV to disrupt the cellular antioxidant system, as evidenced by increased ROS production and decreased mRNA levels of antioxidant-associated genes. Furthermore, PS-NPs was found to exacerbate LMBV-induced inflammatory responses, as demonstrated by disturbed expression of inflammation-related factors. In addition, our results suggest that PS-NPs reduce IFN production by inhibiting the expression of molecules related to the cGAS-STING signaling pathway, thereby promoting viral replication. Collectively, our findings suggest the potential threat of NPs to infectious diseases caused by freshwater fish viruses and provide new insights for fish disease prevention and control.
Collapse
Affiliation(s)
- Linyong Zhi
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guimei Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; College of Biology and Agricultural, Shaoguan University, Shaoguan 512005, China
| | - Fang Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
3
|
Feng S, Lu H, Xue Y, Liu Y, Li H, Zhou C, Zhang X, Yan P. Occurrence of microplastics in the headwaters of Yellow River on the Tibetan Plateau: Source analysis and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135327. [PMID: 39111180 DOI: 10.1016/j.jhazmat.2024.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
The widespread occurrence of Microplastics (MPs) has aroused increasing concerns. However, the fate of MPs in remote areas remains poorly understood. Here, the spatial distribution, potential sources, and environmental risks of MPs were analyzed in the headstream of the Yellow River on the eastern Tibetan Plateau. The average MP abundances are (464.3 ± 200.9) items /m3 and (63.6 ± 34.7) items /kg in the water and sediment, respectively, with both majority polymer is polypropylene (PP) (water: 28.7 %; sediment: 25.2 %). The structural equation modeling and conditional fragmentation model were used in this study to analyze the source and impact factors of riverine MPs. According to the models, MPs were influenced by water quality parameters and anthropogenic activities. Furthermore, the source analysis through MP characteristics and statistical analysis showed that the main sources of MPs include domestic sewage, plastic waste disposal, and the use of agricultural plastic film. Moreover, the differences in MP sources along the river were distinguished by the conditional fragmentation model. The potential ecological risks of MPs were evaluated, resulting in relatively medium-to-low levels. Our findings will serve as important references for improving the understanding of the plateau environmental impacts of MP distribution in the headwaters of large rivers.
Collapse
Affiliation(s)
- Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Yunlong Liu
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| | - Hengchen Li
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Chaodong Zhou
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Xiaohan Zhang
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Johns MA, Zhao H, Gattrell M, Lockhart J, Cranston ED. Identification of common textile microplastics via autofluorescence spectroscopy coupled with k-means cluster analysis. Analyst 2024; 149:4747-4756. [PMID: 39115157 DOI: 10.1039/d4an00658e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Microplastics are an emerging anthropogenic pollutant risk with a significant body of research dedicated to understanding the implications further. To generate the databases required to characterize the impact of microplastics on our environment, and improve recovery and recycling of current plastic materials, we need rapid, in-line characterization that can distinguish individual polymer types. Here, autofluorescence spectroscopy was investigated as an alternative characterization method to the current leading techniques based on vibrational spectroscopy. It was confirmed that the autofluorescence of seven common textile polymers (acrylic, polyester, nylon, polyethylene, polypropylene, cellulose/cotton, wool) arose due to the cluster-triggered emission phenomenon. Both simulated polymer aging via photooxidation and dyeing of the polymers were found to affect the resultant autofluorescence spectra. A total of 1485 spectra from 39 unique sample groups (polymer type, colour, and degree of photooxidation) were analysed via machine learning (k-means cluster analysis). Correct identification of the polymer type was achieved in 71% of the cases from only eight input values (normalized intensity values at three autofluorescence emission wavelengths, the total autofluorescence emission intensity, the sample RGB colour values, and the sample shape). This represents a significant step towards automated polymer identification at the sub-second time scales required for the in-line characterization of microplastics.
Collapse
Affiliation(s)
- Marcus A Johns
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4.
| | - Hongying Zhao
- BC Research Inc., 12920 Mitchell Road, Richmond, BC, Canada V6 V 1M8
| | - Mike Gattrell
- BC Research Inc., 12920 Mitchell Road, Richmond, BC, Canada V6 V 1M8
| | - James Lockhart
- BC Research Inc., 12920 Mitchell Road, Richmond, BC, Canada V6 V 1M8
| | - Emily D Cranston
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4.
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
- UBC BioProducts Institute, 2385 East Mall, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
5
|
Wu Y, Li Z, Deng Y, Bian B, Xie L, Lu X, Tian J, Zhang Y, Wang L. Mangrove mud clam as an effective sentinel species for monitoring changes in coastal microplastic pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134617. [PMID: 38749247 DOI: 10.1016/j.jhazmat.2024.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The worldwide mangrove shorelines are experiencing considerable contamination from microplastics (MPs). Finding an effective sentinel species in the mangrove ecosystem is crucial for early warning of ecological and human health risks posed by coastal microplastic pollution. This study collected 186 specimens of the widely distributed mangrove clam (Geloina expansa, Solander, 1786) from 18 stations along the Leizhou Peninsula, the largest mangrove coast in Southern China. This study discovered that mangrove mud clams accumulated a relatively high abundance of MPs (2.96 [1.61 - 6.03] items·g-1) in their soft tissue, wet weight, as compared to previously reported levels in bivalves. MPs abundance is significantly (p < 0.05 or 0.0001) influenced by coastal urban development, aquaculture, and shell size. Furthermore, the aggregated MPs exhibit a significantly high polymer risk index (Level III, H = 353.83). The estimated annual intake risk (EAI) from resident consumption, as calculated via a specific questionnaire survey, was at a moderate level (990 - 2475, items·g -1·Capita -1). However, the EAI based on suggested nutritional standards is very high, reaching 113,990 (79,298 - 148,681), items·g -1·Capita -1. We recommend utilizing the mangrove mud clam as sentinel species for the monitoring of MPs pollution changing across global coastlines.
Collapse
Affiliation(s)
- Yinglin Wu
- Western Guangdong Provincial Engineering Technology Research Center of Seafood Resource Sustainable Utilization, Lingnan Normal University, Zhanjiang 524048, Guangdong, People's Republic of China; School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China.
| | - Zitong Li
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Yanxia Deng
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Bingbing Bian
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Ling Xie
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Xianye Lu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Jingqiu Tian
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Ying Zhang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Liyun Wang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| |
Collapse
|
6
|
Jaafarzadeh N, Talepour N. Microplastics as carriers of antibiotic resistance genes and pathogens in municipal solid waste (MSW) landfill leachate and soil: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:1-12. [PMID: 38887766 PMCID: PMC11180052 DOI: 10.1007/s40201-023-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 06/20/2024]
Abstract
Landfill leachate contains antibiotic resistance genes (ARGs) and microplastics (MPs), making it an important reservoir. However, little research has been conducted on how ARGs are enriched on MPs and how the presence of MPs affects pathogens and ARGs in leachates and soil. MPs possess the capacity to establish unique bacterial populations and assimilate contaminants from their immediate surroundings, generating a potential environment conducive to the growth of disease-causing microorganisms and antibiotic resistance genes (ARGs), thereby exerting selection pressure. Through a comprehensive analysis of scientific literature, we have carried out a practical assessment of this topic. The gathering of pollutants and the formation of dense bacterial communities on microplastics create advantageous circumstances for an increased frequency of ARG transfer and evolution. Additional investigations are necessary to acquire a more profound comprehension of how pathogens and ARGs are enriched, transported, and transferred on microplastics. This research is essential for evaluating the health risks associated with human exposure to these pollutants. Graphical Abstract
Collapse
Affiliation(s)
- Neamatollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Talepour
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Alkorta I, Garbisu C. Expanding the focus of the One Health concept: links between the Earth-system processes of the planetary boundaries framework and antibiotic resistance. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0013. [PMID: 38815132 DOI: 10.1515/reveh-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people's health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide. Relevantly, antibiotic resistance has been claimed to be the quintessential One Health issue. The One Health concept links human, animal, and environmental health, but it is frequently only focused on the risk of zoonotic pathogens to public health or, to a lesser extent, the impact of contaminants on human health, i.e., adverse effects on human health coming from the other two One Health "compartments". It is recurrently claimed that antibiotic resistance must be approached from a One Health perspective, but such statement often only refers to the connection between the use of antibiotics in veterinary practice and the antibiotic resistance crisis, or the impact of contaminants (antibiotics, heavy metals, disinfectants, etc.) on antibiotic resistance. Nonetheless, the nine Earth-system processes considered in the planetary boundaries framework can be directly or indirectly linked to antibiotic resistance. Here, some of the main links between those processes and the dissemination of antibiotic resistance are described. The ultimate goal is to expand the focus of the One Health concept by pointing out the links between critical Earth-system processes and the One Health quintessential issue, i.e., antibiotic resistance.
Collapse
Affiliation(s)
- Itziar Alkorta
- Department of Biochemistry and Molecular Biology, 16402 University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Carlos Garbisu
- NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
8
|
Zhao X, Niu Z, Ma Y, Zhang Y, Li Y, Zhang R. Exploring the dynamics of antibiotic resistome on plastic debris traveling from the river to the sea along a representative estuary based on field sequential transfer incubations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171464. [PMID: 38447722 DOI: 10.1016/j.scitotenv.2024.171464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The environmental risks arising from ubiquitous microplastics or plastic debris (PD) acting as carriers of antibiotic resistance genes (ARGs) have attracted widespread attention. Enormous amounts of plastic waste are transported by rivers and traverse estuaries into the sea every year. However, changes in the antibiotic resistome within the plastisphere (the biofilms formed on PD) as PD travels through estuaries are largely unknown. In this study, we performed sequential migration incubations for PD along Haihe Estuary to simulate the natural process of PD floating from rivers to the ocean. Metagenomic sequencing and analysis techniques were used to track microbial communities and antibiotic resistome on migrating PD and in seawater representing the marine environment. The total relative gene copies of ARGs on traveling PD remained stable. As migration between greatly varied waters, additional ARG subtypes were recruited to the plastisphere. Above 80 % ARG subtypes identified in the plastisphere were persistent throughout the migration, and over 30 % of these persistent ARGs were undetected in seawater. The bacterial hosts composition of ARGs on PD progressively altered as transported downstream. Human pathogenic bacteria carrying ARGs (HPBs-ARG) exhibited decreasing trends in abundance and species number during transfer. Individual HPBs-ARG persisted on transferred PD and were absent in seawater samples, comprising Enterobacter cloacae, Klebsiella pneumoniae, Mycobacterium tuberculosis, and Vibrio parahaemolyticus. Based on all detected ARGs and HPBs-ARG, the Projection Pursuit model was applied to synthetically evaluate the potential risks of antibiotic resistance on migrating PD. Diminished risks on PD were observed upon the river-to-sea journey but consistently remained significantly higher than in seawater. The potential risks posed to marine environments by drifting PD as dispersal vectors for antibiotic resistance deserve greater attention. Our results provide initial insights into the dynamics or stability of antibiotic resistome on PD crossing distinct aquatic systems in field estuaries.
Collapse
Affiliation(s)
- Xinhai Zhao
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; The International Joint Institute of Tianjin University, Fuzhou 350207, China.
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuna Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Rixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Li C, Li X, Bank MS, Dong T, Fang JKH, Leusch FDL, Rillig MC, Wang J, Wang L, Xia Y, Xu EG, Yang Y, Zhang C, Zhu D, Liu J, Jin L. The "Microplastome" - A Holistic Perspective to Capture the Real-World Ecology of Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4060-4069. [PMID: 38331396 PMCID: PMC10919093 DOI: 10.1021/acs.est.3c08849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Microplastic pollution, an emerging pollution issue, has become a significant environmental concern globally due to its ubiquitous, persistent, complex, toxic, and ever-increasing nature. As a multifaceted and diverse suite of small plastic particles with different physicochemical properties and associated matters such as absorbed chemicals and microbes, future research on microplastics will need to comprehensively consider their multidimensional attributes. Here, we introduce a novel, conceptual framework of the "microplastome", defined as the entirety of various plastic particles (<5 mm), and their associated matters such as chemicals and microbes, found within a sample and its overall environmental and toxicological impacts. As a novel concept, this paper aims to emphasize and call for a collective quantification and characterization of microplastics and for a more holistic understanding regarding the differences, connections, and effects of microplastics in different biotic and abiotic ecosystem compartments. Deriving from this lens, we present our insights and prospective trajectories for characterization, risk assessment, and source apportionment of microplastics. We hope this new paradigm can guide and propel microplastic research toward a more holistic era and contribute to an informed strategy for combating this globally important environmental pollution issue.
Collapse
Affiliation(s)
- Changchao Li
- Environment
Research Institute, Shandong University, Qingdao 266237, China
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Xinyu Li
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Michael S. Bank
- Institute
of Marine Research, 5005 Bergen, Norway
- University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Tao Dong
- Department
of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - James Kar-Hei Fang
- Department
of Food Science and Nutrition and Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
- State Key
Laboratory of Marine Pollution, City University
of Hong Kong, Kowloon Tong 999077, Hong Kong
| | - Frederic D. L. Leusch
- Australian
Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222 Queensland, Australia
| | | | - Jie Wang
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Wang
- MOE Key
Laboratory of Pollution Processes and Environmental Criteria, College
of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Xia
- School
of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department
of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Yuyi Yang
- Key Laboratory
of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China
| | - Chao Zhang
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Dong Zhu
- Key Laboratory
of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jian Liu
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Ling Jin
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
- State Key
Laboratory of Marine Pollution, City University
of Hong Kong, Kowloon Tong 999077, Hong Kong
- Department
of Health Technology and Informatics, The
Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| |
Collapse
|
10
|
Song K, Xie S, Li C, He J, Jin W, Wang R, Huang W, Li P, Feng Z. The occurrence of pollutants in organisms and water of inland mariculture systems: Shrimp aquaculture is a procession of Microplastics accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123072. [PMID: 38043765 DOI: 10.1016/j.envpol.2023.123072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) pollution in the ocean was widely concerned, but the current study on MPs pollution in the mariculture system is relatively lacking. This study researched the MPs pollution characteristics in water and shrimp at different stages of the pond and industrial aquaculture. The study shows that in the same aquaculture stage, MPs abundance in shrimp and water in pond aquaculture mode is higher than that in industrial aquaculture mode. The MPs pollution characteristics in shrimp and water show significant consistency. The hazard index of MPs in pond water and industrial models are 122 (Level Ⅲ) and 540 (Level Ⅲ), respectively, indicating that industrial aquaculture models may suffer from more severe MPs stress. The aquaculture period and mode significantly affected the MPs abundance of water and shrimp, but there was no interaction between the aquaculture period and mode. MPs abundance in shrimp show a significant relationship with the length of crustacean and weight. This study further enhanced the understanding of MPs pollution of water and organisms in different aquaculture modes at different stages, and warned MPs is widely spread in mariculture systems.
Collapse
Affiliation(s)
- Kexin Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China; Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, PR China; University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Siqi Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Changwen Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Jincheng He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Wei Jin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Rui Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, PR China
| | - Pingjing Li
- Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China; Key Laboratory of Coastal Salt Marsh Ecology and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
11
|
Li T, Cui L, Xu Z, Liu H, Cui X, Fantke P. Micro- and nanoplastics in soil: Linking sources to damage on soil ecosystem services in life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166925. [PMID: 37689210 DOI: 10.1016/j.scitotenv.2023.166925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Soil ecosystems are crucial for providing vital ecosystem services (ES), and are increasingly pressured by the intensification and expansion of human activities, leading to potentially harmful consequences for their related ES provision. Micro- and nanoplastics (MNPs), associated with releases from various human activities, have become prevalent in various soil ecosystems and pose a global threat. Life Cycle Assessment (LCA), a tool for evaluating environmental performance of product and technology life cycles, has yet to adequately include MNPs-related damage to soil ES, owing to factors like uncertainties in MNPs environmental fate and ecotoxicological effects, and characterizing related damage on soil species loss, functional diversity, and ES. This study aims to address this gap by providing as a first step an overview of the current understanding of MNPs in soil ecosystems and proposing a conceptual approach to link MNPs impacts to soil ES damage. We find that MNPs pervade soil ecosystems worldwide, introduced through various pathways, including wastewater discharge, urban runoff, atmospheric deposition, and degradation of larger plastic debris. MNPs can inflict a range of ecotoxicity effects on soil species, including physical harm, chemical toxicity, and pollutants bioaccumulation. Methods to translate these impacts into damage on ES are under development and typically focus on discrete, yet not fully integrated aspects along the impact-to-damage pathway. We propose a conceptual framework for linking different MNPs effects on soil organisms to damage on soil species loss, functional diversity loss and loss of ES, and elaborate on each link. Proposed underlying approaches include the Threshold Indicator Taxa Analysis (TITAN) for translating ecotoxicological effects associated with MNPs into quantitative measures of soil species diversity damage; trait-based approaches for linking soil species loss to functional diversity loss; and ecological networks and Bayesian Belief Networks for linking functional diversity loss to soil ES damage. With the proposed conceptual framework, our study constitutes a starting point for including the characterization of MNPs-related damage on soil ES in LCA.
Collapse
Affiliation(s)
- Tong Li
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark; School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Xu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Hongdou Liu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia.
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
12
|
Evariste L. Antimicrobial Resistance in Exploited Estuaries: Some Overlooked Environmental Contaminants and Microbial Niches Might Act as Drivers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2061-2062. [PMID: 37341544 DOI: 10.1002/etc.5704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Affiliation(s)
- Lauris Evariste
- Laboratoire d'Ecologie Fonctionnelle et Environnement, Unité Mixte de Recherche 5245 Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
13
|
Luo G, Liang B, Cui H, Kang Y, Zhou X, Tao Y, Lu L, Fan L, Guo J, Wang A, Gao SH. Determining the Contribution of Micro/Nanoplastics to Antimicrobial Resistance: Challenges and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12137-12152. [PMID: 37578142 DOI: 10.1021/acs.est.3c01128] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.
Collapse
Affiliation(s)
- Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
14
|
Yang Z, Lou Y, Yan X, Pan H, Wang H, Yang Q, Sun Y, Zhuge Y. The Microbiome and Antibiotic Resistome in Soil under Biodegradable Composite Carbon Source Amendment. J Xenobiot 2023; 13:424-438. [PMID: 37606424 PMCID: PMC10443276 DOI: 10.3390/jox13030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
The decomposition of biodegradable composite carbon sources generates a large amount of biodegradable microplastics, which may not only furnish microbial denitrification, but might also pose potential environmental risks. In the present study, the effects of different dosages of a biodegradable composite carbon source on the microbial communities, the nitrogen metabolic pathways and the antibiotic resistome were explored through Illumina MiSeq sequencing analysis and metagenomic analysis. The results of partial least-square discriminant analysis (PLS-DA) and analysis of similarity (ANOSIM) demonstrated that the response of the bacterial community to a biodegradable composite carbon source was more obvious than the fungal community. The application of biodegradable microplastics diminished the complexity of the microbial communities to some extent and obviously stimulated denitrification. Antibiotics resistance gene (ARG) dispersal was not evidently accelerated after the addition of biodegradable composite carbon source. Lysobacter, Methylobacillus, Phyllobacterium, Sinorhizobium, Sphingomonas from Proteobacteria and Actinomadura, Agromyces, Gaiella and Micromonospora from Actinobacteria were the major ARG hosts. Overall, the addition of a biodegradable composite carbon source shaped microbial communities and their antibiotic resistance profiles in this study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China; (Z.Y.); (Y.L.); (X.Y.); (H.P.); (H.W.); (Q.Y.); (Y.S.)
| |
Collapse
|
15
|
Porretti M, Impellitteri F, Caferro A, Albergamo A, Litrenta F, Filice M, Imbrogno S, Di Bella G, Faggio C. Assessment of the effects of non-phthalate plasticizer DEHT on the bivalve molluscs Mytilus galloprovincialis. CHEMOSPHERE 2023; 336:139273. [PMID: 37343639 DOI: 10.1016/j.chemosphere.2023.139273] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Due to their uncontrolled use, plastics has become an environmental concern, not only for their varying dimension but also for the potential release of substances such as phthalates (PAEs) and non-phthalates (NPPs) into the water. Phthalates are the most common plasticizers of concern, but non-phthalate plasticizers such as di (2-ethylhexyl) terephthalate (DEHT) have also been lately found in the marine environment. Mytilus galloprovincialis is a well-known bioindicator of aquatic environments due to its ability to accumulate a wide variety of xenobiotics, including plasticizers. Hence, aim of this study was to evaluate the potential bioaccumulation and effects of the NPP DEHT on M. galloprovincialis. To this purpose, following exposure to DEHT at 1 mg/l (DEHT1) and 100 mg/l (DEHT100), its accumulation in tissues and its effects on total lipids and fatty acid (FA) composition, protein content, cell viability, ability to recover volume and changes in biomarkers of oxidative stress were assessed. Mussels were able to bioaccumulate DEHT in their tissues, with a statistically significant increase compared to the control organisms. Differences in FA composition were observed after exposure, since C16:0, C18:0, C20:5ω-3 and C22:6ω-3 were significantly decreased from control to exposed groups. As a result, total SFA, MUFA and PUFA were affected in DEHT-exposed groups. Also, total protein varied following DEHT exposure, and significantly decreased in the DEHT100-group. Considering the physiological responses, both DEHT-exposed groups lost their ability to return to the original volume of digestive gland (DG) cells. On the other hand, oxidative biomarkers in the gills and DG were not significantly affected by the DEHT exposure. Overall, this study showed for the first time that DEHT exposure differentially affect mussels, in their lipid and protein metabolism, as well as cellular parameters.
Collapse
Affiliation(s)
- Miriam Porretti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98100, Messina, Italy.
| | - Federica Impellitteri
- University of Messina, Department of Veterinary Sciences, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Ambrogina Albergamo
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Federica Litrenta
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Giuseppa Di Bella
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98100, Messina, Italy.
| |
Collapse
|
16
|
Yu X, Zhou ZC, Shuai XY, Lin ZJ, Liu Z, Zhou JY, Lin YH, Zeng GS, Ge ZY, Chen H. Microplastics exacerbate co-occurrence and horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131130. [PMID: 36878032 DOI: 10.1016/j.jhazmat.2023.131130] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution is a rising environmental issue worldwide. Microplastics can provide a niche for the microbiome, especially for antibiotic-resistant bacteria, which could increase the transmission of antibiotic resistance genes (ARGs). However, the interactions between microplastics and ARGs are still indistinct in environmental settings. Microplastics were found to be significantly correlated with ARGs (p < 0.001), based on the analysis of samples taken from a chicken farm and its surrounding farmlands. Analysis of chicken feces revealed the highest abundance of microplastics (14.9 items/g) and ARGs (6.24 ×108 copies/g), suggesting that chicken farms could be the hotspot for the co-spread of microplastics and ARGs. Conjugative transfer experiments were performed to investigate the effects of microplastic exposure for different concentrations and sizes on the horizontal gene transfer (HGT) of ARGs between bacteria. Results showed that the microplastics significantly enhanced the bacterial conjugative transfer frequency by 1.4-1.7 folds indicating that microplastics could aggravate ARG dissemination in the environment. Potential mechanisms related to the up-regulation of rpoS, ompA, ompC, ompF, trbBp, traF, trfAp, traJ, and down-regulation of korA, korB, and trbA were induced by microplastics. These findings highlighted the co-occurrence of microplastics and ARGs in the agricultural environment and the exacerbation of ARGs' prevalence via rising the HGT derived from microplastics.
Collapse
Affiliation(s)
- Xi Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Chao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Yi Shuai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ze-Jun Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Yu Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Han Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guang-Shu Zeng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zi-Ye Ge
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang International Science and Technology Cooperation Base of Environmental Pollution and Ecological Health, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Chen S, Yang JL, Zhang YS, Wang HY, Lin XY, Xue RY, Li MY, Li SW, Juhasz AL, Ma LQ, Zhou DM, Li HB. Microplastics affect arsenic bioavailability by altering gut microbiota and metabolites in a mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121376. [PMID: 36863442 DOI: 10.1016/j.envpol.2023.121376] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Microplastics exposure is a new human health crisis. Although progress in understanding health effects of microplastic exposure has been made, microplastic impacts on absorption of co-exposure toxic pollutants such as arsenic (As), i.e., oral bioavailability, remain unclear. Microplastic ingestion may interfere As biotransformation, gut microbiota, and/or gut metabolites, thereby affecting As oral bioavailability. Here, mice were exposed to arsenate (6 μg As g-1) alone and in combination with polyethylene particles of 30 and 200 μm (PE-30 and PE-200 having surface area of 2.17 × 103 and 3.23 × 102 cm2 g-1) in diet (2, 20, and 200 μg PE g-1) to determine the influence of microplastic co-ingestion on arsenic (As) oral bioavailability. By determining the percentage of cumulative As consumption recovered in urine of mice, As oral bioavailability increased significantly (P < 0.05) from 72.0 ± 5.41% to 89.7 ± 6.33% with PE-30 at 200 μg PE g-1 rather than with PE-200 at 2, 20, and 200 μg PE g-1 (58.5 ± 19.0%, 72.3 ± 6.28%, and 69.2 ± 17.8%). Both PE-30 and PE-200 exerted limited effects on pre- and post-absorption As biotransformation in intestinal content, intestine tissue, feces, and urine. They affected gut microbiota dose-dependently, with lower exposure concentrations having more pronounced effects. Consistent with the PE-30-specific As oral bioavailability increase, PE exposure significantly up-regulated gut metabolite expression, and PE-30 exerted greater effects than PE-200, suggesting that gut metabolite changes may contribute to As oral bioavailability increase. This was supported by 1.58-4.07-fold higher As solubility in the presence of up-regulated metabolites (e.g., amino acid derivatives, organic acids, and pyrimidines and purines) in the intestinal tract assessed by an in vitro assay. Our results suggested that microplastic exposure especially smaller particles may exacerbate the oral bioavailability of As, providing a new angle to understand health effects of microplastics.
Collapse
Affiliation(s)
- Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meng-Ya Li
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Mei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Wang C, He M, Wu C, Chen Z, Jiang L, Wang C. Toxicity interaction of polystyrene nanoplastics with sulfamethoxazole on the microalgae Chlamydomonas reinhardtii: A closer look at effect of light availability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117969. [PMID: 37084645 DOI: 10.1016/j.jenvman.2023.117969] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
The coexistence of nanoplastics and antibiotics in the aquatic environment has raised a complicated risk for ecosystems and human health. How the environmental factors e.g., light, regulate the interaction between nanoplastics and antibiotics and the resulting combined toxicity is poorly understood. Here, we investigated the individual and combined toxicity of polystyrene nanoplastics (nPS, 100 mg L1) and sulfamethoxazole (SMX, 2.5 and 10 mg L-1) toward the microalgae Chlamydomonas reinhardtii under low (LL, 16 μmol m-2·s-1), normal (NL, 40 μmol m-2·s-1), and high light (HL, 150 μmol m-2·s-1) in terms of cellular responses. Results indicated that the joint toxicity of nPS and SMX commonly exhibited a strong antagonistic/mitigative effect under LL/NL at 24 h, and under NL at 72 h. nPS could adsorb more SMX under LL/NL at 24 h (1.90/1.33 mg g-1) and under NL at 72 h (1.01 mg g-1), thereby alleviating SMX toxicity to C. reinhardtii. However, the self-toxicity of nPS had a negative influence on the degree of antagonism between nPS and SMX. The experimental results coupled with computational chemistry further revealed that the adsorption capacity of SMX on nPS was stimulated by low pH under LL/NL at 24 h (∼7.5), while by less co-existing saline ions (0.83 ppt) and algae-derived dissolved organic matter (9.04 mg L-1) under NL at 72 h. nPS toxicity that was responsible for the toxic action modes was mainly attributed to the shading effect induced by hetero-aggregation and hindrance of light transmittance (>60%), as well as being regulated by additives leaching (0.49-1.07 mg L-1) and oxidative stress. Overall, these findings provided a critical basis for the risk assessment and management of multiple pollutants in the complex natural environment.
Collapse
Affiliation(s)
- Chun Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chonglin Wu
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijuan Jiang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang, 222005, China.
| |
Collapse
|
19
|
Zhang W, Sik Ok Y, Bank MS, Sonne C. Macro- and microplastics as complex threats to coral reef ecosystems. ENVIRONMENT INTERNATIONAL 2023; 174:107914. [PMID: 37028266 DOI: 10.1016/j.envint.2023.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The impacts of macroplastics (macro-), microplastics (MPs, <5mm), and nanoplastics (NPs, <100 nm) on corals and their complex reef ecosystems are receiving increased attention and visibility. MPs represent a major, contemporary, sustainability challenge with known and unknown effects on the ocean, and coral reef ecosystems worldwide. However, the fate and transport processes of macro-, MPs, and NPs and their direct and indirect impacts on coral reef ecosystems remains poorly understood. In this study, we verify and briefly summarize MPs distribution and pollution patterns in coral reefs from various geographical regions and discuss potential risks. The main interaction mechanisms show that MPs may substantially affect coral feeding performance, proper skeletal formation, and overall nutrition and, thus, there is an urgent need to address this rapidly growing environmental problem. From a management perspective, macro-, MPs, and NPs should, ideally, all be included in environmental monitoring frameworks, as possible, to aid in identifying those geographical areas that are most heavily impacted and to support future prioritization of conservation efforts. The potential solutions to the macro-, MP, and NP pollution problem include raising public awareness of plastic pollution, developing robust, environmental, conservation efforts, promoting a circular economy, and propelling industry-supported technological innovations to reduce plastic use and consumption. Global actions to curb plastic inputs, and releases of macro-, MP, and NP particles, and their associated chemicals, to the environment are desperately needed to secure the overall health of coral reef ecosystems and their inhabitants. Global scale horizon scans, gap analyses, and other future actions are necessary to gain and increase momentum to properly address this massive environmental problem and are in good accordance with several relevant UN sustainable development goals to sustain planetary health.
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea.
| | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
20
|
Li K, Jia W, Xu L, Zhang M, Huang Y. The plastisphere of biodegradable and conventional microplastics from residues exhibit distinct microbial structure, network and function in plastic-mulching farmland. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130011. [PMID: 36155295 DOI: 10.1016/j.jhazmat.2022.130011] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The inhomogeneity of plastisphere and soil may result in different microbial communities, thus potentially affecting soil functions. Biodegradable plastics offer an alternative to conventional plastics, nevertheless, the inadequate end-of-life treatment of biodegradable plastics may release more microplastics. Herein, we collected PE and PBAT/PLA microplastics in plastic-mulching farmland in Hebei, China. The bacterial communities of soil, PE and PBAT/PLA plastisphere were investigated using 16 S high-throughput sequencing. We found that the structure of bacterial communities in PBAT/PLA plastisphere were significantly distinct from PE plastisphere and soil. The alpha diversities in PBAT/PLA plastisphere were significantly lower than PE plastisphere and soil. Statistical analysis of differentially ASVs suggested that PBAT/PLA microplastics act as a filter, enriching taxa with the capability to degrade plastic polymers such as Proteobacteria and Actinobacteria. Compared to PE plastisphere, PBAT/PLA plastisphere has networks of less complexity, lower modularity, and more competitive interactions. Predicted metabolic pathways involved in human diseases, carbohydrate metabolism, amino acid metabolism, and xenobiotic biodegradation and metabolism were promoted in PBAT/PLA plastisphere, along with the facilitation in abundance of genes associated with carbon and nitrogen cycling. Our results highlighted the uniqueness of plastisphere of biodegradable microplastics from conventional microplastics and their potential impact on soil functions.
Collapse
Affiliation(s)
- Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Weiqian Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Mengjun Zhang
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
21
|
Li H, Luo Q, Zhao S, Zhao P, Yang X, Huang Q, Su J. Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120185. [PMID: 36108884 DOI: 10.1016/j.envpol.2022.120185] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) serve as vectors for microorganisms and antibiotic resistance genes (ARGs) and contribute to the spread of pathogenic bacteria and ARGs across various environments. Patterns of microbial communities and ARGs in the biofilm on the surface of MPs, also termed as plastisphere, have become an issue of global concern. Although antibiotic resistome in the plastisphere has been detected, how watershed urbanization affects patterns of potential pathogens and ARGs in the microplastic biofilms is still unclear. Here, we compared the bacterial communities, the interaction between bacterial taxa, pathogenic bacteria, and ARGs between the plastisphere and their surrounding water, and revealed the extensive influence of urbanization on them. Our results showed that bacterial communities and interactions in the plastisphere differed from those in their surrounding water. Microplastics selectively enriched Bacteroidetes from water. In non-urbanized area, the abundance of Oxyphotobacteria was significantly (p < 0.05) higher in plastisphere than that in water, while α-Proteobacteria was significantly (p < 0.05) higher in plastisphere than those in water of urbanized area. Pathogenic bacteria, ARGs, and mobile genetic elements (MGEs) were significantly (p < 0.05) higher in the urbanized area than those in non-urbanized area. MPs selectively enriched ARG-carrying potential pathogens, i.e., Klebsiella pneumoniae and Enterobacter cloacae, and exhibited a distinct effect on the relative abundance of ARG and pathogens in water with different urbanization levels. We further found ARGs were significantly correlated to MGEs and pathogenic bacteria. These results suggested that MPs would promote the dissemination of ARGs among microbes including pathogenic bacteria, and urbanization would affect the impact of MPs on microbes, pathogens, and ARGs in water. A high level of urbanization could enhance the enrichment of pathogens and ARGs by MPs in aquatic systems and increase microbial risk in aquatic environments. Our findings highlighted the necessity of controlling the spread of ARGs among pathogens and the usage of plastic products in ecosystems of urban areas.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China.
| | - Qiuping Luo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Sha Zhao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Peiqiang Zhao
- School of Public Utilities, Jiangsu Urban and Rural Construction College, Changzhou, 213147, PR China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| |
Collapse
|
22
|
Wang K, Han T, Chen X, Rushimisha IE, Liu Y, Yang S, Miao X, Li X, Weng L, Li Y. Insights into behavior and mechanism of tetracycline adsorption on virgin and soil-exposed microplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129770. [PMID: 35988493 DOI: 10.1016/j.jhazmat.2022.129770] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), as vectors of pollutants, have attracted extensive attention because of their environmental effects. However, the adsorption behavior and antibiotic mechanism of environmentally exposed MPs is limited. Here, the adsorption of tetracycline (TC) onto virgin and soil-exposed polylactic acid (PLA), polyvinyl chloride (PVC) and polyethylene (PE) MPs showed that the adsorption capacity of MPs for TC increased after soil exposure, and PLA showed the strongest increase. Soil exposure increased the time to reach equilibrium, and the adsorption rate was controlled by both intraparticle diffusion and membrane diffusion. The isothermal adsorption results of soil-exposed PE and PLA indicated that TC adsorbed on heterogeneous surfaces was affected by the physicochemical adsorption process. The equilibrium absorption capacity of MPs for TC increased by 88% (PLA), 26% (PVC) and 15% (PE) after soil exposure. Soil dissolved organic matter promoted the desorption of TC from MPs, and TC speciation changed with pH. Soil-exposed MPs have the potential to promote TC degradation in solution without the addition of biological inhibitors. Moreover, density functional theory calculations verified that PE and PVC adsorbed TC through physical interactions, while hydrogen bonds were formed on PLA with TC. These results clarified the behavior and mechanisms of TC adsorption on virgin and soil-exposed MPs, which can help in the risk assessment of concomitant pollution of MPs and antibiotics.
Collapse
Affiliation(s)
- Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Ting Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaodong Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Iranzi Emile Rushimisha
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xinyu Miao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
23
|
Guo XP, Chen YR, Sun XL, Li CL, Hou LJ, Liu M, Yang Y. Plastic properties affect the composition of prokaryotic and eukaryotic communities and further regulate the ARGs in their surface biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156362. [PMID: 35640747 DOI: 10.1016/j.scitotenv.2022.156362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plastic wastes are ubiquitous in the offshore and oceans with an increasing quantity, and inevitably, microbial communities colonized the plastics to form biofilms, which have become dispersal vectors for antibiotic resistance genes (ARGs). This study focused on the impact of plastic properties including hardness, wettability, and zeta-potential on the biomass, prokaryotic and eukaryotic communities and ARGs in biofilms formed on specific plastics (polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET)) in an estuarine environment. The results showed that, in comparison to PP, more biomass characterized by more dry weight, chlorophyll a (Chl a) and total organic carbon (TOC) was found in biofilms formed on PE and PET, which may be related to their lower surface wettability. Proteobacteria were the dominant prokaryotic phyla, and they accounted for 53.06%, 81.90%, 37.06%, 76.25%, and 54.27% of the total sequences in biofilms on PE, PP, PET, water and sediment, respectively. Ascomycota were the predominant eukaryotic phyla in biofilms, water, and sediment, and their abundances were elevated in biofilms on PP, which accounted for 34.73%. The biofilms on PP had a higher relative abundance of ARGs (3.13) compared to those on PE (2.59) and PET (0.23). Furthermore, both the plastic-biofilm properties (e.g. dry weight, Chl a, and TOC) and microbial communities (e.g., Fungi and Proteobacteria) may be involved in regulating the abundance of ARGs. Moreover, mobile genetic elements (MGEs) were significantly correlated to both the absolute and relative abundance of ARGs, indicating that MGEs may regulate the migration of ARGs in biofilms. Taken together, this investigation provides the significance of the plastic type, surface properties, and surrounding environments in shaping microbial communities and ARGs in biofilms formed on plastics.
Collapse
Affiliation(s)
- Xing-Pan Guo
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yu-Ru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiao-Li Sun
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Cui-Lan Li
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
24
|
Wang X, Li H, Chen Y, Meng X, Yorgan Dieketseng M, Wang X, Yan S, Wang B, Zhou L, Zheng G. A neglected risk of nanoplastics as revealed by the promoted transformation of plasmid‐borne ampicillin resistance gene by
Escherichia coli. Environ Microbiol 2022; 24:4946-4959. [DOI: 10.1111/1462-2920.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Xinxin Wang
- Department of Environmental Engineering College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
| | - Hua Li
- College of Urban Construction, Nanjing Tech University Nanjing China
| | - Yu Chen
- Department of Environmental Engineering College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
| | - Xiaoqing Meng
- Department of Environmental Engineering College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
| | - Mahlatsi Yorgan Dieketseng
- Department of Environmental Engineering College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
| | - Xiaomeng Wang
- Department of Environmental Engineering College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
| | - Su Yan
- Department of Environmental Engineering College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
| | - Baozhan Wang
- Department of Microbiology College of Life Sciences, Nanjing Agricultural University Nanjing China
| | - Lixiang Zhou
- Department of Environmental Engineering College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing China
| | - Guanyu Zheng
- Department of Environmental Engineering College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing China
| |
Collapse
|
25
|
Liu R, Tan Z, Wu X, Liu Y, Chen Y, Fu J, Ou H. Modifications of microplastics in urban environmental management systems: A review. WATER RESEARCH 2022; 222:118843. [PMID: 35870394 DOI: 10.1016/j.watres.2022.118843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are a worldwide environmental pollution issue. Besides the natural environmental stresses, various treatments in urban environmental management systems induce modifications on MPs, further affecting their environmental behavior. Investigating these modifications and inherent mechanisms is crucial for assessing the environmental impact and risk of MPs. In this review, up-to-date knowledge regarding the modifications of MPs in urban environmental management systems was summarized. Variations of morphology, chemical composition, hydrophilicity and specific surface area of MPs were generalized. The aging and degradation of MPs during drinking water treatment, wastewater treatment, sewage sludge treatment and solid waste treatment were investigated. A high abundance of MPs occurred in sewage sludge and aging solid waste, while digestion and composting contributed to significant decomposition and reduction of MPs. These treatments have become converters for MPs before entering the environment. Several novel technologies for MPs removal were listed; However, no appropriate methods can be put into actual application by now, except the membrane separation. The corresponding effects of degradation on the behaviors of MPs, including adsorption, sinking and contaminant leakage, were discussed. Finally, three priorities for research were proposed. This critical review provides viewpoints and references for risk evaluation of MPs after treatments in urban environmental management systems.
Collapse
Affiliation(s)
- Ruijuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Zongyi Tan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Xinni Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Yuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yuheng Chen
- Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Jianwei Fu
- Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
26
|
Ye X, Cheng Z, Wu M, Hao Y, Hu BX, Mo C, Li Q, Xiang L, Zhao H, Wu J, Wu J, Lu G. Investigating transport kinetics of polystyrene nanoplastics in saturated porous media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113820. [PMID: 36068748 DOI: 10.1016/j.ecoenv.2022.113820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Understanding the fate and transport of polystyrene nanoparticles (PSNPs) in porous media under various conditions is necessary for evaluating and predicting environmental risks caused by microplastics. The transport kinetics of PSNPs are investigated by column experiment and numerical model. The surface of DLVO interaction energy is calculated to analyze and predict the adsorption and aggregation of PSNPs in porous media, which the critical ionic strength of PSNPs can be accurately investigated. The results of the DLVO energy surface suggest that when the concentration of Na+ increases from 1 mM to 50 mM, the DLVO energy barrier of PSNPs-silica sand (SS) decreases from 78.37 kT to 5.46 kT. As a result, PSNPs are easily adsorbed on the surface of SS and the mobility of PSNPs is reduced under the condition of a high concentration of Na+ (PSNPs recovery rate decreases from 62.16% to 3.65%). When the concentration of Ca2+ increases from 0.1 mM to 5 mM, the DLVO energy barrier of PSNPs-SS decreases from 12.10 kT to 1.90 kT, and PSNPs recovery rate decreases from 82.46% to 4.27%. Experimental and model results showed that PSNPs mobility is enhanced by increasing initial concentration, flow velocity and grain size of SS, while the mobility of PSNPs with larger particle diameter is lower. Regression analysis suggests that kinetic parameters related to PSNPs mobility are correlated with DLVO energy barriers. The environmental behavior and mechanism of PSNPs transport in porous media are further investigated in this study, which provides a scientific basis for the systematic and comprehensive evaluation of the environmental risk and ecological safety of nano-plastic particles in the groundwater system.
Collapse
Affiliation(s)
- Xinyao Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bill X Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Haiming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianfeng Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jichun Wu
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
27
|
Gao J, Wang L, Ok YS, Bank MS, Luo J, Wu WM, Hou D. Nanoplastic stimulates metalloid leaching from historically contaminated soil via indirect displacement. WATER RESEARCH 2022; 218:118468. [PMID: 35461104 DOI: 10.1016/j.watres.2022.118468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
It is generally believed that the ability of nanoplastics (NPs) to mobilize other contaminants is due to direct adsorption; however, this intuitive belief is questioned in this study when it comes to a historically contaminated soil where mining activities since 1958 have resulted in arsenic (As) and cadmium (Cd) enrichment. Negatively charged polystyrene (PS) NPs were used in this study, which should theoretically stimulate Cd (metal cation) instead of As (negatively charged oxyanion) leaching if direct adsorption accounted for co-transport. Surprisingly, PS NPs enhanced the leaching of As by up to over 5 times (p value < 0.05), but had almost no effect on Cd leaching (p value > 0.05). A novel indirect displacement model was therefore developed to describe the phenomenon of enhanced As leaching. It has been found that negatively charged NPs interacted with As via competition for soil binding sites. Underlying mechanistic insights were further explored via both theoretical calculations with the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach, and direct characterization using Scanning Electron Microscopy (SEM) and Computed X-ray Microtomography (μCT) showing binding sites and flow channels, respectively. The overall results provide new and valuable insights into NP-metal(loid) interactions in the natural soil environment, which can be integrated in future studies regarding the transport and risk assessment of NPs, and toxic metal(loid)s.
Collapse
Affiliation(s)
- Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts, Amherst, MA 01003, United States
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William and Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, United States
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Lam SS, Xia C, Sonne C. Plastic crisis underscores need for alternative sustainable-renewable materials. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
29
|
Zhang S, Liu X, Qiu P, Chen B, Xu C, Dong W, Liu T. Microplastics can selectively enrich intracellular and extracellular antibiotic resistant genes and shape different microbial communities in aquatic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153488. [PMID: 35101514 DOI: 10.1016/j.scitotenv.2022.153488] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as emerging contaminants, are posing potential risks to environment, and animal and human health. The ubiquitous presence of MPs in natural ecosystems provides favorable platform to selectively adsorb antibiotic resistant genes (ARGs) and bacteria (ARB) and bacterial assemblages, especially in wastewater which is hotspot for MPs, ARGs and ARB. In this study, the selective capture of intracellular ARGs (iARGs), extracellular ARGs (eARGs), and bacterial assemblages by MPs with different materials (i.e. polyethylene, polyvinylchloride, and polyethylene terephthalate) and sizes (200 μm and 100 μm) was investigated. The results showed that iARGs (i.e. i-TetA, i-TetC, i-TetO, i-sul1), integron-integrase gene (intI1), and eARGs (i.e. e-TetA and e-blaTEM) were selectively enriched on MPs. Relative abundances of i-sul1, i-TetA, and intI1 were generally higher than that of i-TetC and i-TetO on all MPs. Moreover, MPs also have strong effects on the formation of microflora in wastewater, which resulted in different bacterial communities and functions in the wastewater and on the MPs. These findings suggested that MPs could affect the selective enrichment of ARB and ARGs in water environment.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xingxiang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Bin Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chenmin Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
30
|
Zhang G, Chen J, Li W. Conjugative antibiotic-resistant plasmids promote bacterial colonization of microplastics in water environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128443. [PMID: 35152101 DOI: 10.1016/j.jhazmat.2022.128443] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Both microplastic and bacterial antibiotic resistance have attracted attention worldwide. When microplastics coexist with antibiotic-resistant bacteria (ARB), which carry antibiotic resistance genes (ARGs), ARB colonize the surface of microplastics, and a unique biofilm is formed. The ARB and ARGs in biofilms are denser and more difficult to remove. However, studies on the factors influencing the formation of microplastic biofilms are limited. In this study, plasmid RP4, which appeared in wastewater treatment plants, was found to be able to promote irreversible bacterial colonization of microplastics, and the hypothetical reason was conjugative pili expression. Then, the potential conjugative pili synthesis promoter "nanoalumina" and inhibitor "free nitrous acid" (FNA) were selected to test this hypothesis. Simultaneously, nanoalumina promoted and FNA inhibited bacterial colonization when RP4 existed. Combined with the gene expression and ATP analysis results, this hypothesis was confirmed, and the mechanism of RP4 on bacterial colonization was related mainly to conjugative pili protein synthesis and intracellular ATP. In this study, the effects of plasmid RP4, nanoalumina, and FNA on the formation of microplastic biofilms were reported, which has a certain reference value for other researchers exploring microplastic biofilms.
Collapse
Affiliation(s)
- Guosheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Jiping Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China.
| |
Collapse
|
31
|
Wang C, Wang L, Ok YS, Tsang DCW, Hou D. Soil plastisphere: Exploration methods, influencing factors, and ecological insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128503. [PMID: 35739682 DOI: 10.1016/j.jhazmat.2022.128503] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP), an emerging contaminant, is globally prevalent and poses potential environmental threats and ecological risks to both aquatic and terrestrial ecosystems. When MPs enter into natural environments, they may serve as artificial substrates for microbial colonization and plastisphere formation, providing new ecological niches for microorganisms. Recent studies of the plastisphere have focused on aquatic ecosystems. However, our understanding of the soil plastisphere e.g. its formation process, microbial ecology, co-transport of organic pollutants and heavy metals, and effects on biogeochemical processes is still very limited. This review summarizes latest methods used to explore the soil plastisphere, assesses the factors influencing the microbial ecology of the soil plastisphere, and sheds light on potential ecological risks caused by the soil plastisphere. The formation and succession of soil plastisphere communities can be driven by MP characteristics and soil environmental factors. The soil plastisphere may affect a series of ecological processes, especially the co-transport of environmental contaminants, biodegradation of MPs, and soil carbon cycling. We aim to narrow the knowledge gap between the soil and aquatic plastisphere, and provide valuable guidance for future research on the soil plastisphere in MP-contaminated soils.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
33
|
Li C, Yuan X, Sun Z, Suvarna M, Hu X, Wang X, Ok YS. Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment. BIORESOURCE TECHNOLOGY 2022; 346:126582. [PMID: 34953989 DOI: 10.1016/j.biortech.2021.126582] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 05/15/2023]
Abstract
Pyrolysis of the middle layer of a surgical mask (MLM) and inner and outer layers of a surgical mask (IOM) was performed to assess their potential valorization as waste-to-energy feedstocks, and the characteristics of the resulting products were investigated. Pyrolysis of the main organics in waste surgical masks occurred at a very narrow temperature range of 456-466 °C. The main product was carbon-rich and oxygen-deficient liquid oil with a high heating value (HHV) of 43.5 MJ/kg. From the life-cycle perspective, environmental benefits and advantages of this upcycling approach were verified compared with conventional waste management approaches. This study advocated the potential application of waste surgical masks as feedstocks for fuels and energy, which is beneficial to mitigate plastic pollution and achieve sustainable plastic waste-to-energy upcycling, simultaneously.
Collapse
Affiliation(s)
- Chao Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiangzhou Yuan
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; R&D Centre, Sun Brand Industrial Inc., Jeollanam-do 57248, Republic of Korea
| | - Ziying Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Manu Suvarna
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiaonan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Institute of Green Manufacturing Technology, College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
34
|
Zhu D, Ma J, Li G, Rillig MC, Zhu YG. Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens. THE ISME JOURNAL 2022; 16:521-532. [PMID: 34455424 PMCID: PMC8776808 DOI: 10.1038/s41396-021-01103-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
In the Anthropocene, increasing pervasive plastic pollution is creating a new environmental compartment, the plastisphere. How the plastisphere affects microbial communities and antibiotic resistance genes (ARGs) is an issue of global concern. Although this has been studied in aquatic ecosystems, our understanding of plastisphere microbiota in soil ecosystems remains poor. Here, we investigated plastisphere microbiota and ARGs of four types of microplastics (MPs) from diverse soil environments, and revealed effects of manure, temperature, and moisture on them. Our results showed that the MPs select for microbial communities in the plastisphere, and that these plastisphere communities are involved in diverse metabolic pathways, indicating that they could drive diverse ecological processes in the soil ecosystem. The relationship within plastisphere bacterial zero-radius operational taxonomic units (zOTUs) was predominantly positive, and neutral processes appeared to dominate community assembly. However, deterministic processes were more important in explaining the variance in ARGs in plastispheres. A range of potential pathogens and ARGs were detected in the plastisphere, which were enriched compared to the soil but varied across MPs and soil types. We further found that the addition of manure and elevation of soil temperature and moisture all enhance ARGs in plastispheres, and potential pathogens increase with soil moisture. These results suggested that plastispheres are habitats in which an increased potential pathogen abundance is spatially co-located with an increased abundance of ARGs under global change. Our findings provided new insights into the community ecology of the microbiome and antibiotic resistome of the soil plastisphere.
Collapse
Affiliation(s)
- Dong Zhu
- grid.9227.e0000000119573309State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jun Ma
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Gang Li
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Matthias C. Rillig
- grid.14095.390000 0000 9116 4836Freie Universität Berlin, Institute of Biology, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Yong-Guan Zhu
- grid.9227.e0000000119573309State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
35
|
Ma J, Gong Z, Wang Z, Liu H, Chen G, Guo G. Elucidating degradation properties, microbial community, and mechanism of microplastics in sewage sludge under different terminal electron acceptors conditions. BIORESOURCE TECHNOLOGY 2022; 346:126624. [PMID: 34958908 DOI: 10.1016/j.biortech.2021.126624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
This study is designed to investigate the roles of five key terminal electron acceptors (TEAs): O2, NO3-, Fe3+, SO42-, and CH2O, typically existing in the sludge on the degradation rates and pathways of three representative MPs: polylactic acid (PLA), polyvinyl chloride (PVC), and polyhydroxyalkanoate (PHA). The results revealed that approximately 51.46 ∼ 52.70% of PHA was degraded within 43 days, despite PLA and PVC being degraded insignificantly. Different TEAs significantly affected the end-products of PHA. The production rate of acetate gradually decreased from 90.48, 42.67, 38.30, and 17.56 to 3.30% when the TEAs were tested with CH2O, O2, SO42-, NO3- and Fe3+, respectively. The main functional bacteria involved in the PHA degradation were hydrolysis bacteria Burkholderiaceae and homo-acetogenic bacteria Clostridiacea, which accounted for 0.83% and 18.91% of the microbes. The current investigation could help improve understanding of MPs degradation pathways and mechanisms and minimize their risks in practice.
Collapse
Affiliation(s)
- Jie Ma
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiwei Gong
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
36
|
Li P, Liu J, Zhang H. Insights into the interaction of microplastic with silver nanoparticles in natural surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150315. [PMID: 34537696 DOI: 10.1016/j.scitotenv.2021.150315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The combined pollution induced by microplastics (MPs) and other pollutants, such as nanomaterials, has received increasing attention. The interaction between MPs and silver nanoparticles (AgNPs) may affect both their behaviors in natural environments, however, knowledge on these effects remains limited. In this study, AgNPs and three common MPs, polypropylene (PP), polyethylene (PE), and polystyrene (PS), were co-exposed to natural freshwater and brackish water to investigate the interaction between MPs and AgNPs in natural surface water. The results showed that the environmental behaviour of AgNPs in natural freshwater and brackish water is first of all affected by water chemistry and only in second instance affected by MPs. In natural freshwater, AgNPs remained stable largely dominated by dissolved organic matter (DOM), parts of which were subsequently captured by three MPs in the form of single particles without significant difference. In contrast, both ionic strength and DOM contributed to the aggregation of AgNPs in natural brackish water. PE and PP captured a small amount of AgNPs in the form of aggregates in natural brackish water, while the majority of AgNP aggregates were trapped by PS in natural brackish water. Therefore, both water chemistry and MPs types were found to play crucial roles in the interaction between MPs and AgNPs. These observations also revealed that MPs could serve as carriers for AgNP transport and advance the current understanding of combined pollution between MPs and engineered nanomaterials in natural aquatic environments.
Collapse
Affiliation(s)
- Penghui Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwu Zhang
- School of Chemistry and Material Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
37
|
Ya H, Jiang B, Xing Y, Zhang T, Lv M, Wang X. Recent advances on ecological effects of microplastics on soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149338. [PMID: 34375233 DOI: 10.1016/j.scitotenv.2021.149338] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 05/22/2023]
Abstract
The mass production and wide application of plastics and their derivatives have led to the release of a large number of discarded plastic products into the natural environment, where they continue to accumulate due to their low recycling rate and long durability. These large pieces of plastic will gradually break into microplastics (<5 mm), which are highly persistent organic pollutants and attract worldwide attention due to their small particle size and potential threats to the ecosystem. Compared with the aquatic system, terrestrial systems such as soils, as sinks for microplastics, are more susceptible to plastic pollution. In this article, we comprehensively summarized the occurrence and sources of microplastics in terrestrial soil, and reviewed the eco-toxicological effects of microplastics in soil ecosystems, in terms of physical and chemical properties of soil, soil nutrient cycling, soil flora and fauna. The influence of microplastics on soil microbial community, and particularly the microbial community on the surface of microplastics, were examined in detail. The compound effects of microplastics and other pollutants, e.g., heavy metals and antibiotics, were addressed. Future challenges of research on microplastics include development of new techniques and standardization for the extraction and qualitative and quantitative analysis of microplastics in soils, toxic effects of microplastics at microbial or even molecular levels, the contribution of microplastics to antibiotic resistance genes migration, and unraveling microorganisms for the degradation of microplastics. This work provides as a better understanding of the occurrence, distribution and potential ecological risks of microplastics in terrestrial soil ecosystems.
Collapse
Affiliation(s)
- Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
38
|
Ivleva NP. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem Rev 2021; 121:11886-11936. [PMID: 34436873 DOI: 10.1021/acs.chemrev.1c00178] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microplastics and nanoplastics have become emerging particulate anthropogenic pollutants and rapidly turned into a field of growing scientific and public interest. These tiny plastic particles are found in the environment all around the globe as well as in drinking water and food, raising concerns about their impacts on the environment and human health. To adequately address these issues, reliable information on the ambient concentrations of microplastics and nanoplastics is needed. However, micro- and nanoplastic particles are extremely complex and diverse in terms of their size, shape, density, polymer type, surface properties, etc. While the particle concentrations in different media can vary by up to 10 orders of magnitude, analysis of such complex samples may resemble searching for a needle in a haystack. This highlights the critical importance of appropriate methods for the chemical identification, quantification, and characterization of microplastics and nanoplastics. The present article reviews advanced methods for the representative mass-based and particle-based analysis of microplastics, with a focus on the sensitivity and lower-size limit for detection. The advantages and limitations of the methods, and their complementarity for the comprehensive characterization of microplastics are discussed. A special attention is paid to the approaches for reliable analysis of nanoplastics. Finally, an outlook for establishing harmonized and standardized methods to analyze these challenging contaminants is presented, and perspectives within and beyond this research field are discussed.
Collapse
Affiliation(s)
- Natalia P Ivleva
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| |
Collapse
|
39
|
Yang X, Wang H, Zhang L, Kong L, Chen Y, He Q, Li L, Grossart HP, Ju F. Marine algae facilitate transfer of microplastics and associated pollutants into food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147535. [PMID: 33991910 DOI: 10.1016/j.scitotenv.2021.147535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Xiangyu Yang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Hui Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhuette 2, 16775 Stechlin, Germany; Institute of Biogeochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
40
|
Sridharan S, Kumar M, Singh L, Bolan NS, Saha M. Microplastics as an emerging source of particulate air pollution: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126245. [PMID: 34111744 DOI: 10.1016/j.jhazmat.2021.126245] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 05/07/2023]
Abstract
Accumulation of plastic litter exerts pressure on the environment. Microplastics (MPs) pollution has become a universal challenge due to the overexploitation of plastic products and unsystematic dumping of plastic waste. Initial studies on MPs and their implications had been confined to aquatic and terrestrial ecosystems, but recent research has also focused on MPs in the air. Their impacts on urban air quality and atmospheric transport to pristine habitats have emerged to be a serious concern. However, the extent and the significance of impacts of airborne particulate matter (PM) MPs on human health are not clearly understood. Further, the influence of airborne MPs on indoor and outdoor air quality remains unknown. We highlight the human health impacts of airborne PM-MPs with a special focus on the occupational safety of the industry workers, their possible influence on Air Quality Index (AQI), their potential exposure, and accumulation in the canopy/arboreal, above-canopy and atmospheric (aerial) habitats. The present review emphasizes the data limitations and knowledge gaps on the atmospheric transport and contribution of particulate plastics to the worsening of overall urban air quality and throws critical perspectives on whether atmospheric MPs pollution is trivial or an actual matter of concern.
Collapse
Affiliation(s)
- Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, New South Wales, 2308, Australia; Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| | - Mahua Saha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India.
| |
Collapse
|
41
|
Jędruchniewicz K, Ok YS, Oleszczuk P. COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125938. [PMID: 34010776 PMCID: PMC8076738 DOI: 10.1016/j.jhazmat.2021.125938] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
The appearance of the virus SARS-CoV-2 at the end of 2019 and its spreading all over the world has caused global panic and increase of personal protection equipment usage to protect people against infection. Increased usage of disposable protective gloves, their discarding to random spots and getting to landfills may result in significant environmental pollution. The knowledge concerning possible influence of gloves and potential of gloves debris on the environment (water, soil, etc.), wildlife and humans is crucial to predict future consequences of disposable gloves usage caused by the pandemic. This review focuses on the possibility of chemical release (heavy metals and organic pollutants) from gloves and gloves materials, their adsorptive properties in terms of contaminants accumulation and effects of gloves degradation under environmental conditions.
Collapse
Affiliation(s)
- Katarzyna Jędruchniewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
42
|
Otero P, Gago J, Quintas P. Twitter data analysis to assess the interest of citizens on the impact of marine plastic pollution. MARINE POLLUTION BULLETIN 2021; 170:112620. [PMID: 34218034 DOI: 10.1016/j.marpolbul.2021.112620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Few studies have mined social media platforms to assess environmental concerns. In this study, Twitter was scraped to obtain a ~140,000 tweet dataset related specifically to marine plastic pollution. The goal is to understand what kind of users profiles are tweeting and how and when they do it. In addition, topic modelling and graph theory techniques have allowed us to identify main concerns on this topic: i) impact on wildlife, ii) microplastics/water pollution, iii) estimates/reports, iv) legislation/protection, and v) recycling/cleaning initiatives. Results reveal a scarce influence of organizations involved in research and marine environmental awareness, so some guidelines are depicted that could help to adjust their communication plans. This is relevant to engage society through reliable information, change habits and reinforce sustainable behaviour. A visualization tool has been created to analyze the results over time.
Collapse
Affiliation(s)
- P Otero
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro, 50, 36390 Vigo, Spain.
| | - J Gago
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro, 50, 36390 Vigo, Spain
| | - P Quintas
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro, 50, 36390 Vigo, Spain
| |
Collapse
|
43
|
Li R, Zhu L, Yang K, Li H, Zhu YG, Cui L. Impact of Urbanization on Antibiotic Resistome in Different Microplastics: Evidence from a Large-Scale Whole River Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8760-8770. [PMID: 34132095 DOI: 10.1021/acs.est.1c01395] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are becoming ubiquitous in environments and viewed as carriers of antibiotic resistance genes (ARGs). Rivers connecting differently urbanized areas contribute a significant input of MPs and ARGs to the environment. However, a systematic study assessing the role of urbanization in shaping antibiotic resistome and mobilome in riverine MPs is lacking. Here, we conducted a large-scale study by placing five types of MPs (polyethylene, polypropylene, polystyrene, polyethylene-fiber, and polyethylene-fiber-polyethylene) into Beilun River with an urbanization gradient. A total of 314 ARGs and 57 mobile genetic elements (MGEs) were detected in MPs by high-throughput quantitative polymerase chain reaction (PCR). The ARGs in MPs showed a clear spatial distribution with the abundance increased by 2 orders of magnitude from rural to urban regions. A holistic analysis of 13 socioeconomic and environmental factors identified that urbanization predominantly contributed to both the abundance and potential MGE-mediated dissemination of ARGs in riverine MPs. Notably, MPs types were found to significantly affect the resistome and dissemination risk of ARGs, with polypropylene being the preferred substrates to acquire and spread ARGs. This work highlights the necessity of controlling MPs and ARGs pollution in urban areas and provides an important guide for the future usage and disposal of plastics.
Collapse
Affiliation(s)
- Ruilong Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- School of Marine Science, Guangxi University, Nanning 530004, China
| | - Longji Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongzhe Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
44
|
Sathicq MB, Sabatino R, Corno G, Di Cesare A. Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116896. [PMID: 33744628 DOI: 10.1016/j.envpol.2021.116896] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 05/27/2023]
Abstract
In the last decade, the study of the origin and fate of plastic debris received great attention, leading to a new and broad awareness of the hazard represented by these particles for the environment and the biota. At the same time, the scientific consideration on the leading role of the environment regarding the spread of antibiotic resistant bacteria (ARB) increased. Both, microplastic particles (MPs) and ARB share pollution sources and, in aquatic systems, MPs could act as a novel ecological niche, favouring the survival of pathogens and ARB. MPs can host a specific microbial biofilm, referred to as plastisphere, phylogenetically different from the surrounding planktonic microbial community and from the biofilm growing on other suspended particles. The plastisphere can influence the overall microbiome of a specific habitat, by introducing and supporting different species and by increasing horizontal gene transfer. In this review we collect and analyse the available studies coupling MPs and antibiotic resistance in water, highlighting knowledge gaps to be filled in order to understand if MPs could effectively act as a carrier of ARB and antibiotic resistance genes, and pose a real threat to human health.
Collapse
Affiliation(s)
- María Belén Sathicq
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy.
| |
Collapse
|
45
|
Bank MS, Swarzenski PW, Duarte CM, Rillig MC, Koelmans AA, Metian M, Wright S, Provencher JF, Sanden M, Jordaan A, Wagner M, Thiel M, Ok YS. Global Plastic Pollution Observation System to Aid Policy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7770-7775. [PMID: 34027665 DOI: 10.1021/acs.est.1c00818] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plastic pollution has become one of the most pressing environmental challenges and has received commensurate widespread attention. Although it is a top priority for policymakers and scientists alike, the knowledge required to guide decisions, implement mitigation actions, and assess their outcomes remains inadequate. We argue that an integrated, global monitoring system for plastic pollution is needed to provide comprehensive, harmonized data for environmental, societal, and economic assessments. The initial focus on marine ecosystems has been expanded here to include atmospheric transport and terrestrial and freshwater ecosystems. An earth-system-level plastic observation system is proposed as a hub for collecting and assessing the scale and impacts of plastic pollution across a wide array of particle sizes and ecosystems including air, land, water, and biota and to monitor progress toward ameliorating this problem. The proposed observation system strives to integrate new information and to identify pollution hotspots (i.e., production facilities, cities, roads, ports, etc.) and expands monitoring from marine environments to encompass all ecosystem types. Eventually, such a system will deliver knowledge to support public policy and corporate contributions to the relevant United Nations (UN) Sustainable Development Goals (SDGs).
Collapse
Affiliation(s)
- Michael S Bank
- Institute of Marine Research, Bergen 5005, Norway
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peter W Swarzenski
- International Atomic Energy Agency, Principality of Monaco 98000, Monaco
| | - Carlos M Duarte
- Red Sea Research Center and Computational Biosciences Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Wageningen 6700 AA, The Netherlands
| | - Marc Metian
- International Atomic Energy Agency, Principality of Monaco 98000, Monaco
| | - Stephanie Wright
- School of Public Health, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom
| | | | | | - Adrian Jordaan
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Martin Thiel
- Facultad Ciencias del Mar, Universidad Católica del Norte, Coquimbo 5651, Chile
- Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo 5651, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 5651, Chile
| | - Yong Sik Ok
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea
- Association of Pacific Rim Universities (APRU) Sustainable Waste Management Program, Korea University, Seoul 02841, Korea
| |
Collapse
|
46
|
Liu S, Fang S, Xiang Z, Chen X, Song Y, Chen C, Ouyang G. Combined effect of microplastics and DDT on microbial growth: A bacteriological and metabolomics investigation in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124849. [PMID: 33360188 DOI: 10.1016/j.jhazmat.2020.124849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) can adsorb toxic chemicals in biological or environmental matrixes and thus influence their behavior and availability. In order to investigate how the combined pollution of MPs and toxic organic chemical influence microbial growth and metabolism, Escherichia coli (E. coli) was grown in a complex, well-defined media and treated with polystyrene microplastics (PS MPs) and dichloro-diphenyl-tricgloroethane (DDT) at human relevant concentration levels. In vivo metabolites captured by a novel solid phase microextraction (SPME) probe, were used to reflect the metabolic dysregulation of E. coli under different pollution stresses. Results showed that the toxic effect of DDT displayed a distinct dose-dependent phenomenon while the existence of PS decreased the growth and metabolic interference effect of DDT on E. coli. Adsorption results revealed a mechanism that PS weakened the adverse impact of DDT by decreasing its free concentration in the treated culture media. Tricarboxylic acid (TCA) cycle related enzymes activities and antioxidant defense related substances of E. coli also proved the mechanism. The current study is believed to broaden our understanding of the ecotoxicity of MPs with toxic organic chemicals on microorganism.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Shuting Fang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Xiaotian Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yumei Song
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Chao Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
47
|
Atugoda T, Vithanage M, Wijesekara H, Bolan N, Sarmah AK, Bank MS, You S, Ok YS. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. ENVIRONMENT INTERNATIONAL 2021; 149:106367. [PMID: 33497857 DOI: 10.1016/j.envint.2020.106367] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/11/2023]
Abstract
Microplastics are well known for vector transport of hydrophobic organic contaminants, and there are growing concerns regarding their potential adverse effects on ecosystems and human health. However, recent studies focussing on hydrophilic compounds, such as pharmaceuticals and personal care products (PPCPs), have shown that the compounds ability to be adsorbed onto plastic surfaces. The extensive use of PPCPs has led to their ubiquitous presence in the environment resulting in their cooccurrence with microplastics. The partitioning between plastics and PPCPs and their fate through vector transport are determined by various physicochemical characteristics and environmental conditions of specific matrices. Although the sorption capacities of microplastics for different PPCP compounds have been investigated extensively, these findings have not yet been synthesized and analyzed critically. The specific objectives of this review were to synthesize and critically assess the various factors that affect the adsorption of hydrophilic compounds such as PPCPs on microplastic surfaces and their fate and transport in the environment. The review also focuses on environmental factors such as pH, salinity, and dissolved organics, and properties of polymers and PPCP compounds, and the relationships with sorption dynamics and mechanisms. Furthermore, the ecotoxicological effects of PPCP-sorbed microplastics on biota and human health are also discussed.
Collapse
Affiliation(s)
- Thilakshani Atugoda
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Nanthi Bolan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Callaghan, NSW 2308, Australia
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Siming You
- James Watt School of Engineering, James Watt South Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|