1
|
Wang Q, Zhang Y, Karwal S, Goswami S. Spatial Dependence of Local Density of States in Semiconductor-Superconductor Hybrids. NANO LETTERS 2024; 24:13558-13563. [PMID: 39423358 PMCID: PMC11528430 DOI: 10.1021/acs.nanolett.4c03108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Majorana bound states are expected to appear in one-dimensional semiconductor-superconductor hybrid systems, provided they are homogeneous enough to host a global topological phase. In order to experimentally investigate the uniformity of the system, we study the spatial dependence of the local density of states in multiprobe devices where several local tunneling probes are positioned along a gate-defined wire in a two-dimensional electron gas. Spectroscopy at each probe reveals a hard induced gap and an absence of subgap states at zero magnetic field. However, subgap states emerging at a finite magnetic field are not always correlated between different probes. Moreover, we find that the extracted critical field and effective g-factor vary significantly across the length of the wire. Upon studying several such devices, we do however find examples of striking correlations in the local density of states measured at different tunnel probes. We discuss possible sources of variation across devices.
Collapse
Affiliation(s)
- Qingzhen Wang
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, Delft 2600 GA, The Netherlands
| | - Yining Zhang
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, Delft 2600 GA, The Netherlands
| | - Saurabh Karwal
- QuTech
and Netherlands Organization for Applied Scientific Research (TNO), Delft 2628 CK, The Netherlands
| | - Srijit Goswami
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, Delft 2600 GA, The Netherlands
| |
Collapse
|
2
|
Li G, Shi X, Lin T, Yang G, Rossi M, Badawy G, Zhang Z, Shi J, Qian D, Lu F, Gu L, Wang A, Tong B, Li P, Lyu Z, Liu G, Qu F, Dou Z, Pan D, Zhao J, Zhang Q, Bakkers EPAM, Nowak MP, Wójcik P, Lu L, Shen J. Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403176. [PMID: 39082207 DOI: 10.1002/adma.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/15/2024] [Indexed: 09/19/2024]
Abstract
Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger-Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co-tunneling-key ingredients for the Kitaev chain-are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb-InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well-controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid-state systems.
Collapse
Affiliation(s)
- Guoan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofan Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Lin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Marco Rossi
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Ghada Badawy
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Zhiyuan Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayu Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Degui Qian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fang Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Anqi Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingbing Tong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Peiling Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Zhaozheng Lyu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Guangtong Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Fanming Qu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Ziwei Dou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Dong Pan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhua Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Erik P A M Bakkers
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Michał P Nowak
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, Krakow, 30-059, Poland
| | - Paweł Wójcik
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, Krakow, 30-059, Poland
| | - Li Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Jie Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| |
Collapse
|
3
|
Su H, Wang JY, Gao H, Luo Y, Yan S, Wu X, Li G, Shen J, Lu L, Pan D, Zhao J, Zhang P, Xu HQ. Microwave-Assisted Unidirectional Superconductivity in Al-InAs Nanowire-Al Junctions under Magnetic Fields. PHYSICAL REVIEW LETTERS 2024; 133:087001. [PMID: 39241722 DOI: 10.1103/physrevlett.133.087001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 07/18/2024] [Indexed: 09/09/2024]
Abstract
Under certain symmetry-breaking conditions, a superconducting system exhibits asymmetric critical currents, dubbed the "superconducting diode effect." Recently, systems with the ideal superconducting diode efficiency or unidirectional superconductivity have received considerable interest. In this work, we report the study of Al-InAs nanowire-Al Josephson junctions under microwave irradiation and magnetic fields. We observe an enhancement of superconducting diode effect under microwave driving, featured by a horizontal offset of the zero-voltage step in the voltage-current characteristic that increases with microwave power. Devices reach the unidirectional superconductivity regime at sufficiently high driving amplitudes. The offset changes sign with the reversal of the magnetic field direction. Meanwhile, the offset magnitude exhibits a roughly linear response to the microwave power in dBm when both the power and the magnetic field are large. The signatures observed are reminiscent of a recent theoretical proposal using the resistively shunted junction (RSJ) model. However, the experimental results are not fully explained by the RSJ model, indicating a new mechanism for unidirectional superconductivity that is possibly related to nonequilibrium dynamics or dissipation in periodically driven superconducting systems.
Collapse
Affiliation(s)
- Haitian Su
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China
| | | | - Han Gao
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
| | - Yi Luo
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mao Y, Yan Q, Zhuang YC, Sun QF. Universal Spin Superconducting Diode Effect from Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2024; 132:216001. [PMID: 38856265 DOI: 10.1103/physrevlett.132.216001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
We propose a universal spin superconducting diode effect (SDE) induced by spin-orbit coupling (SOC) in systems with spin-triplet correlations, where the critical spin supercurrents in opposite directions are unequal. By analysis from both the Ginzburg-Landau theory and energy band analysis, we show that the spin-↑↑ and spin-↓↓ Cooper pairs possess opposite phase gradients and opposite momenta from the SOC, which leads to the spin SDE. Two superconductors with SOC, a p-wave superconductor as a toy model and a practical superconducting nanowire, are numerically studied and they both exhibit spin SDE. In addition, our theory also provides a unified picture for both spin and charge SDEs.
Collapse
Affiliation(s)
- Yue Mao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qing Yan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yu-Chen Zhuang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qing-Feng Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
5
|
Yi H, Hu LH, Zhao YF, Zhou LJ, Yan ZJ, Zhang R, Yuan W, Wang Z, Wang K, Hickey DR, Richardella AR, Singleton J, Winter LE, Wu X, Chan MHW, Samarth N, Liu CX, Chang CZ. Dirac-fermion-assisted interfacial superconductivity in epitaxial topological-insulator/iron-chalcogenide heterostructures. Nat Commun 2023; 14:7119. [PMID: 37932274 PMCID: PMC10628154 DOI: 10.1038/s41467-023-42902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Over the last decade, the possibility of realizing topological superconductivity (TSC) has generated much excitement. TSC can be created in electronic systems where the topological and superconducting orders coexist, motivating the continued exploration of candidate material platforms to this end. Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures that host emergent interfacial superconductivity when a non-superconducting antiferromagnet (FeTe) is interfaced with a topological insulator (TI) (Bi, Sb)2Te3. By performing in-vacuo angle-resolved photoemission spectroscopy (ARPES) and ex-situ electrical transport measurements, we find that the superconducting transition temperature and the upper critical magnetic field are suppressed when the chemical potential approaches the Dirac point. We provide evidence to show that the observed interfacial superconductivity and its chemical potential dependence is the result of the competition between the Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling mediated by Dirac surface states and antiferromagnetic exchange couplings that generate the bicollinear antiferromagnetic order in the FeTe layer.
Collapse
Affiliation(s)
- Hemian Yi
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lun-Hui Hu
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Yi-Fan Zhao
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ling-Jie Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zi-Jie Yan
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ruoxi Zhang
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wei Yuan
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zihao Wang
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ke Wang
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Danielle Reifsnyder Hickey
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anthony R Richardella
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John Singleton
- National High Magnetic Field Laboratory, Los Alamos, NM, 87544, USA
| | - Laurel E Winter
- National High Magnetic Field Laboratory, Los Alamos, NM, 87544, USA
| | - Xianxin Wu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Moses H W Chan
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nitin Samarth
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chao-Xing Liu
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Cui-Zu Chang
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Pal S, Benjamin C. Honing in on a topological zero-bias conductance peak. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:035601. [PMID: 37813102 DOI: 10.1088/1361-648x/ad0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
A popular signature of Majorana bound states in topological superconductors is the quantized zero-energy conductance peak. However, a similar zero energy conductance peak can also arise due to non-topological reasons. Here we show that these trivial and topological zero energy conductance peaks can be distinguished via the zero energy local density of states (LDOSs) and local magnetization density of states (LMDOSs). We find that the zero-energy LDOSs and the LMDOSs exhibit periodic oscillations for a trivial zero-bias conductance peak (ZBCP). In contrast, these oscillations disappear for the topological ZBCP because of perfect Andreev reflection at zero energy in topological superconductor junctions. Our results suggest that the zero-energy LDOSs and the LMDOSs can be used as an experimental probe to distinguish a trivial zero-energy conductance peak from a topological zero-energy conductance peak.
Collapse
Affiliation(s)
- Subhajit Pal
- School of Physical Sciences, National Institute of Science Education & Research, Jatni 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Colin Benjamin
- School of Physical Sciences, National Institute of Science Education & Research, Jatni 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
7
|
Zhang F, Gu J, Quan HT. Full counting statistics, fluctuation relations, and linear response properties in a one-dimensional Kitaev chain. Phys Rev E 2023; 108:024110. [PMID: 37723789 DOI: 10.1103/physreve.108.024110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/10/2023] [Indexed: 09/20/2023]
Abstract
We analytically calculate the cumulant generating function of energy and particle transport in an open one-dimensional Kitaev chain at finite temperature by utilizing the Keldysh technique. The joint distribution of particle and energy currents satisfies different fluctuation relations in different regions of the parameter space as a result of U(1) symmetry breaking and energy conservation. Furthermore, we investigate the linear response behavior of the Kitaev chain within the framework of three-terminal systems, deriving the expressions for the Seebeck coefficient and thermal conductance. Notably, we observe a pronounced peak in the thermal conductance near the phase transition point, in agreement with previous predictions. Additionally, we prove that the peak value saturates at half of the thermal conductance quantum for finite-length chains at the zero temperature limit.
Collapse
Affiliation(s)
- Fan Zhang
- School of Physics, Peking University, Beijing 100871, China
| | - Jiayin Gu
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Yazdani A, von Oppen F, Halperin BI, Yacoby A. Hunting for Majoranas. Science 2023; 380:eade0850. [PMID: 37347870 DOI: 10.1126/science.ade0850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Over the past decade, there have been considerable efforts to observe non-abelian quasiparticles in novel quantum materials and devices. These efforts are motivated by the goals of demonstrating quantum statistics of quasiparticles beyond those of fermions and bosons and of establishing the underlying science for the creation of topologically protected quantum bits. In this Review, we focus on efforts to create topological superconducting phases that host Majorana zero modes. We consider the lessons learned from existing experimental efforts, which are motivating both improvements to present platforms and the exploration of new approaches. Although the experimental detection of non-abelian quasiparticles remains challenging, the knowledge gained thus far and the opportunities ahead offer high potential for discovery and advances in this exciting area of quantum physics.
Collapse
Affiliation(s)
- Ali Yazdani
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ 08540, USA
| | - Felix von Oppen
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Amir Yacoby
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Becerra VF, Trif M, Hyart T. Quantized Spin Pumping in Topological Ferromagnetic-Superconducting Nanowires. PHYSICAL REVIEW LETTERS 2023; 130:237002. [PMID: 37354416 DOI: 10.1103/physrevlett.130.237002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023]
Abstract
Semiconducting nanowires with strong spin-orbit coupling in the presence of induced superconductivity and ferromagnetism can support Majorana zero modes. We study the pumping due to the precession of the magnetization in single-subband nanowires and show that spin pumping is robustly quantized when the hybrid nanowire is in the topologically nontrivial phase, whereas charge pumping is not quantized. Moreover, there exists one-to-one correspondence between the quantized conductance, entropy change and spin pumping in long topologically nontrivial nanowires but these observables are uncorrelated in the case of accidental zero-energy Andreev bound states in the trivial phase. Thus, we conclude that observation of correlated and quantized peaks in the conductance, entropy change and spin pumping would provide strong evidence of Majorana zero modes, and we elaborate how topological Majorana zero modes can be distinguished from quasi-Majorana modes potentially created by a smooth tunnel barrier at the lead-nanowire interface. Finally, we discuss peculiar interference effects affecting the spin pumping in short nanowires at very low energies.
Collapse
Affiliation(s)
- V Fernández Becerra
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Mircea Trif
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Timo Hyart
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
- Computational Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| |
Collapse
|
10
|
Hess R, Legg HF, Loss D, Klinovaja J. Trivial Andreev Band Mimicking Topological Bulk Gap Reopening in the Nonlocal Conductance of Long Rashba Nanowires. PHYSICAL REVIEW LETTERS 2023; 130:207001. [PMID: 37267549 DOI: 10.1103/physrevlett.130.207001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 06/04/2023]
Abstract
We consider a one-dimensional Rashba nanowire in which multiple Andreev bound states in the bulk of the nanowire form an Andreev band. We show that, under certain circumstances, this trivial Andreev band can produce an apparent closing and reopening signature of the bulk band gap in the nonlocal conductance of the nanowire. Furthermore, we show that the existence of the trivial bulk reopening signature in nonlocal conductance is essentially unaffected by the additional presence of trivial zero-bias peaks in the local conductance at either end of the nanowire. The simultaneous occurrence of a trivial bulk reopening signature and zero-bias peaks mimics the basic features required to pass the so-called "topological gap protocol." Our results therefore provide a topologically trivial minimal model by which the applicability of this protocol can be benchmarked.
Collapse
Affiliation(s)
- Richard Hess
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Henry F Legg
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Daniel Loss
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Jelena Klinovaja
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|
11
|
Ibabe A, Gómez M, Steffensen GO, Kanne T, Nygård J, Yeyati AL, Lee EJH. Joule spectroscopy of hybrid superconductor-semiconductor nanodevices. Nat Commun 2023; 14:2873. [PMID: 37208316 PMCID: PMC10199083 DOI: 10.1038/s41467-023-38533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Hybrid superconductor-semiconductor devices offer highly tunable platforms, potentially suitable for quantum technology applications, that have been intensively studied in the past decade. Here we establish that measurements of the superconductor-to-normal transition originating from Joule heating provide a powerful spectroscopical tool to characterize such hybrid devices. Concretely, we apply this technique to junctions in full-shell Al-InAs nanowires in the Little-Parks regime and obtain detailed information of each lead independently and in a single measurement, including differences in the superconducting coherence lengths of the leads, inhomogeneous covering of the epitaxial shell, and the inverse superconducting proximity effect; all-in-all constituting a unique fingerprint of each device with applications in the interpretation of low-bias data, the optimization of device geometries, and the uncovering of disorder in these systems. Besides the practical uses, our work also underscores the importance of heating in hybrid devices, an effect that is often overlooked.
Collapse
Affiliation(s)
- A Ibabe
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - M Gómez
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - G O Steffensen
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - T Kanne
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - J Nygård
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - A Levy Yeyati
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - E J H Lee
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
12
|
Harle N, Shtanko O, Movassagh R. Observing and braiding topological Majorana modes on programmable quantum simulators. Nat Commun 2023; 14:2286. [PMID: 37085488 PMCID: PMC10121601 DOI: 10.1038/s41467-023-37725-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Electrons are indivisible elementary particles, yet paradoxically a collection of them can act as a fraction of a single electron, exhibiting exotic and useful properties. One such collective excitation, known as a topological Majorana mode, is naturally stable against perturbations, such as unwanted local noise, and can thereby robustly store quantum information. As such, Majorana modes serve as the basic primitive of topological quantum computing, providing resilience to errors. However, their demonstration on quantum hardware has remained elusive. Here, we demonstrate a verifiable identification and braiding of topological Majorana modes using a superconducting quantum processor as a quantum simulator. By simulating fermions on a one-dimensional lattice subject to a periodic drive, we confirm the existence of Majorana modes localized at the edges, and distinguish them from other trivial modes. To simulate a basic logical operation of topological quantum computing known as braiding, we propose a non-adiabatic technique, whose implementation reveals correct braiding statistics in our experiments. This work could further be used to study topological models of matter using circuit-based simulations, and shows that long-sought quantum phenomena can be realized by anyone in cloud-run quantum simulations, whereby accelerating fundamental discoveries in quantum science and technology.
Collapse
Affiliation(s)
- Nikhil Harle
- Department of Physics, Yale University, New Haven, CT, 06520, USA
- IBM Quantum, MIT-IBM Watson AI lab, Cambridge, MA, 02142, USA
| | - Oles Shtanko
- IBM Quantum, IBM Research - Almaden, San Jose, CA, 95120, USA
| | - Ramis Movassagh
- IBM Quantum, MIT-IBM Watson AI lab, Cambridge, MA, 02142, USA.
- Google Quantum AI, Venice Beach, CA, 90291, USA.
| |
Collapse
|
13
|
Thamm M, Rosenow B. Machine Learning Optimization of Majorana Hybrid Nanowires. PHYSICAL REVIEW LETTERS 2023; 130:116202. [PMID: 37001061 DOI: 10.1103/physrevlett.130.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
As the complexity of quantum systems such as quantum bit arrays increases, efforts to automate expensive tuning are increasingly worthwhile. We investigate machine learning based tuning of gate arrays using the covariance matrix adaptation evolution strategy algorithm for the case study of Majorana wires with strong disorder. We find that the algorithm is able to efficiently improve the topological signatures, learn intrinsic disorder profiles, and completely eliminate disorder effects. For example, with only 20 gates, it is possible to fully recover Majorana zero modes destroyed by disorder by optimizing gate voltages.
Collapse
Affiliation(s)
- Matthias Thamm
- Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, 04103 Leipzig, Germany
| | - Bernd Rosenow
- Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Ziesen A, Altland A, Egger R, Hassler F. Statistical Majorana Bound State Spectroscopy. PHYSICAL REVIEW LETTERS 2023; 130:106001. [PMID: 36962051 DOI: 10.1103/physrevlett.130.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Tunnel spectroscopy data for the detection of Majorana bound states (MBS) is often criticized for its proneness to misinterpretation of genuine MBS with low-lying Andreev bound states. Here, we suggest a protocol removing this ambiguity by extending single shot measurements to sequences performed at varying system parameters. We demonstrate how such sampling, which we argue requires only moderate effort for current experimental platforms, resolves the statistics of Andreev side lobes, thus providing compelling evidence for the presence or absence of a Majorana center peak.
Collapse
Affiliation(s)
- Alexander Ziesen
- JARA Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany
| | - Alexander Altland
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Reinhold Egger
- Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Fabian Hassler
- JARA Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
15
|
Twin techniques narrow search for elusive Majorana particles. Nature 2022; 612:409-411. [PMID: 36517725 DOI: 10.1038/d41586-022-04351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Valentini M, Borovkov M, Prada E, Martí-Sánchez S, Botifoll M, Hofmann A, Arbiol J, Aguado R, San-Jose P, Katsaros G. Majorana-like Coulomb spectroscopy in the absence of zero-bias peaks. Nature 2022; 612:442-447. [PMID: 36517713 DOI: 10.1038/s41586-022-05382-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022]
Abstract
Hybrid semiconductor-superconductor devices hold great promise for realizing topological quantum computing with Majorana zero modes1-5. However, multiple claims of Majorana detection, based on either tunnelling6-10 or Coulomb blockade (CB) spectroscopy11,12, remain disputed. Here we devise an experimental protocol that allows us to perform both types of measurement on the same hybrid island by adjusting its charging energy via tunable junctions to the normal leads. This method reduces ambiguities of Majorana detections by checking the consistency between CB spectroscopy and zero-bias peaks in non-blockaded transport. Specifically, we observe junction-dependent, even-odd modulated, single-electron CB peaks in InAs/Al hybrid nanowires without concomitant low-bias peaks in tunnelling spectroscopy. We provide a theoretical interpretation of the experimental observations in terms of low-energy, longitudinally confined island states rather than overlapping Majorana modes. Our results highlight the importance of combined measurements on the same device for the identification of topological Majorana zero modes.
Collapse
Affiliation(s)
- Marco Valentini
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Maksim Borovkov
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Department of Physics, Princeton University, Princeton, NJ, USA
| | - Elsa Prada
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Martí-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain
| | - Marc Botifoll
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain
| | - Andrea Hofmann
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Universität Basel, Basel, Switzerland
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain.,ICREA, Passeig de Lluís, Barcelona, Spain
| | - Ramón Aguado
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pablo San-Jose
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Georgios Katsaros
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
17
|
Contamin LC, Jarjat L, Legrand W, Cottet A, Kontos T, Delbecq MR. Zero energy states clustering in an elemental nanowire coupled to a superconductor. Nat Commun 2022; 13:6188. [PMID: 36261661 PMCID: PMC9581951 DOI: 10.1038/s41467-022-33960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoelectronic hybrid devices combining superconductors and a one-dimensional nanowire are promising platforms to realize topological superconductivity and its resulting exotic excitations. The bulk of experimental studies in this context are transport measurements where conductance peaks allow to perform a spectroscopy of the low lying electronic states and potentially to identify signatures of the aforementioned excitations. The complexity of the experimental landscape calls for a benchmark in an elemental situation. The present work tackles such a task using an ultra-clean carbon nanotube circuit. Specifically, we show that the combination of magnetic field, weak disorder and superconductivity can lead to states clustering at low energy, as predicted by the random matrix theory predictions. Such a phenomenology is very general and should apply to most platforms trying to realize topological superconductivity in 1D systems, thus calling for alternative probes to reveal it.
Collapse
Affiliation(s)
- Lauriane C Contamin
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Lucas Jarjat
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - William Legrand
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Audrey Cottet
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Takis Kontos
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Matthieu R Delbecq
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| |
Collapse
|
18
|
Sato Y, Ueda K, Takeshige Y, Kamata H, Li K, Samuelson L, Xu HQ, Matsuo S, Tarucha S. Quasiparticle Trapping at Vortices Producing Josephson Supercurrent Enhancement. PHYSICAL REVIEW LETTERS 2022; 128:207001. [PMID: 35657870 DOI: 10.1103/physrevlett.128.207001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The Josephson junction of a strong spin-orbit material under a magnetic field is a promising Majorana fermion candidate. Supercurrent enhancement by a magnetic field has been observed in the InAs nanowire Josephson junctions and assigned to a topological transition. In this work we observe a similar phenomenon but discuss the nontopological origin by considering the trapping of quasiparticles by vortices that penetrate the superconductor under a finite magnetic field. This assignment is supported by the observed hysteresis of the switching current when sweeping up and down the magnetic field. Our experiment shows the importance of quasiparticles in superconducting devices with a magnetic field, which can provide important insights for the design of qubits using superconductors.
Collapse
Affiliation(s)
- Yosuke Sato
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kento Ueda
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuusuke Takeshige
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Kamata
- Laboratoire de Physique de l'École Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Kan Li
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and School of Electronics, Peking University, Beijing 100871, China
| | - Lars Samuelson
- Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan, Shenzhen, Guangdong 518055, China
| | - H Q Xu
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and School of Electronics, Peking University, Beijing 100871, China
- Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Sadashige Matsuo
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Seigo Tarucha
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Phan D, Senior J, Ghazaryan A, Hatefipour M, Strickland WM, Shabani J, Serbyn M, Higginbotham AP. Detecting Induced p±ip Pairing at the Al-InAs Interface with a Quantum Microwave Circuit. PHYSICAL REVIEW LETTERS 2022; 128:107701. [PMID: 35333085 DOI: 10.1103/physrevlett.128.107701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Superconductor-semiconductor hybrid devices are at the heart of several proposed approaches to quantum information processing, but their basic properties remain to be understood. We embed a two-dimensional Al-InAs hybrid system in a resonant microwave circuit, probing the breakdown of superconductivity due to an applied magnetic field. We find a fingerprint from the two-component nature of the hybrid system, and quantitatively compare with a theory that includes the contribution of intraband p±ip pairing in the InAs, as well as the emergence of Bogoliubov-Fermi surfaces due to magnetic field. Separately resolving the Al and InAs contributions allows us to determine the carrier density and mobility in the InAs.
Collapse
Affiliation(s)
- D Phan
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - J Senior
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - A Ghazaryan
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - M Hatefipour
- Department of Physics, New York University, New York, New York 10003, USA
| | - W M Strickland
- Department of Physics, New York University, New York, New York 10003, USA
| | - J Shabani
- Department of Physics, New York University, New York, New York 10003, USA
| | - M Serbyn
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | |
Collapse
|
20
|
Kotetes P. Diagnosing topological phase transitions in 1D superconductors using Berry singularity markers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:174003. [PMID: 35081520 DOI: 10.1088/1361-648x/ac4f1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
In this work I demonstrate how to characterize topological phase transitions in BDI symmetry class superconductors (SCs) in 1D, using the recently introduced approach of Berry singularity markers (BSMs). In particular, I apply the BSM method to the celebrated Kitaev chain model, as well as to a variant of it, which contains both nearest and next nearest neighbor equal spin pairings. Depending on the situation, I identify pairs of external fields which can detect the topological charges of the Berry singularities which are responsible for the various topological phase transitions. These pairs of fields consist of either a flux knob which controls the supercurrent flow through the SC, or, strain, combined with a field which can tune the chemical potential of the system. Employing the present BSM approach appears to be within experimental reach for topological nanowire hybrids.
Collapse
Affiliation(s)
- Panagiotis Kotetes
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
21
|
Marra P, Nigro A. Majorana/Andreev crossover and the fate of the topological phase transition in inhomogeneous nanowires. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:124001. [PMID: 34929683 DOI: 10.1088/1361-648x/ac44d2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Majorana bound states (MBS) and Andreev bound states (ABS) in realistic Majorana nanowires setups have similar experimental signatures which make them hard to distinguishing one from the other. Here, we characterize the continuous Majorana/Andreev crossover interpolating between fully-separated, partially-separated, and fully-overlapping Majorana modes, in terms of global and local topological invariants, fermion parity, quasiparticle densities, Majorana pseudospin and spin polarizations, density overlaps and transition probabilities between opposite Majorana components. We found that in inhomogeneous wires, the transition between fully-overlapping trivial ABS and nontrivial MBS does not necessarily mandate the closing of the bulk gap of quasiparticle excitations, but a simple parity crossing of partially-separated Majorana modes (ps-MM) from trivial to nontrivial regimes. We demonstrate that fully-separated and fully-overlapping Majorana modes correspond to the two limiting cases at the opposite sides of a continuous crossover: the only distinction between the two can be obtained by estimating the degree of separations of the Majorana components. This result does not contradict the bulk-edge correspondence: indeed, the field inhomogeneities driving the Majorana/Andreev crossover have a length scale comparable with the nanowire length, and therefore correspond to a nonlocal perturbation which breaks the topological protection of the MBS.
Collapse
Affiliation(s)
- Pasquale Marra
- Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
- Department of Physics, and Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Yokohama, Kanagawa 223-8521, Japan
| | - Angela Nigro
- Dipartimento di Fisica 'E. R. Caianiello', Università degli Studi di Salerno, 84084 Fisciano (Salerno), Italy
- Consiglio Nazionale delle Ricerche CNR-SPIN, UOS Salerno, 84084 Fisciano (Salerno), Italy
| |
Collapse
|
22
|
Kim JM, Haque MF, Hsieh EY, Nahid SM, Zarin I, Jeong KY, So JP, Park HG, Nam S. Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2107362. [PMID: 34866241 DOI: 10.1002/adma.202107362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.
Collapse
Affiliation(s)
- Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishrat Zarin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwang-Yong Jeong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - SungWoo Nam
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
23
|
Vekris A, Estrada Saldaña JC, de Bruijckere J, Lorić S, Kanne T, Marnauza M, Olsteins D, Nygård J, Grove-Rasmussen K. Asymmetric Little-Parks oscillations in full shell double nanowires. Sci Rep 2021; 11:19034. [PMID: 34561484 PMCID: PMC8463573 DOI: 10.1038/s41598-021-97780-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
Little-Parks oscillations of a hollow superconducting cylinder are of interest for flux-driven topological superconductivity in single Rashba nanowires. The oscillations are typically symmetric in the orientation of the applied magnetic flux. Using double InAs nanowires coated by an epitaxial superconducting Al shell which, despite the non-centro-symmetric geometry, behaves effectively as one hollow cylinder, we demonstrate that a small misalignment of the applied parallel field with respect to the axis of the nanowires can produce field-asymmetric Little-Parks oscillations. These are revealed by the simultaneous application of a magnetic field perpendicular to the misaligned parallel field direction. The asymmetry occurs in both the destructive regime, in which superconductivity is destroyed for half-integer quanta of flux through the shell, and in the non-destructive regime, where superconductivity is depressed but not fully destroyed at these flux values.
Collapse
Affiliation(s)
- Alexandros Vekris
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
- Sino-Danish Center for Education and Research (SDC) SDC Building, Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, 101408, Huairou, China.
| | | | - Joeri de Bruijckere
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Sara Lorić
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thomas Kanne
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Mikelis Marnauza
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Dags Olsteins
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jesper Nygård
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Kasper Grove-Rasmussen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
24
|
Valentini M, Peñaranda F, Hofmann A, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R, Katsaros G. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science 2021; 373:82-88. [PMID: 34210881 DOI: 10.1126/science.abf1513] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 11/02/2022]
Abstract
A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks-features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity.
Collapse
Affiliation(s)
- Marco Valentini
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Fernando Peñaranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Andrea Hofmann
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matthias Brauns
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Peter Krogstrup
- Microsoft Quantum Materials Lab and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Kanalvej 7, 2800 Kongens Lyngby, Denmark
| | - Pablo San-Jose
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Elsa Prada
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.,Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ramón Aguado
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Georgios Katsaros
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|