1
|
Hayday A, Dechanet-Merville J, Rossjohn J, Silva-Santos B. Cancer immunotherapy by γδ T cells. Science 2024; 386:eabq7248. [PMID: 39361750 DOI: 10.1126/science.abq7248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
The premise of cancer immunotherapy is that cancers are specifically visible to an immune system tolerized to healthy self. The promise of cancer immunotherapy is that immune effector mechanisms and immunological memory can jointly eradicate cancers and inoperable metastases and de facto vaccinate against recurrence. For some patients with hitherto incurable diseases, including metastatic melanoma, this promise is being realized by game-changing immunotherapies based on αβ T cells. Today's challenges are to bring benefit to greater numbers of patients of diverse ethnicities, target more cancer types, and achieve a cure while incurring fewer adverse events. In meeting those challenges, specific benefits may be offered by γδ T cells, which compose a second T cell lineage with distinct recognition capabilities and functional traits that bridge innate and adaptive immunity. γδ T cell-based clinical trials, including off-the-shelf adoptive cell therapy and agonist antibodies, are yielding promising results, although identifiable problems remain. In addressing those problems, we advocate that immunotherapies be guided by the distinctive biology of γδ T cells, as elucidated by ongoing research.
Collapse
Affiliation(s)
- Adrian Hayday
- Francis Crick Institute, London, UK
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- CRUK City of London Cancer Centre, London, UK
| | - Julie Dechanet-Merville
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Mühlgrabner V, Peters T, Velasco Cárdenas RMH, Salzer B, Göhring J, Plach A, Höhrhan M, Perez ID, Goncalves VDR, Farfán JS, Lehner M, Stockinger H, Schamel WW, Schober K, Busch DH, Hudecek M, Dushek O, Minguet S, Platzer R, Huppa JB. TCR/CD3-based synthetic antigen receptors (TCC) convey superior antigen sensitivity combined with high fidelity of activation. SCIENCE ADVANCES 2024; 10:eadj4632. [PMID: 39231214 PMCID: PMC11373591 DOI: 10.1126/sciadv.adj4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Low antigen sensitivity and a gradual loss of effector functions limit the clinical applicability of chimeric antigen receptor (CAR)-modified T cells and call for alternative antigen receptor designs for effective T cell-based cancer immunotherapy. Here, we applied advanced microscopy to demonstrate that TCR/CD3-based synthetic constructs (TCC) outperform second-generation CAR formats with regard to conveyed antigen sensitivities by up to a thousandfold. TCC-based antigen recognition occurred without adverse nonspecific signaling, which is typically observed in CAR-T cells, and did not depend-unlike sensitized peptide/MHC detection by conventional T cells-on CD4 or CD8 coreceptor engagement. TCC-endowed signaling properties may prove critical when targeting antigens in low abundance and aiming for a durable anticancer response.
Collapse
Affiliation(s)
- Vanessa Mühlgrabner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Timo Peters
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Rubí M-H Velasco Cárdenas
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Janett Göhring
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Angelika Plach
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Maria Höhrhan
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Iago Doel Perez
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | | | - Jesús Siller Farfán
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - René Platzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
3
|
Sok CL, Rossjohn J, Gully BS. The Evolving Portrait of γδ TCR Recognition Determinants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:543-552. [PMID: 39159405 PMCID: PMC11335310 DOI: 10.4049/jimmunol.2400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024]
Abstract
In αβ T cells, immunosurveillance is enabled by the αβ TCR, which corecognizes peptide, lipid, or small-molecule Ags presented by MHC- and MHC class I-like Ag-presenting molecules, respectively. Although αβ TCRs vary in their Ag recognition modes, in general they corecognize the presented Ag and the Ag-presenting molecule and do so in an invariable "end-to-end" manner. Quite distinctly, γδ T cells, by way of their γδ TCR, can recognize ligands that extend beyond the confines of MHC- and MHC class I-like restrictions. From structural studies, it is now becoming apparent that γδ TCR recognition modes can break the corecognition paradigm and deviate markedly from the end-to-end docking mechanisms of αβ TCR counterparts. This brief review highlights the emerging portrait of how γδ TCRs can recognize diverse epitopes of their Ags in a manner reminiscent to how Abs recognize Ags.
Collapse
MESH Headings
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Humans
- Animals
- Antigen Presentation/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Epitopes, T-Lymphocyte/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Chhon Ling Sok
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Benjamin S. Gully
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
5
|
Mog BJ, Marcou N, DiNapoli SR, Pearlman AH, Nichakawade TD, Hwang MS, Douglass J, Hsiue EHC, Glavaris S, Wright KM, Konig MF, Paul S, Wyhs N, Ge J, Miller MS, Azurmendi P, Watson E, Pardoll DM, Gabelli SB, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Preclinical studies show that Co-STARs combine the advantages of chimeric antigen and T cell receptors for the treatment of tumors with low antigen densities. Sci Transl Med 2024; 16:eadg7123. [PMID: 38985855 DOI: 10.1126/scitranslmed.adg7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Two types of engineered T cells have been successfully used to treat patients with cancer, one with an antigen recognition domain derived from antibodies [chimeric antigen receptors (CARs)] and the other derived from T cell receptors (TCRs). CARs use high-affinity antigen-binding domains and costimulatory domains to induce T cell activation but can only react against target cells with relatively high amounts of antigen. TCRs have a much lower affinity for their antigens but can react against target cells displaying only a few antigen molecules. Here, we describe a new type of receptor, called a Co-STAR (for costimulatory synthetic TCR and antigen receptor), that combines aspects of both CARs and TCRs. In Co-STARs, the antigen-recognizing components of TCRs are replaced by high-affinity antibody fragments, and costimulation is provided by two modules that drive NF-κB signaling (MyD88 and CD40). Using a TCR-mimic antibody fragment that targets a recurrent p53 neoantigen presented in a common human leukocyte antigen (HLA) allele, we demonstrate that T cells equipped with Co-STARs can kill cancer cells bearing low densities of antigen better than T cells engineered with conventional CARs and patient-derived TCRs in vitro. In mouse models, we show that Co-STARs mediate more robust T cell expansion and more durable tumor regressions than TCRs similarly modified with MyD88 and CD40 costimulation. Our data suggest that Co-STARs may have utility for other peptide-HLA antigens in cancer and other targets where antigen density may limit the efficacy of engineered T cells.
Collapse
Affiliation(s)
- Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nikita Marcou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tushar D Nichakawade
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephanie Glavaris
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicolas Wyhs
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiaxin Ge
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - P Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Ren Z, Wang K, Zhang Y, Chen H, Zhu Y, Li H, Lou J, Wang H, Xu C. Transient hydroxycholesterol treatment restrains TCR signaling to promote long-term immunity. Cell Chem Biol 2024; 31:920-931.e6. [PMID: 38759618 DOI: 10.1016/j.chembiol.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
T cell receptor (TCR) plays a fundamental role in adaptive immunity, and TCR-T cell therapy holds great promise for treating solid tumors and other diseases. However, there is a noticeable absence of chemical tools tuning TCR activity. In our study, we screened natural sterols for their regulatory effects on T cell function and identified 7-alpha-hydroxycholesterol (7a-HC) as a potent inhibitor of TCR signaling. Mechanistically, 7a-HC promoted membrane binding of CD3ε cytoplasmic domain, a crucial signaling component of the TCR-CD3 complex, through alterations in membrane physicochemical properties. Enhanced CD3ε membrane binding impeded the condensation between CD3ε and the key kinase Lck, thereby inhibiting Lck-mediated TCR phosphorylation. Transient treatments of TCR-T cells with 7a-HC resulted in reduced signaling strength, increased memory cell populations, and superior long-term antitumor functions. This study unveils a chemical regulation of TCR signaling, which can be exploited to enhance the long-term efficacy of TCR-T cell therapy.
Collapse
Affiliation(s)
- Zhengxu Ren
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiming Zhu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Li
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jizhong Lou
- Key Laboratory of Epigenetic Regulation and Intervention, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
7
|
McMaster B, Thorpe C, Ogg G, Deane CM, Koohy H. Can AlphaFold's breakthrough in protein structure help decode the fundamental principles of adaptive cellular immunity? Nat Methods 2024; 21:766-776. [PMID: 38654083 DOI: 10.1038/s41592-024-02240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/08/2024] [Indexed: 04/25/2024]
Abstract
T cells are essential immune cells responsible for identifying and eliminating pathogens. Through interactions between their T-cell antigen receptors (TCRs) and antigens presented by major histocompatibility complex molecules (MHCs) or MHC-like molecules, T cells discriminate foreign and self peptides. Determining the fundamental principles that govern these interactions has important implications in numerous medical contexts. However, reconstructing a map between T cells and their antagonist antigens remains an open challenge for the field of immunology, and success of in silico reconstructions of this relationship has remained incremental. In this Perspective, we discuss the role that new state-of-the-art deep-learning models for predicting protein structure may play in resolving some of the unanswered questions the field faces linking TCR and peptide-MHC properties to T-cell specificity. We provide a comprehensive overview of structural databases and the evolution of predictive models, and highlight the breakthrough AlphaFold provided the field.
Collapse
Affiliation(s)
- Benjamin McMaster
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Christopher Thorpe
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Graham Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | | | - Hashem Koohy
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Alan Turning Fellow in Health and Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Deng S, Zhang Y, Wang H, Liang W, Xie L, Li N, Fang Y, Wang Y, Liu J, Chi H, Sun Y, Ye R, Shan L, Shi J, Shen Z, Wang Y, Wang S, Brosseau JP, Wang F, Liu G, Quan Y, Xu J. ITPRIPL1 binds CD3ε to impede T cell activation and enable tumor immune evasion. Cell 2024; 187:2305-2323.e33. [PMID: 38614099 DOI: 10.1016/j.cell.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.
Collapse
Affiliation(s)
- Shouyan Deng
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Yibo Zhang
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | | | - Wenhua Liang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing 100044, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Yiting Wang
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Jiayang Liu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Hao Chi
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Yufan Sun
- BioTroy Therapeutics, Shanghai 201400, China
| | - Rui Ye
- BioTroy Therapeutics, Shanghai 201400, China
| | - Lishen Shan
- BioTroy Therapeutics, Shanghai 201400, China
| | - Jiawei Shi
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Zan Shen
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai 200233, China
| | - Yonggang Wang
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai 200233, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Jean-Philippe Brosseau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Feng Wang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Grace Liu
- Arctic Animal Hospital, Fuzhou, Fujian 350007, China
| | | | - Jie Xu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
McBride DA, Wang JS, Johnson WT, Bottini N, Shah NJ. ABCD of IA: A multi-scale agent-based model of T cell activation in inflammatory arthritis. Biomater Sci 2024; 12:2041-2056. [PMID: 38349277 DOI: 10.1039/d3bm01674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Biomaterial-based agents have been demonstrated to regulate the function of immune cells in models of autoimmunity. However, the complexity of the kinetics of immune cell activation can present a challenge in optimizing the dose and frequency of administration. Here, we report a model of autoreactive T cell activation, which are key drivers in autoimmune inflammatory joint disease. The model is termed a multi-scale Agent-Based, Cell-Driven model of Inflammatory Arthritis (ABCD of IA). Using kinetic rate equations and statistical theory, ABCD of IA simulated the activation and presentation of autoantigens by dendritic cells, interactions with cognate T cells and subsequent T cell proliferation in the lymph node and IA-affected joints. The results, validated with in vivo data from the T cell driven SKG mouse model, showed that T cell proliferation strongly correlated with the T cell receptor (TCR) affinity distribution (TCR-ad), with a clear transition state from homeostasis to an inflammatory state. T cell proliferation was strongly dependent on the amount of antigen in antigenic stimulus event (ASE) at low concentrations. On the other hand, inflammation driven by Th17-inducing cytokine mediated T cell phenotype commitment was influenced by the initial level of Th17-inducing cytokines independent of the amount of arthritogenic antigen. The introduction of inhibitory artificial antigen presenting cells (iaAPCs), which locally suppress T cell activation, reduced T cell proliferation in a dose-dependent manner. The findings in this work set up a framework based on theory and modeling to simulate personalized therapeutic strategies in IA.
Collapse
Affiliation(s)
- David A McBride
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - James S Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wade T Johnson
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Nunzio Bottini
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nisarg J Shah
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Giraudo MF, Jackson Z, Das I, Abiona OM, Wald DN. Chimeric Antigen Receptor (CAR)-T Cell Therapy for Non-Hodgkin's Lymphoma. Pathog Immun 2024; 9:1-17. [PMID: 38550613 PMCID: PMC10972674 DOI: 10.20411/pai.v9i1.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/28/2024] [Indexed: 04/15/2024] Open
Abstract
This review focuses on the use of chimeric antigen receptor (CAR)-T cell therapy to treat non-Hodgkin's lymphoma (NHL), a classification of heterogeneous malignant neoplasms of the lymphoid tissue. Despite various conventional and multidrug chemotherapies, the poor prognosis for NHL patients remains and has prompted the utilization of groundbreaking personalized therapies such as CAR-T cells. CAR-T cells are T cells engineered to express a CAR that enables T cells to specifically lyse tumor cells with extracellular expression of a tumor antigen of choice. A CAR is composed of an extracellular antibody fragment or target protein binding domain that is conjugated to activating intracellular signaling motifs common to T cells. In general, CAR-T cell therapies for NHL are designed to recognize cellular markers ubiquitously expressed on B cells such as CD19+, CD20+, and CD22+. Clinical trials using CAR-T cells such as ZUMA-7 and TRANSFORM demonstrated promising results compared to standard of care and ultimately led to FDA approval for the treatment of relapsed/refractory NHL. Despite the success of CAR-T therapy for NHL, challenges include adverse side effects as well as extrinsic and intrinsic mechanisms of tumor resistance that lead to suboptimal outcomes. Overall, CAR-T cell therapies have improved clinical outcomes in NHL patients and generated optimism around their future applications.
Collapse
Affiliation(s)
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Indrani Das
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
11
|
Acuto O. T-cell virtuosity in ''knowing thyself". Front Immunol 2024; 15:1343575. [PMID: 38415261 PMCID: PMC10896960 DOI: 10.3389/fimmu.2024.1343575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Major Histocompatibility Complex (MHC) I and II and the αβ T-cell antigen receptor (TCRαβ) govern fundamental traits of adaptive immunity. They form a membrane-borne ligand-receptor system weighing host proteome integrity to detect contamination by nonself proteins. MHC-I and -II exhibit the "MHC-fold", which is able to bind a large assortment of short peptides as proxies for self and nonself proteins. The ensuing varying surfaces are mandatory ligands for Ig-like TCRαβ highly mutable binding sites. Conserved molecular signatures guide TCRαβ ligand binding sites to focus on the MHC-fold (MHC-restriction) while leaving many opportunities for its most hypervariable determinants to contact the peptide. This riveting molecular strategy affords many options for binding energy compatible with specific recognition and signalling aimed to eradicated microbial pathogens and cancer cells. While the molecular foundations of αβ T-cell adaptive immunity are largely understood, uncertainty persists on how peptide-MHC binding induces the TCRαβ signals that instruct cell-fate decisions. Solving this mystery is another milestone for understanding αβ T-cells' self/nonself discrimination. Recent developments revealing the innermost links between TCRαβ structural dynamics and signalling modality should help dissipate this long-sought-after enigma.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Vantourout P, Eum J, Conde Poole M, Hayday TS, Laing AG, Hussain K, Nuamah R, Kannambath S, Moisan J, Stoop A, Battaglia S, Servattalab R, Hsu J, Bayliffe A, Katragadda M, Hayday AC. Innate TCRβ-chain engagement drives human T cells toward distinct memory-like effector phenotypes with immunotherapeutic potentials. SCIENCE ADVANCES 2023; 9:eadj6174. [PMID: 38055824 DOI: 10.1126/sciadv.adj6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Clonotypic αβ T cell responses to cargoes presented by major histocompatibility complex (MHC), MR1, or CD1 proteins underpin adaptive immunity. Those responses are mostly mediated by complementarity-determining region 3 motifs created by quasi-random T cell receptor (TCR) gene rearrangements, with diversity being highest for TCRγδ. Nonetheless, TCRγδ also displays nonclonotypic innate responsiveness following engagement of germline-encoded Vγ-specific residues by butyrophilin (BTN) or BTN-like (BTNL) proteins that uniquely mediate γδ T cell subset selection. We now report that nonclonotypic TCR engagement likewise induces distinct phenotypes in TCRαβ+ cells. Specifically, antibodies to germline-encoded human TCRVβ motifs consistently activated naïve or memory T cells toward core states distinct from those induced by anti-CD3 or superantigens and from others commonly reported. Those states combined selective proliferation and effector function with activation-induced inhibitory receptors and memory differentiation. Thus, nonclonotypic TCRVβ targeting broadens our perspectives on human T cell response modes and might offer ways to induce clinically beneficial phenotypes in defined T cell subsets.
Collapse
Affiliation(s)
- Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Josephine Eum
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - María Conde Poole
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Thomas S Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Adam G Laing
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Khiyam Hussain
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Rosamond Nuamah
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Shichina Kannambath
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, Guy's Hospital, London, SE1 9RT, UK
| | | | | | | | | | | | | | | | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
13
|
Mariuzza RA, Wu D, Pierce BG. Structural basis for T cell recognition of cancer neoantigens and implications for predicting neoepitope immunogenicity. Front Immunol 2023; 14:1303304. [PMID: 38045695 PMCID: PMC10693334 DOI: 10.3389/fimmu.2023.1303304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Adoptive cell therapy (ACT) with tumor-specific T cells has been shown to mediate durable cancer regression. Tumor-specific T cells are also the basis of other therapies, notably cancer vaccines. The main target of tumor-specific T cells are neoantigens resulting from mutations in self-antigens over the course of malignant transformation. The detection of neoantigens presents a major challenge to T cells because of their high structural similarity to self-antigens, and the need to avoid autoimmunity. How different a neoantigen must be from its wild-type parent for it to induce a T cell response is poorly understood. Here we review recent structural and biophysical studies of T cell receptor (TCR) recognition of shared cancer neoantigens derived from oncogenes, including p53R175H, KRASG12D, KRASG12V, HHATp8F, and PIK3CAH1047L. These studies have revealed that, in some cases, the oncogenic mutation improves antigen presentation by strengthening peptide-MHC binding. In other cases, the mutation is detected by direct interactions with TCR, or by energetically driven or other indirect strategies not requiring direct TCR contacts with the mutation. We also review antibodies designed to recognize peptide-MHC on cell surfaces (TCR-mimic antibodies) as an alternative to TCRs for targeting cancer neoantigens. Finally, we review recent computational advances in this area, including efforts to predict neoepitope immunogenicity and how these efforts may be advanced by structural information on peptide-MHC binding and peptide-MHC recognition by TCRs.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Brian G. Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
14
|
Wang Y, Sun Z, Ping J, Tang J, He B, Chang T, Zhou Q, Yuan S, Tang Z, Li X, Lu Y, He R, He X, Liu Z, Yin L, Wu N. Cell volume controlled by LRRC8A-formed volume-regulated anion channels fine-tunes T cell activation and function. Nat Commun 2023; 14:7075. [PMID: 37925509 PMCID: PMC10625614 DOI: 10.1038/s41467-023-42817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Biosynthesis drives the cell volume increase during T cell activation. However, the contribution of cell volume regulation in TCR signaling during T lymphoblast formation and its underlying mechanisms remain unclear. Here we show that cell volume regulation is required for optimal T cell activation. Inhibition of VRACs (volume-regulated anion channels) and deletion of leucine-rich repeat-containing protein 8A (LRRC8A) channel components impair T cell activation and function, particularly under weak TCR stimulation. Additionally, LRRC8A has distinct influences on mRNA transcriptional profiles, indicating the prominent effects of cell volume regulation for T cell functions. Moreover, cell volume regulation via LRRC8A controls T cell-mediated antiviral immunity and shapes the TCR repertoire in the thymus. Mechanistically, LRRC8A governs stringent cell volume increase via regulated volume decrease (RVD) during T cell blast formation to keep the TCR signaling molecules at an adequate density. Together, our results show a further layer of T cell activation regulation that LRRC8A functions as a cell volume controlling "valve" to facilitate T cell activation.
Collapse
Affiliation(s)
- Yuman Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jieming Ping
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianlong Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boxiao He
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Teding Chang
- Department of Traumatic Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijie Yuan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Tang
- Department of Traumatic Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Ning Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The First Affiliated Hospital of Anhui Medical University, Institute of Clinical Immunology, Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Ishihara M, Miwa H, Fujiwara H, Akahori Y, Kato T, Tanaka Y, Tawara I, Shiku H. αβ-T cell receptor transduction gives superior mitochondrial function to γδ-T cells with promising persistence. iScience 2023; 26:107802. [PMID: 37720098 PMCID: PMC10502403 DOI: 10.1016/j.isci.2023.107802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Adoptive cell therapy using allogeneic γδ-T cells is a promising option for off-the-shelf T cell products with a low risk of graft-versus-host disease (GVHD). Long-term persistence may boost the clinical development of γδ-T cell products. In this study, we found that genetically modified Vγ9+Vδ2+ T cells expressing a tumor antigen-specific αβ-TCR and CD8 coreceptor (GMC) showed target-specific killing and excellent persistence. To determine the mechanisms underlying these promising effects, we investigated metabolic characteristics. Cytokine secretion by γδ-TCR-stimulated nongene-modified γδ-T cells (NGMCs) and αβ-TCR-stimulated GMCs was equally suppressed by a glycolysis inhibitor, although the cytokine secretion of αβ-TCR-stimulated GMCs was more strongly inhibited by ATP synthase inhibitors than that of γδ-TCR-stimulated NGMCs. Metabolomic and transcriptomic analyses, flow cytometry analysis using mitochondria-labeling dyes and extracellular flux analysis consistently suggest that αβ-TCR-transduced γδ-T cells acquire superior mitochondrial function. In conclusion, αβ-TCR-transduced γδ-T cells acquire superior mitochondrial function with promising persistence.
Collapse
Affiliation(s)
- Mikiya Ishihara
- Department of Medical Oncology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hiroshi Miwa
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Hiroshi Fujiwara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Takuma Kato
- Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
16
|
Boughter CT, Meier-Schellersheim M. Conserved biophysical compatibility among the highly variable germline-encoded regions shapes TCR-MHC interactions. eLife 2023; 12:e90681. [PMID: 37861280 PMCID: PMC10631762 DOI: 10.7554/elife.90681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
T cells are critically important components of the adaptive immune system primarily responsible for identifying and responding to pathogenic challenges. This recognition of pathogens is driven by the interaction between membrane-bound T cell receptors (TCRs) and antigenic peptides presented on major histocompatibility complex (MHC) molecules. The formation of the TCR-peptide-MHC complex (TCR-pMHC) involves interactions among germline-encoded and hypervariable amino acids. Germline-encoded and hypervariable regions can form contacts critical for complex formation, but only interactions between germline-encoded contacts are likely to be shared across many of all the possible productive TCR-pMHC complexes. Despite this, experimental investigation of these interactions have focused on only a small fraction of the possible interaction space. To address this, we analyzed every possible germline-encoded TCR-MHC contact in humans, thereby generating the first comprehensive characterization of these largely antigen-independent interactions. Our computational analysis suggests that germline-encoded TCR-MHC interactions that are conserved at the sequence level are rare due to the high amino acid diversity of the TCR CDR1 and CDR2 loops, and that such conservation is unlikely to dominate the dynamic protein-protein binding interface. Instead, we propose that binding properties such as the docking orientation are defined by regions of biophysical compatibility between these loops and the MHC surface.
Collapse
Affiliation(s)
- Christopher T Boughter
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Martin Meier-Schellersheim
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
17
|
Boughter CT, Meier-Schellersheim M. An integrated approach to the characterization of immune repertoires using AIMS: An Automated Immune Molecule Separator. PLoS Comput Biol 2023; 19:e1011577. [PMID: 37862356 PMCID: PMC10619816 DOI: 10.1371/journal.pcbi.1011577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 11/01/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
The adaptive immune system employs an array of receptors designed to respond with high specificity to pathogens or molecular aberrations faced by the host organism. Binding of these receptors to molecular fragments-collectively referred to as antigens-initiates immune responses. These antigenic targets are recognized in their native state on the surfaces of pathogens by antibodies, whereas T cell receptors (TCR) recognize processed antigens as short peptides, presented on major histocompatibility complex (MHC) molecules. Recent research has led to a wealth of immune repertoire data that are key to interrogating the nature of these molecular interactions. However, existing tools for the analysis of these large datasets typically focus on molecular sets of a single type, forcing researchers to separately analyze strongly coupled sequences of interacting molecules. Here, we introduce a software package for the integrated analysis of immune repertoire data, capable of identifying distinct biophysical differences in isolated TCR, MHC, peptide, antibody, and antigen sequence data. This integrated analytical approach allows for direct comparisons across immune repertoire subsets and provides a starting point for the identification of key interaction hotspots in complementary receptor-antigen pairs. The software (AIMS-Automated Immune Molecule Separator) is freely available as an open access package in GUI or command-line form.
Collapse
Affiliation(s)
- Christopher T. Boughter
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin Meier-Schellersheim
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
Schendel DJ. Evolution by innovation as a driving force to improve TCR-T therapies. Front Oncol 2023; 13:1216829. [PMID: 37810959 PMCID: PMC10552759 DOI: 10.3389/fonc.2023.1216829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Adoptive cell therapies continually evolve through science-based innovation. Specialized innovations for TCR-T therapies are described here that are embedded in an End-to-End Platform for TCR-T Therapy Development which aims to provide solutions for key unmet patient needs by addressing challenges of TCR-T therapy, including selection of target antigens and suitable T cell receptors, generation of TCR-T therapies that provide long term, durable efficacy and safety and development of efficient and scalable production of patient-specific (personalized) TCR-T therapy for solid tumors. Multiple, combinable, innovative technologies are used in a systematic and sequential manner in the development of TCR-T therapies. One group of technologies encompasses product enhancements that enable TCR-T therapies to be safer, more specific and more effective. The second group of technologies addresses development optimization that supports discovery and development processes for TCR-T therapies to be performed more quickly, with higher quality and greater efficiency. Each module incorporates innovations layered onto basic technologies common to the field of immunology. An active approach of "evolution by innovation" supports the overall goal to develop best-in-class TCR-T therapies for treatment of patients with solid cancer.
Collapse
Affiliation(s)
- Dolores J. Schendel
- Medigene Immunotherapies GmbH, Planegg, Germany
- Medigene AG, Planegg, Germany
| |
Collapse
|
19
|
Zhao Y, He B, Xu F, Li C, Xu Z, Su X, He H, Huang Y, Rossjohn J, Song J, Yao J. DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis. SCIENCE ADVANCES 2023; 9:eabo5128. [PMID: 37556545 PMCID: PMC10411891 DOI: 10.1126/sciadv.abo5128] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs, omitting the structure features that are essential for binding affinity. In this study, we present a deep learning framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence and structure features of AIRs. DeepAIR achieves a Pearson's correlation of 0.813 in predicting the binding affinity of TCR, and a median area under the receiver-operating characteristic curve (AUC) of 0.904 and 0.942 in predicting the binding reactivity of TCR and BCR, respectively. Meanwhile, using TCR and BCR repertoire, DeepAIR correctly identifies every patient with nasopharyngeal carcinoma and inflammatory bowel disease in test data. Thus, DeepAIR improves the AIR-antigen binding prediction that facilitates the study of adaptive immunity.
Collapse
Affiliation(s)
- Yu Zhao
- AI Lab, Tencent, Shenzhen, China
| | - Bing He
- AI Lab, Tencent, Shenzhen, China
| | - Fan Xu
- AI Lab, Tencent, Shenzhen, China
| | - Chen Li
- Biomedicine Discovery Institute and Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | | | | | | | | | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Jiangning Song
- AI Lab, Tencent, Shenzhen, China
- Biomedicine Discovery Institute and Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | | |
Collapse
|
20
|
Faust MA, Rasé VJ, Lamb TJ, Evavold BD. What's the Catch? The Significance of Catch Bonds in T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:333-342. [PMID: 37459191 PMCID: PMC10732538 DOI: 10.4049/jimmunol.2300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 07/20/2023]
Abstract
One of the main goals in T cell biology has been to investigate how TCR recognition of peptide:MHC (pMHC) determines T cell phenotype and fate. Ag recognition is required to facilitate survival, expansion, and effector function of T cells. Historically, TCR affinity for pMHC has been used as a predictor for T cell fate and responsiveness, but there have now been several examples of nonfunctional high-affinity clones and low-affinity highly functional clones. Recently, more attention has been paid to the TCR being a mechanoreceptor where the key biophysical determinant is TCR bond lifetime under force. As outlined in this review, the fundamental parameters between the TCR and pMHC that control Ag recognition and T cell triggering are affinity, bond lifetime, and the amount of force at which the peak lifetime occurs.
Collapse
Affiliation(s)
- Michael A Faust
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Viva J Rasé
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Tracey J Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
21
|
Rappazzo CG, Fernández-Quintero ML, Mayer A, Wu NC, Greiff V, Guthmiller JJ. Defining and Studying B Cell Receptor and TCR Interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:311-322. [PMID: 37459189 PMCID: PMC10495106 DOI: 10.4049/jimmunol.2300136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/15/2023] [Indexed: 07/20/2023]
Abstract
BCRs (Abs) and TCRs (or adaptive immune receptors [AIRs]) are the means by which the adaptive immune system recognizes foreign and self-antigens, playing an integral part in host defense, as well as the emergence of autoimmunity. Importantly, the interaction between AIRs and their cognate Ags defies a simple key-in-lock paradigm and is instead a complex many-to-many mapping between an individual's massively diverse AIR repertoire, and a similarly diverse antigenic space. Understanding how adaptive immunity balances specificity with epitopic coverage is a key challenge for the field, and terms such as broad specificity, cross-reactivity, and polyreactivity remain ill-defined and are used inconsistently. In this Immunology Notes and Resources article, a group of experimental, structural, and computational immunologists define commonly used terms associated with AIR binding, describe methodologies to study these binding modes, as well as highlight the implications of these different binding modes for therapeutic design.
Collapse
Affiliation(s)
| | | | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jenna J. Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
22
|
Lagattuta KA, Nathan A, Rumker L, Birnbaum ME, Raychaudhuri S. The T cell receptor sequence influences the likelihood of T cell memory formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549939. [PMID: 37502994 PMCID: PMC10370203 DOI: 10.1101/2023.07.20.549939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
T cell differentiation depends on activation through the T cell receptor (TCR), whose amino acid sequence varies cell to cell. Particular TCR amino acid sequences nearly guarantee Mucosal-Associated Invariant T (MAIT) and Natural Killer T (NKT) cell fates. To comprehensively define how TCR amino acids affects all T cell fates, we analyze the paired αβTCR sequence and transcriptome of 819,772 single cells. We find that hydrophobic CDR3 residues promote regulatory T cell transcriptional states in both the CD8 and CD4 lineages. Most strikingly, we find a set of TCR sequence features, concentrated in CDR2α, that promotes positive selection in the thymus as well as transition from naïve to memory in the periphery. Even among T cells that recognize the same antigen, these TCR sequence features help to explain which T cells form immunological memory, which is essential for effective pathogen response.
Collapse
Affiliation(s)
- Kaitlyn A. Lagattuta
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael E. Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Chen H, Xu X, Hu W, Wu S, Xiao J, Wu P, Wang X, Han X, Zhang Y, Zhang Y, Jiang N, Liu W, Lou C, Chen W, Xu C, Lou J. Self-programmed dynamics of T cell receptor condensation. Proc Natl Acad Sci U S A 2023; 120:e2217301120. [PMID: 37399423 PMCID: PMC10334747 DOI: 10.1073/pnas.2217301120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
A common event upon receptor-ligand engagement is the formation of receptor clusters on the cell surface, in which signaling molecules are specifically recruited or excluded to form signaling hubs to regulate cellular events. These clusters are often transient and can be disassembled to terminate signaling. Despite the general relevance of dynamic receptor clustering in cell signaling, the regulatory mechanism underlying the dynamics is still poorly understood. As a major antigen receptor in the immune system, T cell receptors (TCR) form spatiotemporally dynamic clusters to mediate robust yet temporal signaling to induce adaptive immune responses. Here we identify a phase separation mechanism controlling dynamic TCR clustering and signaling. The TCR signaling component CD3ε chain can condensate with Lck kinase through phase separation to form TCR signalosomes for active antigen signaling. Lck-mediated CD3ε phosphorylation, however, switched its binding preference to Csk, a functional suppressor of Lck, to cause the dissolvement of TCR signalosomes. Modulating TCR/Lck condensation by targeting CD3ε interactions with Lck or Csk directly affects T cell activation and function, highlighting the importance of the phase separation mechanism. The self-programmed condensation and dissolvement is thus a built-in mechanism of TCR signaling and might be relevant to other receptors.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xinyi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Wei Hu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Songfang Wu
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Jianhui Xiao
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Peng Wu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310012, China
| | - Xiaowen Wang
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuling Han
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanruo Zhang
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Yong Zhang
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Changjie Lou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang150001, China
| | - Wei Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Education Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang310012, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang311121, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
24
|
Zareie P, La Gruta NL. Thanks for the memories: Low-avidity T cells shine against escape variants. Immunity 2023; 56:1160-1162. [PMID: 37315530 DOI: 10.1016/j.immuni.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
T cell responses against foreign antigens are clonally diverse, but the significance of this diversity is unclear. In this issue of Immunity, Straub et al.1 show that recruitment of low-avidity T cells during primary infection can provide protection against subsequent encounter with escape variants.
Collapse
Affiliation(s)
- Pirooz Zareie
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
25
|
Choi HK, Cong P, Ge C, Natarajan A, Liu B, Zhang Y, Li K, Rushdi MN, Chen W, Lou J, Krogsgaard M, Zhu C. Catch bond models may explain how force amplifies TCR signaling and antigen discrimination. Nat Commun 2023; 14:2616. [PMID: 37147290 PMCID: PMC10163261 DOI: 10.1038/s41467-023-38267-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
The TCR integrates forces in its triggering process upon interaction with pMHC. Force elicits TCR catch-slip bonds with strong pMHCs but slip-only bonds with weak pMHCs. We develop two models and apply them to analyze 55 datasets, demonstrating the models' ability to quantitatively integrate and classify a broad range of bond behaviors and biological activities. Comparing to a generic two-state model, our models can distinguish class I from class II MHCs and correlate their structural parameters with the TCR/pMHC's potency to trigger T cell activation. The models are tested by mutagenesis using an MHC and a TCR mutated to alter conformation changes. The extensive comparisons between theory and experiment provide model validation and testable hypothesis regarding specific conformational changes that control bond profiles, thereby suggesting structural mechanisms for the inner workings of the TCR mechanosensing machinery and plausible explanations of why and how force may amplify TCR signaling and antigen discrimination.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Peiwen Cong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chenghao Ge
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Aswin Natarajan
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Baoyu Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Yong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Muaz Nik Rushdi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Medtronic CO., Minneapolis, MN, 55432, USA
| | - Wei Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jizhong Lou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
26
|
Saotome K, Dudgeon D, Colotti K, Moore MJ, Jones J, Zhou Y, Rafique A, Yancopoulos GD, Murphy AJ, Lin JC, Olson WC, Franklin MC. Structural analysis of cancer-relevant TCR-CD3 and peptide-MHC complexes by cryoEM. Nat Commun 2023; 14:2401. [PMID: 37100770 PMCID: PMC10132440 DOI: 10.1038/s41467-023-37532-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
The recognition of antigenic peptide-MHC (pMHC) molecules by T-cell receptors (TCR) initiates the T-cell mediated immune response. Structural characterization is key for understanding the specificity of TCR-pMHC interactions and informing the development of therapeutics. Despite the rapid rise of single particle cryoelectron microscopy (cryoEM), x-ray crystallography has remained the preferred method for structure determination of TCR-pMHC complexes. Here, we report cryoEM structures of two distinct full-length α/β TCR-CD3 complexes bound to their pMHC ligand, the cancer-testis antigen HLA-A2/MAGEA4 (230-239). We also determined cryoEM structures of pMHCs containing MAGEA4 (230-239) peptide and the closely related MAGEA8 (232-241) peptide in the absence of TCR, which provided a structural explanation for the MAGEA4 preference displayed by the TCRs. These findings provide insights into the TCR recognition of a clinically relevant cancer antigen and demonstrate the utility of cryoEM for high-resolution structural analysis of TCR-pMHC interactions.
Collapse
Affiliation(s)
- Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | | - Jennifer Jones
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yi Zhou
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | |
Collapse
|
27
|
Son ET, Paul-Heng M, Leong M, Wang C, Hill AE, Denkova M, Purcell AW, Mifsud NA, Sharland AF. Screening self-peptides for recognition by mouse alloreactive CD8 + T cells using direct ex vivo multimer staining. STAR Protoc 2023; 4:101943. [PMID: 36525346 PMCID: PMC9792548 DOI: 10.1016/j.xpro.2022.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Here, we present a protocol to identify immunogenic self-peptide/allogeneic major histocompatibility complex (MHC) epitopes. We describe the generation of enriched alloreactive CD8+ T cells by priming mice with a skin graft expressing the allogeneic MHC class I molecule of interest, followed by boosting with a liver-specific AAV vector encoding the heavy chain of that donor MHC allomorph. We then use a peptide-exchange approach to assemble a range of peptide-MHC (pMHC) multimers for measuring recognition of the various epitopes by these alloreactive T cells. For complete details on the use and execution of this protocol, please refer to Son et al. (2021).1.
Collapse
Affiliation(s)
- Eric T Son
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW 2006, Australia
| | - Moumita Paul-Heng
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW 2006, Australia
| | - Mario Leong
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW 2006, Australia
| | - Chuanmin Wang
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW 2006, Australia
| | - Alexandra E Hill
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW 2006, Australia
| | - Martina Denkova
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW 2006, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Alexandra F Sharland
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW 2006, Australia.
| |
Collapse
|
28
|
Bradley P. Structure-based prediction of T cell receptor:peptide-MHC interactions. eLife 2023; 12:e82813. [PMID: 36661395 PMCID: PMC9859041 DOI: 10.7554/elife.82813] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
The regulatory and effector functions of T cells are initiated by the binding of their cell-surface T cell receptor (TCR) to peptides presented by major histocompatibility complex (MHC) proteins on other cells. The specificity of TCR:peptide-MHC interactions, thus, underlies nearly all adaptive immune responses. Despite intense interest, generalizable predictive models of TCR:peptide-MHC specificity remain out of reach; two key barriers are the diversity of TCR recognition modes and the paucity of training data. Inspired by recent breakthroughs in protein structure prediction achieved by deep neural networks, we evaluated structural modeling as a potential avenue for prediction of TCR epitope specificity. We show that a specialized version of the neural network predictor AlphaFold can generate models of TCR:peptide-MHC interactions that can be used to discriminate correct from incorrect peptide epitopes with substantial accuracy. Although much work remains to be done for these predictions to have widespread practical utility, we are optimistic that deep learning-based structural modeling represents a path to generalizable prediction of TCR:peptide-MHC interaction specificity.
Collapse
Affiliation(s)
- Philip Bradley
- Herbold Computational Biology Program, Division of Public Health Sciences. Fred Hutchinson Cancer CenterSeattleUnited States
- Institute for Protein Design. University of WashingtonSeattleUnited States
| |
Collapse
|
29
|
Qin R, An C, Chen W. Physical-Chemical Regulation of Membrane Receptors Dynamics in Viral Invasion and Immune Defense. J Mol Biol 2023; 435:167800. [PMID: 36007627 PMCID: PMC9394170 DOI: 10.1016/j.jmb.2022.167800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
Mechanical cues dynamically regulate membrane receptors functions to trigger various physiological and pathological processes from viral invasion to immune defense. These cues mainly include various types of dynamic mechanical forces and the spatial confinement of plasma membrane. However, the molecular mechanisms of how they couple with biochemical cues in regulating membrane receptors functions still remain mysterious. Here, we review recent advances in methodologies of single-molecule biomechanical techniques and in novel biomechanical regulatory mechanisms of critical ligand recognition of viral and immune receptors including SARS-CoV-2 spike protein, T cell receptor (TCR) and other co-stimulatory immune receptors. Furthermore, we provide our perspectives of the general principle of how force-dependent kinetics determine the dynamic functions of membrane receptors and of biomechanical-mechanism-driven SARS-CoV-2 neutralizing antibody design and TCR engineering for T-cell-based therapies.
Collapse
Affiliation(s)
- Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
30
|
Raybould MIJ, Nissley DA, Kumar S, Deane CM. Computationally profiling peptide:MHC recognition by T-cell receptors and T-cell receptor-mimetic antibodies. Front Immunol 2023; 13:1080596. [PMID: 36700202 PMCID: PMC9868621 DOI: 10.3389/fimmu.2022.1080596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
T-cell receptor-mimetic antibodies (TCRms) targeting disease-associated peptides presented by Major Histocompatibility Complexes (pMHCs) are set to become a major new drug modality. However, we lack a general understanding of how TCRms engage pMHC targets, which is crucial for predicting their specificity and safety. Several new structures of TCRm:pMHC complexes have become available in the past year, providing sufficient initial data for a holistic analysis of TCRms as a class of pMHC binding agents. Here, we profile the complete set of TCRm:pMHC complexes against representative TCR:pMHC complexes to quantify the TCR-likeness of their pMHC engagement. We find that intrinsic molecular differences between antibodies and TCRs lead to fundamentally different roles for their heavy/light chains and Complementarity-Determining Region loops during antigen recognition. The idiotypic properties of antibodies may increase the likelihood of TCRms engaging pMHCs with less peptide selectivity than TCRs. However, the pMHC recognition features of some TCRms, including the two TCRms currently in clinical trials, can be remarkably TCR-like. The insights gained from this study will aid in the rational design and optimisation of next-generation TCRms.
Collapse
Affiliation(s)
- Matthew I. J. Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Daniel A. Nissley
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim, Ridgefield, CT, United States
| | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom,*Correspondence: Charlotte M. Deane,
| |
Collapse
|
31
|
Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat Immunol 2023; 24:174-185. [PMID: 36564464 PMCID: PMC9810533 DOI: 10.1038/s41590-022-01366-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/20/2022] [Indexed: 12/24/2022]
Abstract
The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.
Collapse
|
32
|
Zheng S, Zou M, Shao Y, Wu H, Wu H, Wang X. Two-dimensional measurements of receptor-ligand interactions. Front Mol Biosci 2023; 10:1154074. [PMID: 36876050 PMCID: PMC9981951 DOI: 10.3389/fmolb.2023.1154074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Gaining insight into the two-dimensional receptor-ligand interactions, which play a significant role in various pivotal biological processes such as immune response and cancer metastasis, will deepen our understanding of numerous physiological and pathological mechanisms and contribute to biomedical applications and drug design. A central issue involved is how to measure the in situ receptor-ligand binding kinetics. Here, we review several representative mechanical-based and fluorescence-based methods, and briefly discuss the strengths and weaknesses for each method. In addition, we emphasize the great importance of the combination of experimental and computational methods in studying the receptor-ligand interactions, and further studies should focus on the synergistic development of experimental and computational methods.
Collapse
Affiliation(s)
- Songjie Zheng
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Min Zou
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Shao
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Huaping Wu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Helong Wu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
33
|
A class-mismatched TCR bypasses MHC restriction via an unorthodox but fully functional binding geometry. Nat Commun 2022; 13:7189. [PMID: 36424374 PMCID: PMC9691722 DOI: 10.1038/s41467-022-34896-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
MHC restriction, which describes the binding of TCRs from CD4+ T cells to class II MHC proteins and TCRs from CD8+ T cells to class I MHC proteins, is a hallmark of immunology. Seemingly rare TCRs that break this paradigm exist, but mechanistic insight into their behavior is lacking. TIL1383I is a prototypical class-mismatched TCR, cloned from a CD4+ T cell but recognizing the tyrosinase tumor antigen presented by the class I MHC HLA-A2 in a fully functional manner. Here we find that TIL1383I binds this class I target with a highly atypical geometry. Despite unorthodox binding, TCR signaling, antigen specificity, and the ability to use CD8 are maintained. Structurally, a key feature of TIL1383I is an exceptionally long CDR3β loop that mediates functions that are traditionally performed separately by hypervariable and germline loops in canonical TCR structures. Our findings thus expand the range of known TCR binding geometries compatible with normal function and specificity, provide insight into the determinants of MHC restriction, and may help guide TCR selection and engineering for immunotherapy.
Collapse
|
34
|
Gerber HP, Presta LG. TCR mimic compounds for pHLA targeting with high potency modalities in oncology. Front Oncol 2022; 12:1027548. [PMID: 36338746 PMCID: PMC9635445 DOI: 10.3389/fonc.2022.1027548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
pHLA complexes represent the largest class of cell surface markers on cancer cells, making them attractive for targeted cancer therapies. Adoptive cell therapies expressing TCRs that recognize tumor specific pHLAs take advantage of the unique selectivity and avidity of TCR: pHLA interactions. More recently, additional protein binding domains binding to pHLAs, known as TCR mimics (TCRm), were developed for tumor targeting of high potency therapeutic modalities, including bispecifics, ADCs, CAR T and -NK cells. TCRm compounds take advantage of the exquisite tumor specificity of certain pHLA targets, including cell lineage commitment markers and cancer testis antigens (CTAs). To achieve meaningful anti-tumor responses, it is critical that TCRm compounds integrate both, high target binding affinities and a high degree of target specificity. In this review, we describe the most advanced approaches to achieve both criteria, including affinity- and specificity engineering of TCRs, antibodies and alternative protein scaffolds. We also discuss the status of current TCRm based therapeutics developed in the clinic, key challenges, and emerging trends to improve treatment options for cancer patients treated with TCRm based therapeutics in Oncology.
Collapse
|
35
|
Nguyen AT, Lau HMP, Sloane H, Jayasinghe D, Mifsud NA, Chatzileontiadou DSM, Grant EJ, Szeto C, Gras S. Homologous peptides derived from influenza A, B and C viruses induce variable CD8 + T cell responses with cross-reactive potential. Clin Transl Immunology 2022; 11:e1422. [PMID: 36275878 PMCID: PMC9581725 DOI: 10.1002/cti2.1422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Objective Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally, infecting humans and causing widespread morbidity and mortality. Here, we investigate the T cell response towards an immunodominant IAV epitope, NP265‐273, and its IBV and ICV homologues, presented by HLA‐A*03:01 molecule expressed in ~ 4% of the global population (~ 300 million people). Methods We assessed the magnitude (tetramer staining) and quality of the CD8+ T cell response (intracellular cytokine staining) towards NP265‐IAV and described the T cell receptor (TCR) repertoire used to recognise this immunodominant epitope. We next assessed the immunogenicity of NP265‐IAV homologue peptides from IBV and ICV and the ability of CD8+ T cells to cross‐react towards these homologous peptides. Furthermore, we determined the structures of NP265‐IAV and NP323‐IBV peptides in complex with HLA‐A*03:01 by X‐ray crystallography. Results Our study provides a detailed characterisation of the CD8+ T cell response towards NP265‐IAV and its IBV and ICV homologues. The data revealed a diverse repertoire for NP265‐IAV that is associated with superior anti‐viral protection. Evidence of cross‐reactivity between the three different influenza virus strain‐derived epitopes was observed, indicating the discovery of a potential vaccination target that is broad enough to cover all three influenza strains. Conclusion We show that while there is a potential to cross‐protect against distinct influenza virus lineages, the T cell response was stronger against the IAV peptide than IBV or ICV, which is an important consideration when choosing targets for future vaccine design.
Collapse
Affiliation(s)
- Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Hiu Ming Peter Lau
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Demetra SM Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| |
Collapse
|
36
|
Souter MN, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JY, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SB. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J Exp Med 2022; 219:213423. [PMID: 36018322 PMCID: PMC9424912 DOI: 10.1084/jem.20210828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
Collapse
Affiliation(s)
- Michael N.T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zehua Tian
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Adam Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacinta Wubben
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George O. Lovrecz
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam P. Uldrich
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
37
|
Sušac L, Vuong MT, Thomas C, von Bülow S, O'Brien-Ball C, Santos AM, Fernandes RA, Hummer G, Tampé R, Davis SJ. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 2022; 185:3201-3213.e19. [PMID: 35985289 PMCID: PMC9630439 DOI: 10.1016/j.cell.2022.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/05/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
The T cell receptor (TCR) expressed by T lymphocytes initiates protective immune responses to pathogens and tumors. To explore the structural basis of how TCR signaling is initiated when the receptor binds to peptide-loaded major histocompatibility complex (pMHC) molecules, we used cryogenic electron microscopy to determine the structure of a tumor-reactive TCRαβ/CD3δγε2ζ2 complex bound to a melanoma-specific human class I pMHC at 3.08 Å resolution. The antigen-bound complex comprises 11 subunits stabilized by multivalent interactions across three structural layers, with clustered membrane-proximal cystines stabilizing the CD3-εδ and CD3-εγ heterodimers. Extra density sandwiched between transmembrane helices reveals the involvement of sterol lipids in TCR assembly. The geometry of the pMHC/TCR complex suggests that efficient TCR scanning of pMHC requires accurate pre-positioning of T cell and antigen-presenting cell membranes. Comparisons of the ligand-bound and unliganded receptors, along with molecular dynamics simulations, indicate that TCRs can be triggered in the absence of spontaneous structural rearrangements.
Collapse
Affiliation(s)
- Lukas Sušac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Mai T Vuong
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Caitlin O'Brien-Ball
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ricardo A Fernandes
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
38
|
Wang Y, Tsitsiklis A, Devoe S, Gao W, Chu HH, Zhang Y, Li W, Wong WK, Deane CM, Neau D, Slansky JE, Thomas PG, Robey EA, Dai S. Peptide Centric Vβ Specific Germline Contacts Shape a Specialist T Cell Response. Front Immunol 2022; 13:847092. [PMID: 35967379 PMCID: PMC9372435 DOI: 10.3389/fimmu.2022.847092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
Certain CD8 T cell responses are particularly effective at controlling infection, as exemplified by elite control of HIV in individuals harboring HLA-B57. To understand the structural features that contribute to CD8 T cell elite control, we focused on a strongly protective CD8 T cell response directed against a parasite-derived peptide (HF10) presented by an atypical MHC-I molecule, H-2Ld. This response exhibits a focused TCR repertoire dominated by Vβ2, and a representative TCR (TG6) in complex with Ld-HF10 reveals an unusual structure in which both MHC and TCR contribute extensively to peptide specificity, along with a parallel footprint of TCR on its pMHC ligand. The parallel footprint is a common feature of Vβ2-containing TCRs and correlates with an unusual Vα-Vβ interface, CDR loop conformations, and Vβ2-specific germline contacts with peptides. Vβ2 and Ld may represent "specialist" components for antigen recognition that allows for particularly strong and focused T cell responses.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alexandra Tsitsiklis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Stephanie Devoe
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing, China
| | - H. Hamlet Chu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Yan Zhang
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
| | - Wing Ki Wong
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | - David Neau
- Department of Chemistry and Chemical Biology, Northeastern Collaborative Access Team (NE-CAT), Advanced Photon Source, Argonne National Laboratory, Cornell University, Argonne, IL, United States
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ellen A. Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
39
|
Van Laethem F, Bhattacharya A, Craveiro M, Lu J, Sun PD, Singer A. MHC-independent αβT cells: Lessons learned about thymic selection and MHC-restriction. Front Immunol 2022; 13:953160. [PMID: 35911724 PMCID: PMC9331304 DOI: 10.3389/fimmu.2022.953160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Understanding the generation of an MHC-restricted T cell repertoire is the cornerstone of modern T cell immunology. The unique ability of αβT cells to only recognize peptide antigens presented by MHC molecules but not conformational antigens is referred to as MHC restriction. How MHC restriction is imposed on a very large T cell receptor (TCR) repertoire is still heavily debated. We recently proposed the selection model, which posits that newly re-arranged TCRs can structurally recognize a wide variety of antigens, ranging from peptides presented by MHC molecules to native proteins like cell surface markers. However, on a molecular level, the sequestration of the essential tyrosine kinase Lck by the coreceptors CD4 and CD8 allows only MHC-restricted TCRs to signal. In the absence of Lck sequestration, MHC-independent TCRs can signal and instruct the generation of mature αβT cells that can recognize native protein ligands. The selection model thus explains how only MHC-restricted TCRs can signal and survive thymic selection. In this review, we will discuss the genetic evidence that led to our selection model. We will summarize the selection mechanism and structural properties of MHC-independent TCRs and further discuss the various non-MHC ligands we have identified.
Collapse
Affiliation(s)
- François Van Laethem
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Hematology, Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France
- *Correspondence: François Van Laethem, ,
| | - Abhisek Bhattacharya
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marco Craveiro
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Peter D. Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Alfred Singer
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
40
|
Wegrecki M, Ocampo TA, Gunasinghe SD, von Borstel A, Tin SY, Reijneveld JF, Cao TP, Gully BS, Le Nours J, Moody DB, Van Rhijn I, Rossjohn J. Atypical sideways recognition of CD1a by autoreactive γδ T cell receptors. Nat Commun 2022; 13:3872. [PMID: 35790773 PMCID: PMC9256601 DOI: 10.1038/s41467-022-31443-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
CD1a is a monomorphic antigen-presenting molecule on dendritic cells that presents lipids to αβ T cells. Whether CD1a represents a ligand for other immune receptors remains unknown. Here we use CD1a tetramers to show that CD1a is a ligand for Vδ1+ γδ T cells. Functional studies suggest that two γδ T cell receptors (TCRs) bound CD1a in a lipid-independent manner. The crystal structures of three Vγ4Vδ1 TCR-CD1a-lipid complexes reveal that the γδ TCR binds at the extreme far side and parallel to the long axis of the β-sheet floor of CD1a's antigen-binding cleft. Here, the γδ TCR co-recognises the CD1a heavy chain and β2 microglobulin in a manner that is distinct from all other previously observed γδ TCR docking modalities. The 'sideways' and lipid antigen independent mode of autoreactive CD1a recognition induces TCR clustering on the cell surface and proximal T cell signalling as measured by CD3ζ phosphorylation. In contrast with the 'end to end' binding of αβ TCRs that typically contact carried antigens, autoreactive γδ TCRs support geometrically diverse approaches to CD1a, as well as antigen independent recognition.
Collapse
Affiliation(s)
- Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tonatiuh A Ocampo
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shin Yi Tin
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US.
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US.
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
41
|
Cell-based drug delivery systems and their in vivo fate. Adv Drug Deliv Rev 2022; 187:114394. [PMID: 35718252 DOI: 10.1016/j.addr.2022.114394] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Cell-based drug delivery systems (DDSs) have received attention recently because of their unique biological properties and self-powered functions, such as excellent biocompatibility, low immunogenicity, long circulation time, tissue-homingcharacteristics, and ability to cross biological barriers. A variety of cells, including erythrocytes, stem cells, and lymphocytes, have been explored as functional vectors for the loading and delivery of various therapeutic payloads (e.g., small-molecule and nucleic acid drugs) for subsequent disease treatment. These cell-based DDSs have their own unique in vivo fates, which are attributed to various factors, including their biological properties and functions, the loaded drugs and loading process, physiological and pathological circumstances, and the body's response to these carrier cells, which result in differences in drug delivery efficiency and therapeutic effect. In this review, we summarize the main cell-based DDSs and their biological properties and functions, applications in drug delivery and disease treatment, and in vivo fate and influencing factors. We envision that the unique biological properties, combined with continuing research, will enable development of cell-based DDSs as friendly drug vectors for the safe, effective, and even personalized treatment of diseases.
Collapse
|
42
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
43
|
Ballabio F, Broggini L, Paissoni C, Han X, Peqini K, Sala BM, Sun R, Sandalova T, Barbiroli A, Achour A, Pellegrino S, Ricagno S, Camilloni C. l- to d-Amino Acid Substitution in the Immunodominant LCMV-Derived Epitope gp33 Highlights the Sensitivity of the TCR Recognition Mechanism for the MHC/Peptide Structure and Dynamics. ACS OMEGA 2022; 7:9622-9635. [PMID: 35350306 PMCID: PMC8945122 DOI: 10.1021/acsomega.1c06964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Presentation of pathogen-derived epitopes by major histocompatibility complex I (MHC-I) can lead to the activation and expansion of specific CD8+ T cell clones, eventually resulting in the destruction of infected target cells. Altered peptide ligands (APLs), designed to elicit immunogenicity toward a wild-type peptide, may affect the overall stability of MHC-I/peptide (pMHC) complexes and modulate the recognition by T cell receptors (TCR). Previous works have demonstrated that proline substitution at position 3 (p3P) of different MHC-restricted epitopes, including the immunodominant LCMV-derived epitope gp33 and escape variants, may be an effective design strategy to increase epitope immunogenicity. These studies hypothesized that the p3P substitution increases peptide rigidity, facilitating TCR binding. Here, molecular dynamics simulations indicate that the p3P modification rigidifies the APLs in solution predisposing them for the MHC-I loading as well as once bound to H-2Db, predisposing them for TCR binding. Our results also indicate that peptide position 6, key for interaction of H-2Db/gp33 with the TCR P14, takes a suboptimal conformation before as well as after binding to the TCR. Analyses of H-2Db in complex with APLs, in which position 6 was subjected to an l- to d-amino acid modification, revealed small conformational changes and comparable pMHC thermal stability. However, the l- to d-modification reduced significantly the binding to P14 even in the presence of the p3P modification. Our combined data highlight the sensitivity of the TCR for the conformational dynamics of pMHC and provide further tools to dissect and modulate TCR binding and immunogenicity via APLs.
Collapse
Affiliation(s)
- Federico Ballabio
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
| | - Luca Broggini
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
- Institute
of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, San Donato Milanese 20097, Italy
| | - Cristina Paissoni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
| | - Xiao Han
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Kaliroi Peqini
- DISFARM,
Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e
Organica, Università degli Studi
di Milano, Milano 20122, Italy
| | - Benedetta Maria Sala
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Renhua Sun
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Tatyana Sandalova
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Alberto Barbiroli
- Dipartimento
di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Milano 20122, Italy
| | - Adnane Achour
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Sara Pellegrino
- DISFARM,
Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e
Organica, Università degli Studi
di Milano, Milano 20122, Italy
| | - Stefano Ricagno
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
- Institute
of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, San Donato Milanese 20097, Italy
| | - Carlo Camilloni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
| |
Collapse
|
44
|
Ciacchi L, Reid HH, Rossjohn J. Structural bases of T cell antigen receptor recognition in celiac disease. Curr Opin Struct Biol 2022; 74:102349. [PMID: 35272251 DOI: 10.1016/j.sbi.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Celiac disease (CeD) is a human leukocyte antigen (HLA)-linked autoimmune-like disorder that is triggered by the ingestion of gluten or related storage proteins. The majority of CeD patients are HLA-DQ2.5+, with the remainder being either HLA-DQ8+ or HLA-DQ2.2+. Structural studies have shown how deamidation of gluten epitopes engenders binding to HLA-DQ2.5/8, which then triggers an aberrant CD4+ T cell response. HLA tetramer studies, combined with structural investigations, have demonstrated that repeated patterns of TCR usage underpins the immune response to some HLADQ2.5/8 restricted gluten epitopes, with distinct TCR motifs representing common landing pads atop the HLA-gluten complexes. Structural studies have provided insight into TCR specificity and cross-reactivity towards gluten epitopes, as well as cross-reactivity to bacterial homologues of gluten epitopes, suggesting that environmental factors may directly play a role in CeD pathogenesis. Collectively, structural immunology-based studies in the CeD axis may lead to new therapeutics/diagnostics to treat CeD, and also serve as an exemplar for other T cell mediated autoimmune diseases.
Collapse
Affiliation(s)
- Laura Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom.
| |
Collapse
|
45
|
Egan JR, Abu-Shah E, Dushek O, Elliott T, MacArthur BD. Fluctuations in T cell receptor and pMHC interactions regulate T cell activation. J R Soc Interface 2022; 19:20210589. [PMID: 35135295 PMCID: PMC8833104 DOI: 10.1098/rsif.2021.0589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adaptive immune responses depend on interactions between T cell receptors (TCRs) and peptide major histocompatibility complex (pMHC) ligands located on the surface of T cells and antigen presenting cells (APCs), respectively. As TCRs and pMHCs are often only present at low copy numbers their interactions are inherently stochastic, yet the role of stochastic fluctuations on T cell function is unclear. Here, we introduce a minimal stochastic model of T cell activation that accounts for serial TCR-pMHC engagement, reversible TCR conformational change and TCR aggregation. Analysis of this model indicates that it is not the strength of binding between the T cell and the APC cell per se that elicits an immune response, but rather the information imparted to the T cell from the encounter, as assessed by the entropy rate of the TCR-pMHC binding dynamics. This view provides an information-theoretic interpretation of T cell activation that explains a range of experimental observations. Based on this analysis, we propose that effective T cell therapeutics may be enhanced by optimizing the inherent stochasticity of TCR-pMHC binding dynamics.
Collapse
Affiliation(s)
- Joseph R Egan
- Mathematical Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Institute for Life Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology, University Hospital Southampton, Southampton SO16 6YD, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Enas Abu-Shah
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Tim Elliott
- Institute for Life Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology, University Hospital Southampton, Southampton SO16 6YD, UK.,Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Ben D MacArthur
- Mathematical Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Institute for Life Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Alan Turing Institute, London NW1 2DB, UK
| |
Collapse
|
46
|
Wang H, Song X, Shen L, Wang X, Xu C. Exploiting T cell signaling to optimize engineered T cell therapies. Trends Cancer 2021; 8:123-134. [PMID: 34810156 DOI: 10.1016/j.trecan.2021.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/15/2022]
Abstract
Engineered T cell therapies, mainly chimeric antigen receptor (CAR)-T and T cell receptor (TCR)-T, have become the new frontier of cancer treatment. CAR-T and TCR-T therapies differ in many aspects, including cell persistence and toxicity, leading to different therapeutic outcomes. Both TCR and CAR recognize antigens and trigger T cell mediated antitumor response, but they have distinct molecular structures and signaling properties. TCR represents one of the most complex receptors, while CAR is a single-chain chimera integrating modules from multiple immune receptors. Understanding the mechanisms underlying the strengths and limitations of both systems can pave the way for the development of next-generation T cell therapy. This review synthesizes recent findings on TCR and CAR signaling and highlights the potential strategies of T cell engineering by signaling refinement.
Collapse
Affiliation(s)
- Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Xianming Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
Horkova V, Stepanek O. A LoCK at the T cell dock. Science 2021; 372:1038-1039. [PMID: 34083474 DOI: 10.1126/science.abj2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| |
Collapse
|