1
|
Mallis RJ, Lee JJ, den Berg AV, Brazin KN, Viennet T, Zmuda J, Cross M, Radeva D, Rodriguez‐Mias R, Villén J, Gelev V, Reinherz EL, Arthanari H. Efficient and economic protein labeling for NMR in mammalian expression systems: Application to a preT-cell and T-cell receptor protein. Protein Sci 2024; 33:e4950. [PMID: 38511503 PMCID: PMC10955624 DOI: 10.1002/pro.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the β subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 μM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Thibault Viennet
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Denitsa Radeva
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | | | - Judit Villén
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Vladimir Gelev
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Porcheddu V, Lhomme G, Giraudet R, Correia E, Maillère B. The self-reactive FVIII T cell repertoire in healthy individuals relies on a short set of epitopes and public clonotypes. Front Immunol 2024; 15:1345195. [PMID: 38510258 PMCID: PMC10951066 DOI: 10.3389/fimmu.2024.1345195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Non-mutated FVIII-specific CD4 T cell epitopes have been recently found to contribute to the development of inhibitors in patients with hemophilia A (HA), while auto-reactive CD4 T cells specific to FVIII circulate in the blood of healthy individuals at a frequency close to the foreign protein ovalbumin. Thus, although FVIII is a self-protein, the central tolerance raised against FVIII appears to be low. In this study, we conducted a comprehensive analysis of the FVIII CD4 T cell repertoire in 29 healthy donors. Sequencing of the CDR3β TCR region from isolated FVIII-specific CD4 T cells revealed a limited usage and pairing of TRBV and TRBJ genes as well as a mostly hydrophobic composition of the CDR3β region according to their auto-reactivity. The FVIII repertoire is dominated by a few clonotypes, with only 13 clonotypes accounting for half of the FVIII response. Through a large-scale epitope mapping of the full-length FVIII sequence, we identified 18 immunodominant epitopes located in the A1, A3, C1, and C2 domains and covering half of the T cell response. These epitopes exhibited a broad specificity for HLA-DR or DP molecules or both. T cell priming with this reduced set of peptides revealed that highly expanded clonotypes specific to these epitopes were responsible individually for up to 32% of the total FVIII repertoire. These FVIII T cell epitopes and clonotypes were shared among HLA-unrelated donors tested and previously reported HA patients. Our study highlights the role of the auto-reactive T cell response against FVIII in HA and its similarity to the response observed in healthy individuals. Thus, it provides valuable insights for the development of new tolerance induction and deimmunization strategies.
Collapse
Affiliation(s)
- Valeria Porcheddu
- Université de Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Département Médicaments et Technologies pour la Santé, Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
3
|
Guan J, Peske JD, Manoharan Valerio M, Park C, Robey EA, Sadegh-Nasseri S. Commensal bacteria maintain a Qa-1 b-restricted unconventional CD8 + T population in gut epithelium. eLife 2023; 12:RP90466. [PMID: 38127067 PMCID: PMC10735220 DOI: 10.7554/elife.90466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8+ T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1b-restricted CD8+ T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1b-dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigens, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1b-restricted IEL landscape.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - J David Peske
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chansu Park
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | | |
Collapse
|
4
|
Smid AI, Garforth SJ, Obaid MS, Bollons HR, James JR. Pre-T cell receptor localization and trafficking are independent of its signaling. J Cell Biol 2023; 222:e202212106. [PMID: 37516909 PMCID: PMC10373305 DOI: 10.1083/jcb.202212106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023] Open
Abstract
Expression of the pre-T cell receptor (preTCR) is an important checkpoint during the development of T cells, an essential cell type of our adaptive immune system. The preTCR complex is only transiently expressed and rapidly internalized in developing T cells and is thought to signal in a ligand-independent manner. However, identifying a mechanistic basis for these unique features of the preTCR compared with the final TCR complex has been confounded by the concomitant signaling that is normally present. Thus, we have reconstituted preTCR expression in non-immune cells to uncouple receptor trafficking dynamics from its associated signaling. We find that all the defining features of the preTCR are intrinsic properties of the receptor itself, driven by exposure of an extracellular hydrophobic region, and are not the consequence of receptor activation. Finally, we show that transitory preTCR cell surface expression can sustain tonic signaling in the absence of ligand binding, suggesting how the preTCR can nonetheless drive αβTCR lineage commitment.
Collapse
Affiliation(s)
- Andrei I. Smid
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Sam J. Garforth
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Maryam S. Obaid
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Hannah R. Bollons
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - John R. James
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
5
|
Bodhale N, Nair A, Saha B. Isoform-specific functions of Ras in T-cell development and differentiation. Eur J Immunol 2023; 53:e2350430. [PMID: 37173132 DOI: 10.1002/eji.202350430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Ras GTPases, well characterized for their role in oncogenesis, are the cells' molecular switches that signal to maintain immune homeostasis through cellular development, proliferation, differentiation, survival, and apoptosis. In the immune system, T cells are the central players that cause autoimmunity if dysregulated. Antigen-specific T-cell receptor (TCR) stimulation activates Ras-isoforms, which exhibit isoform-specific activator and effector requirements, functional specificities, and a selective role in T-cell development and differentiation. Recent studies show the role of Ras in T-cell-mediated autoimmune diseases; however, there is a scarcity of knowledge about the role of Ras in T-cell development and differentiation. To date, limited studies have demonstrated Ras activation in response to positive and negative selection signals and Ras isoform-specific signaling, including subcellular signaling, in immune cells. The knowledge of isoform-specific functions of Ras in T cells is essential, but still inadequate to develop the T-cell-targeted Ras isoform-specific treatment strategies for the diseases caused by altered Ras-isoform expression and activation in T cells. In this review, we discuss the role of Ras in T-cell development and differentiation, critically analyzing the isoform-specific functions.
Collapse
Affiliation(s)
| | - Arathi Nair
- National Centre for Cell Science, Pune, India
| | | |
Collapse
|
6
|
Patskovsky Y, Natarajan A, Patskovska L, Nyovanie S, Joshi B, Morin B, Brittsan C, Huber O, Gordon S, Michelet X, Schmitzberger F, Stein RB, Findeis MA, Hurwitz A, Van Dijk M, Chantzoura E, Yague AS, Pollack Smith D, Buell JS, Underwood D, Krogsgaard M. Molecular mechanism of phosphopeptide neoantigen immunogenicity. Nat Commun 2023; 14:3763. [PMID: 37353482 PMCID: PMC10290117 DOI: 10.1038/s41467-023-39425-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
Altered protein phosphorylation in cancer cells often leads to surface presentation of phosphopeptide neoantigens. However, their role in cancer immunogenicity remains unclear. Here we describe a mechanism by which an HLA-B*0702-specific acute myeloid leukemia phosphoneoantigen, pMLL747-755 (EPR(pS)PSHSM), is recognized by a cognate T cell receptor named TCR27, a candidate for cancer immunotherapy. We show that the replacement of phosphoserine P4 with serine or phosphomimetics does not affect pMHC conformation or peptide-MHC affinity but abrogates TCR27-dependent T cell activation and weakens binding between TCR27 and pMHC. Here we describe the crystal structures for TCR27 and cognate pMHC, map of the interface produced by nuclear magnetic resonance, and a ternary complex generated using information-driven protein docking. Our data show that non-covalent interactions between the epitope phosphate group and TCR27 are crucial for TCR specificity. This study supports development of new treatment options for cancer patients through target expansion and TCR optimization.
Collapse
Grants
- P30 GM133893 NIGMS NIH HHS
- P30 CA016087 NCI NIH HHS
- U01 CA214354 NCI NIH HHS
- P50 CA225450 NCI NIH HHS
- R01 GM085586 NIGMS NIH HHS
- R01 GM124489 NIGMS NIH HHS
- R01 CA243486 NCI NIH HHS
- S10 OD016343 NIH HHS
- P41 GM118302 NIGMS NIH HHS
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- This work was supported by the NIH grant NIGMS R01 GM124489 (to M.K.), NCI R01 CA243486 (to M.K) and a Sponsored Research Agreement from Agenus to M.K. Results shown in this report are partially derived from work performed at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source. SBC is operated by UChicago Argonne, LLC, for the U.S. Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. Results in this report are partially derived from work performed at The Center for BioMolecular Structure (CBMS) primarily supported by the National Institutes of Health, National Institute of General Medical Sciences (NIGMS) through a Center Core P30 Grant (P30GM133893), and by the DOE Office of Biological and Environmental Research (KP1607011). As part of NSLS-II, a national user facility at Brookhaven National Laboratory, work performed at the CBMS is supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Program under contract number and DE-SC0012704. The NMR spectrometers at the NYU Chemistry Shared Instrumentation Facility were supported by NYU and the NIH Grant 1S10-OD016343. The facilities at the NYSBC were supported by the NIH Grant P41GM118302.
Collapse
Affiliation(s)
- Yury Patskovsky
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Aswin Natarajan
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Larysa Patskovska
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Samantha Nyovanie
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michelle Krogsgaard
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA.
| |
Collapse
|
7
|
Li X, Singh NK, Collins DR, Ng R, Zhang A, Lamothe-Molina PA, Shahinian P, Xu S, Tan K, Piechocka-Trocha A, Urbach JM, Weber JK, Gaiha GD, Takou Mbah OC, Huynh T, Cheever S, Chen J, Birnbaum M, Zhou R, Walker BD, Wang JH. Molecular basis of differential HLA class I-restricted T cell recognition of a highly networked HIV peptide. Nat Commun 2023; 14:2929. [PMID: 37217466 DOI: 10.1038/s41467-023-38573-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Cytotoxic-T-lymphocyte (CTL) mediated control of HIV-1 is enhanced by targeting highly networked epitopes in complex with human-leukocyte-antigen-class-I (HLA-I). However, the extent to which the presenting HLA allele contributes to this process is unknown. Here we examine the CTL response to QW9, a highly networked epitope presented by the disease-protective HLA-B57 and disease-neutral HLA-B53. Despite robust targeting of QW9 in persons expressing either allele, T cell receptor (TCR) cross-recognition of the naturally occurring variant QW9_S3T is consistently reduced when presented by HLA-B53 but not by HLA-B57. Crystal structures show substantial conformational changes from QW9-HLA to QW9_S3T-HLA by both alleles. The TCR-QW9-B53 ternary complex structure manifests how the QW9-B53 can elicit effective CTLs and suggests sterically hindered cross-recognition by QW9_S3T-B53. We observe populations of cross-reactive TCRs for B57, but not B53 and also find greater peptide-HLA stability for B57 in comparison to B53. These data demonstrate differential impacts of HLAs on TCR cross-recognition and antigen presentation of a naturally arising variant, with important implications for vaccine design.
Collapse
Affiliation(s)
- Xiaolong Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Nishant Kumar Singh
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - David R Collins
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Robert Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Angela Zhang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Peter Shahinian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Shutong Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | | | - Jeffrey K Weber
- IBM Thomas J. Watson Research Center, Computational Biology Center, Yorktown Heights, NY, 10598, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Tien Huynh
- IBM Thomas J. Watson Research Center, Computational Biology Center, Yorktown Heights, NY, 10598, USA
| | - Sophia Cheever
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - James Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Michael Birnbaum
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02142, USA
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Computational Biology Center, Yorktown Heights, NY, 10598, USA
- Department of Chemistry, Columbia University, New York, NY, 10025, USA
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
- Institute for Medical Engineering and Science and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Jia-Huai Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Charnley M, Allam AH, Newton LM, Humbert PO, Russell SM. E-cadherin in developing murine T cells controls spindle alignment and progression through β-selection. SCIENCE ADVANCES 2023; 9:eade5348. [PMID: 36652509 DOI: 10.1126/sciadv.ade5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A critical stage of T cell development is β-selection; at this stage, the T cell receptor β (TCRβ) chain is generated, and the developing T cell starts to acquire antigenic specificity. Progression through β-selection is assisted by low-affinity interactions between the nascent TCRβ chain and peptide presented on stromal major histocompatibility complex and cues provided by the niche. In this study, we identify a cue within the developing T cell niche that is critical for T cell development. E-cadherin mediates cell-cell interactions and influences cell fate in many developmental systems. In developing T cells, E-cadherin contributed to the formation of an immunological synapse and the alignment of the mitotic spindle with the polarity axis during division, which facilitated subsequent T cell development. Collectively, these data suggest that E-cadherin facilitates interactions with the thymic niche to coordinate the β-selection stage of T cell development.
Collapse
Affiliation(s)
- Mirren Charnley
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Amr H Allam
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
9
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
10
|
This S, Rogers D, Mallet Gauthier È, Mandl JN, Melichar HJ. What's self got to do with it: Sources of heterogeneity among naive T cells. Semin Immunol 2023; 65:101702. [PMID: 36463711 DOI: 10.1016/j.smim.2022.101702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
There is a long-standing assumption that naive CD4+ and CD8+ T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the β-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes. Stochastic encounters subsequently made with self-ligands during positive selection in the thymus imprint functional biases that a T cell will carry with it throughout its lifetime, although ongoing interactions with self in the periphery ensure a level of plasticity in the gene expression wiring of naive T cells. Identifying the sources of heterogeneity in the naive T cell population and which functional attributes of T cells can be modulated through post-thymic interventions versus those that are fixed during T cell development, could enable us to better select or generate T cells with particular traits to improve the efficacy of T cell therapies.
Collapse
Affiliation(s)
- Sébastien This
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Dakota Rogers
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Ève Mallet Gauthier
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada.
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
11
|
Bosselut R. A Beginner's Guide to T Cell Development. Methods Mol Biol 2023; 2580:3-24. [PMID: 36374448 DOI: 10.1007/978-1-0716-2740-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T lymphocytes (T cells) are essential components of the adaptive immune system; they serve multiple functions in responses to pathogens and to ensure immune homeostasis. Written for readers first entering this field of study, this chapter is a brief overview of the development of T cells in the thymus, from the entry of thymus-settling bone marrow-derived precursors to the egress of mature T cells. Surveyed topics include the differentiation and expansion of early precursors, the generation of the T cell antigen receptor repertoire, the selection of αβ T cell precursors, and their acquisition of functional competency.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
The β-selection step shapes T-cell identity. Nature 2023; 613:440-442. [PMID: 36646871 DOI: 10.1038/d41586-023-00025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Duke-Cohan JS, Akitsu A, Mallis RJ, Messier CM, Lizotte PH, Aster JC, Hwang W, Lang MJ, Reinherz EL. Pre-T cell receptor self-MHC sampling restricts thymocyte dedifferentiation. Nature 2023; 613:565-574. [PMID: 36410718 PMCID: PMC9851994 DOI: 10.1038/s41586-022-05555-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/11/2022] [Indexed: 11/22/2022]
Abstract
Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific β chain, is a critical early checkpoint in thymocyte development within the αβ T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αβ T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αβ T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting β chain repertoire broadening for subsequent αβ T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.
Collapse
Affiliation(s)
- Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Cameron M Messier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick H Lizotte
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Chann AS, Charnley M, Newton LM, Newbold A, Wiede F, Tiganis T, Humbert PO, Johnstone RW, Russell SM. Stepwise progression of β-selection during T cell development involves histone deacetylation. Life Sci Alliance 2022; 6:6/1/e202201645. [PMID: 36283704 PMCID: PMC9595210 DOI: 10.26508/lsa.202201645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
During T cell development, the first step in creating a unique T cell receptor (TCR) is genetic recombination of the TCRβ chain. The quality of the new TCRβ is assessed at the β-selection checkpoint. Most cells fail this checkpoint and die, but the coordination of fate at the β-selection checkpoint is not yet understood. We shed new light on fate determination during β-selection using a selective inhibitor of histone deacetylase 6, ACY1215. ACY1215 disrupted the β-selection checkpoint. Characterising the basis for this disruption revealed a new, pivotal stage in β-selection, bookended by up-regulation of TCR co-receptors, CD28 and CD2, respectively. Within this "DN3bPre" stage, CD5 and Lef1 are up-regulated to reflect pre-TCR signalling, and their expression correlates with proliferation. These findings suggest a refined model of β-selection in which a coordinated increase in expression of pre-TCR, CD28, CD5 and Lef1 allows for modulating TCR signalling strength and culminates in the expression of CD2 to enable exit from the β-selection checkpoint.
Collapse
Affiliation(s)
- Anchi S Chann
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Australia,Peter MacCallum Cancer Centre, Melbourne, Australia,Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Mirren Charnley
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Australia,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Andrea Newbold
- Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Australia .,Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
A set point in the selection of the αβTCR T cell repertoire imposed by pre-TCR signaling strength. Proc Natl Acad Sci U S A 2022; 119:e2201907119. [PMID: 35617435 DOI: 10.1073/pnas.2201907119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SignificanceThe ability of the T cell receptor (TCR) to convey signals of different intensity is essential for the generation of a diverse, protecting, and self-tolerant T cell repertoire. We provide evidence that pre-TCR signaling during the first stage of T cell differentiation, thought to only check for in-frame rearrangement of TCRβ gene segments, determines the degree of diversity in a signaling intensity-dependent manner and controls the diversity of the TCR repertoire available for subsequent thymic positive and negative selection. Pre-TCR signaling intensity is regulated by the transmembrane region of its associated CD3ζ chains, possibly by organizing pre-TCRs into nanoclusters. Our data provide insights into immune receptor signaling mechanisms and reveal an additional checkpoint of T cell repertoire diversity.
Collapse
|
16
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
17
|
Zhang A, Piechocka-Trocha A, Li X, Walker BD. A Leucine Zipper Dimerization Strategy to Generate Soluble T Cell Receptors Using the Escherichia coli Expression System. Cells 2022; 11:cells11030312. [PMID: 35159122 PMCID: PMC8834513 DOI: 10.3390/cells11030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
T cell-mediated adaptive immunity plays a key role in immunological surveillance and host control of infectious diseases. A better understanding of T cell receptor (TCR) recognition of pathogen-derived epitopes or cancer-associated neoantigens is the basis for developing T cell-based vaccines and immunotherapies. Studies on the interaction between soluble TCR α:β heterodimers and peptide-bound major histocompatibility complexes (pMHCs) inform underlying mechanisms driving TCR recognition, but not every isolated TCR can be prepared in soluble form for structural and functional studies using conventional methods. Here, taking a challenging HIV-specific TCR as a model, we designed a general leucine zipper (LZ) dimerization strategy for soluble TCR preparation using the Escherichia coli expression system. We report details of TCR construction, inclusion body expression and purification, and protein refolding and purification. Measurements of binding affinity between the TCR and its specific pMHC using surface plasmon resonance (SPR) verify its activity. We conclude that this is a feasible approach to produce challenging TCRs in soluble form, needed for studies related to T cell recognition.
Collapse
Affiliation(s)
- Angela Zhang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Xiaolong Li
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Correspondence: (X.L.); (B.D.W.)
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Institute for Medical Engineering and Science (IMES) and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence: (X.L.); (B.D.W.)
| |
Collapse
|
18
|
New insights into TCR β-selection. Trends Immunol 2021; 42:735-750. [PMID: 34261578 DOI: 10.1016/j.it.2021.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
T cell receptor (TCR) β-selection (herein referred to as β-selection) is a pivotal checkpoint in mammalian T cell development when immature CD4-CD8- T-cells (thymocytes) express pre-TCR following successful Tcrb gene rearrangement. At this stage, αβ T cell lineage commitment and allelic exclusion to restrict one β-chain per cell take place and thymocytes undergo a proliferative burst. β-selection is known to be crucially dependent upon synchronized Notch and pre-TCR signaling; however, other necessary inputs have been identified over the past decade, expanding our knowledge and understanding of the β-selection process. In this review, we discuss recent mechanistic findings that have enabled a more detailed decoding of the molecular dynamics of the β-selection checkpoint and have helped to elucidate its role in early T cell development.
Collapse
|
19
|
Abstract
T cell activation is a critical event in the adaptive immune response, indispensable for cell-mediated and humoral immunity as well as for immune regulation. Recent years have witnessed an emerging trend emphasizing the essential role that physical force and mechanical properties play at the T cell interface. In this review, we integrate current knowledge of T cell antigen recognition and the different models of T cell activation from the perspective of mechanobiology, focusing on the interaction between the T cell receptor (TCR) and the peptide-major histocompatibility complex (pMHC) antigen. We address the shortcomings of TCR affinity alone in explaining T cell functional outcomes and the rising status of force-regulated TCR bond lifetimes, most notably the TCR catch bond. Ultimately, T cell activation and the ensuing physiological responses result from mechanical interaction between TCRs and the pMHC. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baoyu Liu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; , ,
| | - Elizabeth M Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; , ,
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; , ,
| |
Collapse
|
20
|
Mizsei R, Li X, Chen WN, Szabo M, Wang JH, Wagner G, Reinherz EL, Mallis RJ. A general chemical crosslinking strategy for structural analyses of weakly interacting proteins applied to preTCR-pMHC complexes. J Biol Chem 2021; 296:100255. [PMID: 33837736 PMCID: PMC7948749 DOI: 10.1016/j.jbc.2021.100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/04/2022] Open
Abstract
T lymphocytes discriminate between healthy and infected or cancerous cells via T-cell receptor-mediated recognition of peptides bound and presented by cell-surface-expressed major histocompatibility complex molecules (MHCs). Pre-T-cell receptors (preTCRs) on thymocytes foster development of αβT lymphocytes through their β chain interaction with MHC displaying self-peptides on thymic epithelia. The specific binding of a preTCR with a peptide-MHC complex (pMHC) has been identified previously as forming a weak affinity complex with a distinct interface from that of mature αβTCR. However, a lack of appropriate tools has limited prior efforts to investigate this unique interface. Here we designed a small-scale linkage screening protocol using bismaleimide linkers for determining residue-specific distance constraints between transiently interacting protein pairs in solution. Employing linkage distance restraint-guided molecular modeling, we report the oriented solution docking geometry of a preTCRβ-pMHC interaction. The linkage model of preTCRβ-pMHC complex was independently verified with paramagnetic pseudocontact chemical shift (PCS) NMR of the unlinked protein mixtures. Using linkage screens, we show that the preTCR binds with differing affinities to peptides presented by MHC in solution. Moreover, the C-terminal peptide segment is a key determinant in preTCR-pMHC recognition. We also describe the process for future large-scale production and purification of the linked constructs for NMR, X-ray crystallography, and single-molecule electron microscopy studies.
Collapse
MESH Headings
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/ultrastructure
- Humans
- Major Histocompatibility Complex/genetics
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/ultrastructure
- Nuclear Magnetic Resonance, Biomolecular
- Peptides/chemistry
- Peptides/genetics
- Protein Binding/genetics
- Protein Interaction Domains and Motifs/genetics
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/ultrastructure
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/ultrastructure
- T-Lymphocytes/chemistry
- T-Lymphocytes/immunology
- T-Lymphocytes/ultrastructure
- Thymocytes/chemistry
- Thymocytes/ultrastructure
Collapse
Affiliation(s)
- Réka Mizsei
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Xiaolong Li
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Wan-Na Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Monika Szabo
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jia-Huai Wang
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|