1
|
Costanzo S, Pappalardo M, Starnini E, Rossoni-Notter E, Notter O, Moussous A, Soares-Remiseiro M, Fermo P, Cremaschi M, Zerboni A. Integrating musealized archaeological sediment collections into current geoarchaeological analytical frameworks for sustainable research practices. MethodsX 2024; 13:102897. [PMID: 39233753 PMCID: PMC11372796 DOI: 10.1016/j.mex.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
We present a review of the latest framework achievements in geoarchaeological sciences applied to microstratigraphic and biomolecular studies of prehistoric archaeological contexts, highlighting the importance of musealized archaeological stratigraphies. We assess how today's scientific and technological accomplishments can be tailored for archaeological human ecology studies with analytical ensembles that provide unprecedented results. Sampling and processing workflows originating from resin consolidation and thin section micromorphology of undisturbed blocks of archaeological soils and sediments, guarantee subsampling accuracy at the micrometre scale granting access to individual components otherwise impossible to target: the achievable information yield makes even the smallest soil samples potential sources of pioneering discoveries. Yet, archaeological excavations are still the primary mode of retrieving new soil samples. We argue that, when dealing with archaeological sites that were excavated and partially musealised in the past, the exploration of related museum collections should be prioritized as perspective source of new study samples. Analysing old and potentially very informative samples, with an approach that we define as "Green Archaeology", may represent a source of well-structured primary data as well as a means for planning new excavations, delivering novel discoveries while safeguarding site integrity and promoting Third Mission valorisation of sites and heritage dormant collections.
Collapse
Affiliation(s)
- Stefano Costanzo
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
| | - Marta Pappalardo
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | | | | | | | | | - Miguel Soares-Remiseiro
- The interdisciplinary Center for Archaeology and Evolution of Human Behaviour, Universidade do Algarve, Faro, Portugal
| | - Paola Fermo
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Mauro Cremaschi
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Linderholm A. Sedimentary DNA: Archaeology reinvented. Curr Biol 2024; 34:R916-R918. [PMID: 39437726 DOI: 10.1016/j.cub.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
How can we better understand the human agency in prehistory? A recent study explores a novel way of using sedimentary DNA extracted from sediments of a rock shelter to investigate the human impact on the landscape.
Collapse
Affiliation(s)
- Anna Linderholm
- Centre for Palaeogenetics, Stockholm University, Stockholm 10691, Sweden; Department of Geological Sciences, Stockholm University, Stockholm 10691, Sweden.
| |
Collapse
|
3
|
Zampirolo G, Holman LE, Sawafuji R, Ptáková M, Kovačiková L, Šída P, Pokorný P, Pedersen MW, Walls M. Tracing early pastoralism in Central Europe using sedimentary ancient DNA. Curr Biol 2024; 34:4650-4661.e4. [PMID: 39305897 DOI: 10.1016/j.cub.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024]
Abstract
Central European forests have been shaped by complex human interactions throughout the Holocene, with significant changes following the introduction of domesticated animals in the Neolithic (∼7.5-6.0 ka before present [BP]). However, understanding early pastoral practices and their impact on forests is limited by methods for detecting animal movement across past landscapes. Here, we examine ancient sedimentary DNA (sedaDNA) preserved at the Velký Mamuťák rock shelter in northern Bohemia (Czech Republic), which has been a forested enclave since the early Holocene. We find that domesticated animals, their associated microbiomes, and plants potentially gathered for fodder have clear representation by the Late Neolithic, around 6.0 ka BP, and persist throughout the Bronze Age into recent times. We identify a change in dominant grazing species from sheep to pigs in the Bronze Age (∼4.1-3.0 ka BP) and interpret the impact this had in the mid-Holocene retrogressions that still define the structure of Central European forests today. This study highlights the ability of ancient metagenomics to bridge archaeological and paleoecological methods and provide an enhanced perspective on the roots of the "Anthropocene."
Collapse
Affiliation(s)
- Giulia Zampirolo
- Section for Molecular Ecology and Evolution, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Luke E Holman
- Section for Molecular Ecology and Evolution, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark; School of Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Rikai Sawafuji
- Centre for Ancient Environmental Genomics, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Kanagawa, Japan
| | - Michaela Ptáková
- Laboratory of Archaeobotany and Palaeoecology, Faculty of Science, University of South Bohemia, Na Zlaté stoce 3, 370 05 České Budějovice, Czech Republic
| | - Lenka Kovačiková
- Laboratory of Archaeobotany and Palaeoecology, Faculty of Science, University of South Bohemia, Na Zlaté stoce 3, 370 05 České Budějovice, Czech Republic
| | - Petr Šída
- Philosophical faculty, University of Hradec Králové, nám. Svobody 331/2, 500 02 Hradec Králové, Czech Republic
| | - Petr Pokorný
- Center for Theoretical Study, Charles University and Czech Academy of Sciences, Ovocný trh 5, 116 36 Prague, Czech Republic
| | - Mikkel Winther Pedersen
- Centre for Ancient Environmental Genomics, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
| | - Matthew Walls
- Center for Theoretical Study, Charles University and Czech Academy of Sciences, Ovocný trh 5, 116 36 Prague, Czech Republic; Department of Anthropology and Archaeology, Faculty of Arts, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 4V8, Canada.
| |
Collapse
|
4
|
Vogel NA, Rubin JD, Pedersen AG, Sackett PW, Pedersen MW, Renaud G. soibean: High-Resolution Taxonomic Identification of Ancient Environmental DNA Using Mitochondrial Pangenome Graphs. Mol Biol Evol 2024; 41:msae203. [PMID: 39361595 PMCID: PMC11488136 DOI: 10.1093/molbev/msae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
Ancient environmental DNA (aeDNA) is becoming a powerful tool to gain insights about past ecosystems, overcoming the limitations of conventional fossil records. However, several methodological challenges remain, particularly for classifying the DNA to species level and conducting phylogenetic analysis. Current methods, primarily tailored for modern datasets, fail to capture several idiosyncrasies of aeDNA, including species mixtures from closely related species and ancestral divergence. We introduce soibean, a novel tool that utilizes mitochondrial pangenomic graphs for identifying species from aeDNA reads. It outperforms existing methods in accurately identifying species from multiple closely related sources within a sample, enhancing phylogenetic analysis for aeDNA. soibean employs a damage-aware likelihood model for precise identification at low coverage with a high damage rate. Additionally, we reconstructed ancestral sequences for soibean's database to handle aeDNA that is highly diverged from modern references. soibean demonstrates effectiveness through simulated data tests and empirical validation. Notably, our method uncovered new empirical results in published datasets, including using porpoise whales as food in a Mesolithic community in Sweden, demonstrating its potential to reveal previously unrecognized findings in aeDNA studies.
Collapse
Affiliation(s)
- Nicola Alexandra Vogel
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Joshua Daniel Rubin
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Wad Sackett
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mikkel Winther Pedersen
- Centre For Ancient Environmental Genomics, Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| | - Gabriel Renaud
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Slimak L, Vimala T, Seguin-Orlando A, Metz L, Zanolli C, Joannes-Boyau R, Frouin M, Arnold LJ, Demuro M, Devièse T, Comeskey D, Buckley M, Camus H, Muth X, Lewis JE, Bocherens H, Yvorra P, Tenailleau C, Duployer B, Coqueugniot H, Dutour O, Higham T, Sikora M. Long genetic and social isolation in Neanderthals before their extinction. CELL GENOMICS 2024; 4:100593. [PMID: 39265525 PMCID: PMC11480857 DOI: 10.1016/j.xgen.2024.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/23/2023] [Accepted: 06/05/2024] [Indexed: 09/14/2024]
Abstract
Neanderthal genomes have been recovered from sites across Eurasia, painting an increasingly complex picture of their populations' structure that mostly indicates that late European Neanderthals belonged to a single metapopulation with no significant evidence of population structure. Here, we report the discovery of a late Neanderthal individual, nicknamed "Thorin," from Grotte Mandrin in Mediterranean France, and his genome. These dentognathic fossils, including a rare example of distomolars, are associated with a rich archeological record of Neanderthal final technological traditions in this region ∼50-42 thousand years ago. Thorin's genome reveals a relatively early divergence of ∼105 ka with other late Neanderthals. Thorin belonged to a population with a small group size that showed no genetic introgression with other known late European Neanderthals, revealing some 50 ka of genetic isolation of his lineage despite them living in neighboring regions. These results have important implications for resolving competing hypotheses about causes of the disappearance of the Neanderthals.
Collapse
Affiliation(s)
- Ludovic Slimak
- Centre d'Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Faculté de Santé, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France.
| | - Tharsika Vimala
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, 1350K Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Faculté de Santé, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France; Lundbeck Foundation GeoGenetics Center, University of Copenhagen, 1350K Copenhagen, Denmark
| | - Laure Metz
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l'Homme, BP 647, 5 rue du Château de l'Horloge, 13094 Aix-en-Provence Cedex 2, France; University of Connecticut, College of Liberal Arts and Sciences, 215 Glenbrook Road, U-4098, Storrs, CT 06269-4098, USA
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France
| | - Renaud Joannes-Boyau
- Geoarchaeology & Archaeometry Research Group (GARG), Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| | - Marine Frouin
- Department of Geosciences, Stony Brook University, 255 Earth and Space Sciences Building, Stony Brook, NY 11794-2100, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Lee J Arnold
- School of Physical Sciences, Environment Institute, Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Martina Demuro
- School of Physical Sciences, Environment Institute, Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Thibaut Devièse
- CEREGE, Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Technopôle de l'Arbois, Aix-en-Provence, France
| | - Daniel Comeskey
- Syft Technologies Ltd., 3 Craft Place, Middleton, PO Box 28 149, Christchurch 8242, New Zealand
| | - Michael Buckley
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Hubert Camus
- PROTEE-EXPERT, 4 rue des Aspholdèles, 34750 Villeneuve-lès-Maguelone, France
| | - Xavier Muth
- Get in Situ, 1091 Bourg-en-Lavaux, Switzerland
| | - Jason E Lewis
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA; Chronicle Heritage, 319 E Palm Lane, Phoenix, AZ 85004, USA
| | - Hervé Bocherens
- Fachbereich Geowissenschaften Forschungsbereich Paläobiologie - Biogeologie Senckenberg, Centre for Human Evolution and Palaeoenvironment (SHEP), Universität Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Pascale Yvorra
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l'Homme, BP 647, 5 rue du Château de l'Horloge, 13094 Aix-en-Provence Cedex 2, France
| | - Christophe Tenailleau
- Centre Inter-Universitaire de Recherche et d'Ingénierie des Matériaux, UMR 5085 CNRS-Université de Toulouse (Paul Sabatier), 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Benjamin Duployer
- Centre Inter-Universitaire de Recherche et d'Ingénierie des Matériaux, UMR 5085 CNRS-Université de Toulouse (Paul Sabatier), 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Hélène Coqueugniot
- École Pratique des Hautes Études - Paris Sciences et Lettres University, 4-14 rue Ferrus, 75014 Paris, France; University of Bordeaux-Montaigne, CNRS, EPHE, Archéosciences, UMR 6034, 33607 Pessac, France
| | - Olivier Dutour
- École Pratique des Hautes Études - Paris Sciences et Lettres University, 4-14 rue Ferrus, 75014 Paris, France; University of Bordeaux-Montaigne, CNRS, EPHE, Archéosciences, UMR 6034, 33607 Pessac, France
| | - Thomas Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, Vienna 1090, Austria
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, 1350K Copenhagen, Denmark.
| |
Collapse
|
6
|
Oberreiter V, Gelabert P, Brück F, Franz S, Zelger E, Szedlacsek S, Cheronet O, Cano FT, Exler F, Zagorc B, Karavanić I, Banda M, Gasparyan B, Straus LG, Gonzalez Morales MR, Kappelman J, Stahlschmidt M, Rattei T, Kraemer SM, Sawyer S, Pinhasi R. Maximizing efficiency in sedimentary ancient DNA analysis: a novel extract pooling approach. Sci Rep 2024; 14:19388. [PMID: 39169089 PMCID: PMC11339378 DOI: 10.1038/s41598-024-69741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In the last few decades, the field of ancient DNA has taken a new direction towards using sedimentary ancient DNA (sedaDNA) for studying human and mammalian population dynamics as well as past ecosystems. However, the screening of numerous sediment samples from archaeological sites remains a time-consuming and costly endeavor, particularly when targeting hominin DNA. Here, we present a novel high-throughput method that facilitates the fast and efficient analysis of sediment samples by applying a pooled testing approach. This method combines multiple extracts, enabling early parallelization of laboratory procedures and effective aDNA screening. Pooled samples with detectable aDNA signals undergo detailed analysis, while empty pools are discarded. We have successfully applied our method to multiple sediment samples from Middle and Upper Paleolithic sites in Europe, Asia, and Africa. Notably, our results reveal that an aDNA signal remains discernible even when pooled with four negative samples. We also demonstrate that the DNA yield of double-stranded libraries increases significantly when reducing the extract input, potentially mitigating the effects of inhibition. By embracing this innovative approach, researchers can analyze large numbers of sediment samples for aDNA preservation, achieving significant cost reductions of up to 70% and reducing hands-on laboratory time to one-fifth.
Collapse
Affiliation(s)
- Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Florian Brück
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Franz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Sophie Szedlacsek
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Florian Exler
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ivor Karavanić
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Marko Banda
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, USA
- EvoAdapta Group Universidad de Cantabria, Santander, Spain
| | - Manuel R Gonzalez Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Gobierno de Cantabria, Banco Santander, Spain
| | - John Kappelman
- Department of Anthropology and Department of Earth and Planetary Sciences, The University of Texas, Austin, TX, USA
| | - Mareike Stahlschmidt
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan M Kraemer
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institut für Analytische Chemie, University of Vienna, Vienna, Austria
- Forschungsverbund Umwelt und Klima, University of Vienna, Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Bergström A. Improving data archiving practices in ancient genomics. Sci Data 2024; 11:754. [PMID: 38987254 PMCID: PMC11236975 DOI: 10.1038/s41597-024-03563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Ancient DNA is producing a rich record of past genetic diversity in humans and other species. However, unless the primary data is appropriately archived, its long-term value will not be fully realised. I surveyed publicly archived data from 42 recent ancient genomics studies. Half of the studies archived incomplete datasets, preventing accurate replication and representing a loss of data of potential future use. No studies met all criteria that could be considered best practice. Based on these results, I make six recommendations for data producers: (1) archive all sequencing reads, not just those that aligned to a reference genome, (2) archive read alignments too, but as secondary analysis files, (3) provide correct experiment metadata on samples, libraries and sequencing runs, (4) provide informative sample metadata, (5) archive data from low-coverage and negative experiments, and (6) document archiving choices in papers, and peer review these. Given the reliance on destructive sampling of finite material, ancient genomics studies have a particularly strong responsibility to ensure the longevity and reusability of generated data.
Collapse
Affiliation(s)
- Anders Bergström
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
8
|
Dolenz S, van der Valk T, Jin C, Oppenheimer J, Sharif MB, Orlando L, Shapiro B, Dalén L, Heintzman PD. Unravelling reference bias in ancient DNA datasets. Bioinformatics 2024; 40:btae436. [PMID: 38960861 PMCID: PMC11254355 DOI: 10.1093/bioinformatics/btae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024] Open
Abstract
MOTIVATION The alignment of sequencing reads is a critical step in the characterization of ancient genomes. However, reference bias and spurious mappings pose a significant challenge, particularly as cutting-edge wet lab methods generate datasets that push the boundaries of alignment tools. Reference bias occurs when reference alleles are favoured over alternative alleles during mapping, whereas spurious mappings stem from either contamination or when endogenous reads fail to align to their correct position. Previous work has shown that these phenomena are correlated with read length but a more thorough investigation of reference bias and spurious mappings for ancient DNA has been lacking. Here, we use a range of empirical and simulated palaeogenomic datasets to investigate the impacts of mapping tools, quality thresholds, and reference genome on mismatch rates across read lengths. RESULTS For these analyses, we introduce AMBER, a new bioinformatics tool for assessing the quality of ancient DNA mapping directly from BAM-files and informing on reference bias, read length cut-offs and reference selection. AMBER rapidly and simultaneously computes the sequence read mapping bias in the form of the mismatch rates per read length, cytosine deamination profiles at both CpG and non-CpG sites, fragment length distributions, and genomic breadth and depth of coverage. Using AMBER, we find that mapping algorithms and quality threshold choices dictate reference bias and rates of spurious alignment at different read lengths in a predictable manner, suggesting that optimized mapping parameters for each read length will be a key step in alleviating reference bias and spurious mappings. AVAILABILITY AND IMPLEMENTATION AMBER is available for noncommercial use on GitHub (https://github.com/tvandervalk/AMBER.git). Scripts used to generate and analyse simulated datasets are available on Github (https://github.com/sdolenz/refbias_scripts).
Collapse
Affiliation(s)
- Stephanie Dolenz
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-106 91, Sweden
- Department of Geological Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-106 91, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, SE-114 18, Sweden
- Science for Life Laboratory, Stockholm, SE-171 65, Sweden
| | - Chenyu Jin
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-106 91, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, SE-114 18, Sweden
- Department of Zoology, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Jonas Oppenheimer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, United States
| | - Muhammad Bilal Sharif
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-106 91, Sweden
- Department of Zoology, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CAGT, CNRS UMR5288), University Paul Sabatier, Faculté de Santé, Toulouse, 31000, France
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, United States
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, United States
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-106 91, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, SE-114 18, Sweden
- Department of Zoology, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Peter D Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-106 91, Sweden
- Department of Geological Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
9
|
Özdoğan KT, Gelabert P, Hammers N, Altınışık NE, de Groot A, Plets G. Archaeology meets environmental genomics: implementing sedaDNA in the study of the human past. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2024; 16:108. [PMID: 38948161 PMCID: PMC11213777 DOI: 10.1007/s12520-024-01999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Sedimentary ancient DNA (sedaDNA) has become one of the standard applications in the field of paleogenomics in recent years. It has been used for paleoenvironmental reconstructions, detecting the presence of prehistoric species in the absence of macro remains and even investigating the evolutionary history of a few species. However, its application in archaeology has been limited and primarily focused on humans. This article argues that sedaDNA holds significant potential in addressing key archaeological questions concerning the origins, lifestyles, and environments of past human populations. Our aim is to facilitate the integration of sedaDNA into the standard workflows in archaeology as a transformative tool, thereby unleashing its full potential for studying the human past. Ultimately, we not only underscore the challenges inherent in the sedaDNA field but also provide a research agenda for essential enhancements needed for implementing sedaDNA into the archaeological workflow.
Collapse
Affiliation(s)
- Kadir Toykan Özdoğan
- Department of History and Art History, Utrecht University, Drift 6, Utrecht, 3512 BS Netherlands
- Animal Ecology, Wageningen Environmental Research, P.O box 47, Wageningen, Gelderland 6700 AA The Netherlands
| | - Pere Gelabert
- Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
| | - Neeke Hammers
- Environmental Archaeology, ADC ArcheoProjecten, Nijverheidsweg-Noord 114, Amersfoort, Utrecht, 3812 PN Netherlands
| | - N. Ezgi Altınışık
- Human-G Laboratory, Department of Anthropology, Hacettepe University, Ankara, 06800 Türkiye
| | - Arjen de Groot
- Animal Ecology, Wageningen Environmental Research, P.O box 47, Wageningen, Gelderland 6700 AA The Netherlands
| | - Gertjan Plets
- Department of History and Art History, Utrecht University, Drift 6, Utrecht, 3512 BS Netherlands
| |
Collapse
|
10
|
Aldeias V, Stahlschmidt MC. Sediment DNA can revolutionize archaeology-if it is used the right way. Proc Natl Acad Sci U S A 2024; 121:e2317042121. [PMID: 38900796 PMCID: PMC11214044 DOI: 10.1073/pnas.2317042121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Affiliation(s)
- Vera Aldeias
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour, Universidade do Algarve, Faro8005-139, Portugal
| | - Mareike C. Stahlschmidt
- Department of Evolutionary Anthropology, University of Vienna, Vienna1010, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna1010, Austria
| |
Collapse
|
11
|
Noel HL, George RL, Bintz B, Hickman MP, West F. Utilization of qPCR to Determine Duration and Environmental Drivers Contributing to the Persistence of Human DNA in Soil. Genes (Basel) 2024; 15:741. [PMID: 38927677 PMCID: PMC11202937 DOI: 10.3390/genes15060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Little is known about the underlying mechanisms that contribute to the persistence and degradation of DNA within soil. The goals of this study are to determine the duration of mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) persistence in soils enriched by surface-level human decomposition and to better understand the contribution of environmental factors. The surface-level decomposition of three human cadavers was documented over 11 weeks. Based on quantitative PCR results, we found nuDNA to persist in soils six weeks post-placement, while mtDNA was recoverable for the entire 11-week decomposition period. Principle components analyses and Spearman's rank correlations revealed that (1) time, (2) total body score, and (3) weekly average air temperature were significantly correlated with concentrations of nuDNA and mtDNA in soil, suggesting these factors play a role in the degradation of DNA in soils.
Collapse
Affiliation(s)
- Hannah L. Noel
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rebecca L. George
- Department of Anthropology and Sociology, Western Carolina University, Cullowhee, NC 29723, USA;
| | - Brittania Bintz
- Department of Chemistry and Physics, Forensic Science Program, Western Carolina University, Cullowhee, NC 29723, USA;
| | | | - Frankie West
- Department of Chemistry and Physics, Forensic Science Program, Western Carolina University, Cullowhee, NC 29723, USA;
| |
Collapse
|
12
|
Laine J, Mak SST, Martins NFG, Chen X, Gilbert MTP, Jones FC, Pedersen MW, Romundset A, Foote AD. Late Pleistocene stickleback environmental genomes reveal the chronology of freshwater adaptation. Curr Biol 2024; 34:1142-1147.e6. [PMID: 38350445 DOI: 10.1016/j.cub.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Directly observing the chronology and tempo of adaptation in response to ecological change is rarely possible in natural ecosystems. Sedimentary ancient DNA (sedaDNA) has been shown to be a tractable source of genome-scale data of long-dead organisms1,2,3 and to thereby potentially provide an understanding of the evolutionary histories of past populations.4,5 To date, time series of ecosystem biodiversity have been reconstructed from sedaDNA, typically using DNA metabarcoding or shotgun sequence data generated from less than 1 g of sediment.6,7 Here, we maximize sequence coverage by extracting DNA from ∼50× more sediment per sample than the majority of previous studies1,2,3 to achieve genotype resolution. From a time series of Late Pleistocene sediments spanning from a marine to freshwater ecosystem, we compare adaptive genotypes reconstructed from the environmental genomes of three-spined stickleback at key time points of this transition. We find a staggered temporal dynamic in which freshwater alleles at known loci of large effect in marine-freshwater divergence of three-spined stickleback (e.g., EDA)8 were already established during the brackish phase of the formation of the isolation basin. However, marine alleles were still detected across the majority of marine-freshwater divergence-associated loci, even after the complete isolation of the lake from marine ingression. Our retrospective approach to studying adaptation from environmental genomes of three-spined sticklebacks at the end of the last glacial period complements contemporary experimental approaches9,10,11 and highlights the untapped potential for retrospective "evolve and resequence" natural experiments using sedaDNA.
Collapse
Affiliation(s)
- Jan Laine
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Nuno F G Martins
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Xihan Chen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway; Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
13
|
Fracasso I, Zaccone C, Oskolkov N, Da Ros L, Dinella A, Belelli Marchesini L, Buzzini P, Sannino C, Turchetti B, Cesco S, Le Roux G, Tonon G, Vernesi C, Mimmo T, Ventura M, Borruso L. Exploring different methodological approaches to unlock paleobiodiversity in peat profiles using ancient DNA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168159. [PMID: 37923262 DOI: 10.1016/j.scitotenv.2023.168159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Natural and human-induced environmental changes deeply affected terrestrial ecosystems throughout the Holocene. Paleoenvironmental reconstructions provide information about the past and allow us to predict/model future scenarios. Among potential records, peat bogs are widely used because they present a precise stratigraphy and act as natural archives of highly diverse organic remains. Over the decades, several techniques have been developed to identify debris occurring in peat, including their morphological description. However, this is strongly constrained by the researcher's ability to distinguish residues at the species level, which typically requires many years of experience. In addition, potential contamination hampers using these techniques to obtain information from organisms such as fungi or bacteria. Environmental DNA metabarcoding and shotgun metagenome sequencing could represent a solution to detect specific groups of organisms without any a priori knowledge of their characteristics and/or to identify organisms that have rarely been considered in previous investigations. Moreover, shotgun metagenomics may allow the identification of bacteria and fungi (including both yeast and filamentous life forms), ensuring discrimination between ancient and modern organisms through the study of deamination/damage patterns. In the present review, we aim to i) present the state-of-the-art methodologies in paleoecological and paleoclimatic studies focusing on peat core analyses, proposing alternative approaches to the classical morphological identification of plant residues, and ii) suggest biomolecular approaches that will allow the use of proxies such as invertebrates, fungi, and bacteria, which are rarely employed in paleoenvironmental reconstructions.
Collapse
Affiliation(s)
- Ilaria Fracasso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 221 00 Lund, Sweden
| | - Luca Da Ros
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Anna Dinella
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luca Belelli Marchesini
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06123 Perugia, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06123 Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06123 Perugia, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Gael Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR5245 CNRS/UPS/INPT), Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Giustino Tonon
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| |
Collapse
|
14
|
Qin C, Xiang L, Wang YZ, Yu PF, Meng C, Li YW, Zhao HM, Hu X, Gao Y, Mo CH. Binding interaction of environmental DNA with typical emerging perfluoroalkyl acids and its impact on bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167392. [PMID: 37758138 DOI: 10.1016/j.scitotenv.2023.167392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
As the replacement compounds of perfluoroalkyl acids (PFAAs), emerging PFAAs generally exhibit equal or more hazardous toxicity than legacy PFAAs. Numerous DNA as environmental organic matters coexists with emerging PFAAs, but their interactions and the resulting interaction impacts on the bioavailability of emerging PFAAs remain insufficiently understood. Here, we studied the binding strength and mechanism between DNA and emerging PFAAs (perfluorobutyric acid, perfluorobutylsulfonic acid, and hexafluoropropylene oxide dimer acid) using perfluorooctanoic acid as the control, and further investigated the impacts of DNA binding on the bioavailability of the emerging PFAAs. Isothermal titration calorimetry and quantum chemical calculation found that the emerging PFAAs could bind with DNA bases (main thymine) by van der Waals force and halogen-bond, showing the binding affinities in the range of 7.87 × 104 to L/mol to 6.54 × 106 L/mol. The PFAAs-DNA binding significantly decreased the bioavailability of the PFAAs in both seedlings and plants of pakchoi (Brassica chinensis L.), with little differences in bioavailability change extent among PFAAs. The findings highlight the universality and similarity of the DNA binding effects on PFAAs bioavailability, which can be the natural detoxification mechanism for response to the PFAAs pollution.
Collapse
Affiliation(s)
- Chao Qin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Ze Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Can Meng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
15
|
Petr M, Haller BC, Ralph PL, Racimo F. slendr: a framework for spatio-temporal population genomic simulations on geographic landscapes. PEER COMMUNITY JOURNAL 2023; 3:e121. [PMID: 38984034 PMCID: PMC11233137 DOI: 10.24072/pcjournal.354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
One of the goals of population genetics is to understand how evolutionary forces shape patterns of genetic variation over time. However, because populations evolve across both time and space, most evolutionary processes also have an important spatial component, acting through phenomena such as isolation by distance, local mate choice, or uneven distribution of resources. This spatial dimension is often neglected, partly due to the lack of tools specifically designed for building and evaluating complex spatio-temporal population genetic models. To address this methodological gap, we present a new framework for simulating spatially-explicit genomic data, implemented in a new R package called slendr (www.slendr.net), which leverages a SLiM simulation back-end script bundled with the package. With this framework, the users can programmatically and visually encode spatial population ranges and their temporal dynamics (i.e., population displacements, expansions, and contractions) either on real Earth landscapes or on abstract custom maps, and schedule splits and gene-flow events between populations using a straightforward declarative language. Additionally, slendr can simulate data from traditional, non-spatial models, either with SLiM or using an alternative built-in coalescent msprime back end. Together with its R-idiomatic interface to the tskit library for tree-sequence processing and analysis, slendr opens up the possibility of performing efficient, reproducible simulations of spatio-temporal genomic data entirely within the R environment, leveraging its wealth of libraries for geospatial data analysis, statistics, and visualization. Here, we present the design of the slendr R package and demonstrate its features on several practical example workflows.
Collapse
Affiliation(s)
- Martin Petr
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Denmark
| | - Benjamin C Haller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Denmark
| |
Collapse
|
16
|
Pochon Z, Bergfeldt N, Kırdök E, Vicente M, Naidoo T, van der Valk T, Altınışık NE, Krzewińska M, Dalén L, Götherström A, Mirabello C, Unneberg P, Oskolkov N. aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow. Genome Biol 2023; 24:242. [PMID: 37872569 PMCID: PMC10591440 DOI: 10.1186/s13059-023-03083-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Analysis of microbial data from archaeological samples is a growing field with great potential for understanding ancient environments, lifestyles, and diseases. However, high error rates have been a challenge in ancient metagenomics, and the availability of computational frameworks that meet the demands of the field is limited. Here, we propose aMeta, an accurate metagenomic profiling workflow for ancient DNA designed to minimize the amount of false discoveries and computer memory requirements. Using simulated data, we benchmark aMeta against a current state-of-the-art workflow and demonstrate its superiority in microbial detection and authentication, as well as substantially lower usage of computer memory.
Collapse
Affiliation(s)
- Zoé Pochon
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Nora Bergfeldt
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Emrah Kırdök
- Department of Biotechnology, Faculty of Science, Mersin University, Mersin, Turkey
| | - Mário Vicente
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Thijessen Naidoo
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Ancient DNA Unit, Science for Life Laboratory, Stockholm, Sweden
- Ancient DNA Unit, Science for Life Laboratory, Uppsala, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - N Ezgi Altınışık
- Human-G Laboratory, Department of Anthropology, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Maja Krzewińska
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Claudio Mirabello
- Department of Physics, Chemistry and Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Linköping University, Linköping, Sweden
| | - Per Unneberg
- Department of Cell and Molecular Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Uppsala University, Uppsala, Sweden
| | - Nikolay Oskolkov
- Department of Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Lund University, Lund, Sweden.
| |
Collapse
|
17
|
Wegner CE, Stahl R, Velsko I, Hübner A, Fagernäs Z, Warinner C, Lehmann R, Ritschel T, Totsche KU, Küsel K. A glimpse of the paleome in endolithic microbial communities. MICROBIOME 2023; 11:210. [PMID: 37749660 PMCID: PMC10518947 DOI: 10.1186/s40168-023-01647-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/09/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The terrestrial subsurface is home to a significant proportion of the Earth's microbial biomass. Our understanding about terrestrial subsurface microbiomes is almost exclusively derived from groundwater and porous sediments mainly by using 16S rRNA gene surveys. To obtain more insights about biomass of consolidated rocks and the metabolic status of endolithic microbiomes, we investigated interbedded limestone and mudstone from the vadose zone, fractured aquifers, and deep aquitards. RESULTS By adapting methods from microbial archaeology and paleogenomics, we could recover sufficient DNA for downstream metagenomic analysis from seven rock specimens independent of porosity, lithology, and depth. Based on the extracted DNA, we estimated between 2.81 and 4.25 × 105 cells × g-1 rock. Analyzing DNA damage patterns revealed paleome signatures (genetic records of past microbial communities) for three rock specimens, all obtained from the vadose zone. DNA obtained from deep aquitards isolated from surface input was not affected by DNA decay indicating that water saturation and not flow is controlling subsurface microbial survival. Decoding the taxonomy and functional potential of paleome communities revealed increased abundances for sequences affiliated with chemolithoautotrophs and taxa such as Cand. Rokubacteria. We also found a broader metabolic potential in terms of aromatic hydrocarbon breakdown, suggesting a preferred utilization of sedimentary organic matter in the past. CONCLUSIONS Our study suggests that limestones function as archives for genetic records of past microbial communities including those sensitive to environmental stress at modern times, due to their specific conditions facilitating long-term DNA preservation. Video Abstract.
Collapse
Affiliation(s)
- Carl-Eric Wegner
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Raphaela Stahl
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Irina Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Alex Hübner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Zandra Fagernäs
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Department of Anthropology, Harvard University, Cambridge, MA, USA
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Robert Lehmann
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Thomas Ritschel
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kai U Totsche
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
| |
Collapse
|
18
|
Vidal-Cordasco M, Terlato G, Ocio D, Marín-Arroyo AB. Neanderthal coexistence with Homo sapiens in Europe was affected by herbivore carrying capacity. SCIENCE ADVANCES 2023; 9:eadi4099. [PMID: 37738342 PMCID: PMC10516502 DOI: 10.1126/sciadv.adi4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/15/2023] [Indexed: 09/24/2023]
Abstract
It has been proposed that climate change and the arrival of modern humans in Europe affected the disappearance of Neanderthals due to their impact on trophic resources; however, it has remained challenging to quantify the effect of these factors. By using Bayesian age models to derive the chronology of the European Middle to Upper Paleolithic transition, followed by a dynamic vegetation model that provides the Net Primary Productivity, and a macroecological model to compute herbivore abundance, we show that in continental regions where the ecosystem productivity was low or unstable, Neanderthals disappeared before or just after the arrival of Homo sapiens. In contrast, regions with high and stable productivity witnessed a prolonged coexistence between both species. The temporal overlap between Neanderthals and H. sapiens is significantly correlated with the carrying capacity of small- and medium-sized herbivores. These results suggest that herbivore abundance released the trophic pressure of the secondary consumers guild, which affected the coexistence likelihood between both human species.
Collapse
Affiliation(s)
- Marco Vidal-Cordasco
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avd, Los Castros 44, 39005 Santander, Spain
| | - Gabriele Terlato
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avd, Los Castros 44, 39005 Santander, Spain
| | - David Ocio
- Mott MacDonald Ltd., 22 Station Road, Cambridge, UK
| | - Ana B. Marín-Arroyo
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avd, Los Castros 44, 39005 Santander, Spain
| |
Collapse
|
19
|
Ruan J, Timmermann A, Raia P, Yun KS, Zeller E, Mondanaro A, Di Febbraro M, Lemmon D, Castiglione S, Melchionna M. Climate shifts orchestrated hominin interbreeding events across Eurasia. Science 2023; 381:699-704. [PMID: 37561879 DOI: 10.1126/science.add4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/19/2023] [Indexed: 08/12/2023]
Abstract
When, where, and how often hominin interbreeding happened is largely unknown. We study the potential for Neanderthal-Denisovan admixture using species distribution models that integrate extensive fossil, archaeological, and genetic data with transient coupled general circulation model simulations of global climate and biomes. Our Pleistocene hindcast of past hominins' habitat suitability reveals pronounced climate-driven zonal shifts in the main overlap region of Denisovans and Neanderthals in central Eurasia. These shifts, which influenced the timing and intensity of potential interbreeding events, can be attributed to the response of climate and vegetation to past variations in atmospheric carbon dioxide and Northern Hemisphere ice-sheet volume. Therefore, glacial-interglacial climate swings likely played an important role in favoring gene flow between archaic humans.
Collapse
Affiliation(s)
- Jiaoyang Ruan
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Pasquale Raia
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| | - Kyung-Sook Yun
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Elke Zeller
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Department of Climate System, Pusan National University, Busan, South Korea
| | | | - Mirko Di Febbraro
- Department of Biosciences and Territory, University of Molise, C. da Fonte Lappone, Pesche, Italy
| | - Danielle Lemmon
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Silvia Castiglione
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| | - Marina Melchionna
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
20
|
Essel E. Releasing secrets bound to ancient remains with modern DNA extraction techniques: an interview with Elena Essel. Biotechniques 2023; 75:42-46. [PMID: 37589132 DOI: 10.2144/btn-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Elena Essel (Msc) spoke to Ebony Torrington, Managing Editor of BioTechniques. Essel is a molecular biologist in Matthias Meyer's Advanced DNA Sequencing Techniques group at the Max Planck Institute for Evolutionary Anthropology in Leipzig (Germany). Essel studied biology at University of Erlangen-Nuremberg (Erlangen, Germany) for her bachelor's and in Martin-Luther-University Halle-Wittenberg (Halle an der Saale, Germany) for her master's. Essel worked in Meyer's group on DNA extraction of very degraded material for her master's thesis. Meyer is an expert in developing new cutting-edge methods for researching ancient DNA, with a focus on skeletal remains, and more recently on sediment remains. Essel now focusses on DNA sampling and extraction aspects of the pipeline at Meyer's lab for the ancient DNA workflow.
Collapse
Affiliation(s)
- Elena Essel
- Max Planck Institute for Evolutionary Anthropology, Deutscher Pl. 6, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Enabulele EE, Le Clec'h W, Roberts EK, Thompson CW, McDonough MM, Ferguson AW, Bradley RD, Anderson TJC, Platt RN. Prospecting for Zoonotic Pathogens by Using Targeted DNA Enrichment. Emerg Infect Dis 2023; 29:1566-1579. [PMID: 37486179 PMCID: PMC10370864 DOI: 10.3201/eid2908.221818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
More than 60 zoonoses are linked to small mammals, including some of the most devastating pathogens in human history. Millions of museum-archived tissues are available to understand natural history of those pathogens. Our goal was to maximize the value of museum collections for pathogen-based research by using targeted sequence capture. We generated a probe panel that includes 39,916 80-bp RNA probes targeting 32 pathogen groups, including bacteria, helminths, fungi, and protozoans. Laboratory-generated, mock-control samples showed that we are capable of enriching targeted loci from pathogen DNA 2,882‒6,746-fold. We identified bacterial species in museum-archived samples, including Bartonella, a known human zoonosis. These results showed that probe-based enrichment of pathogens is a highly customizable and efficient method for identifying pathogens from museum-archived tissues.
Collapse
|
22
|
Essel E, Zavala EI, Schulz-Kornas E, Kozlikin MB, Fewlass H, Vernot B, Shunkov MV, Derevianko AP, Douka K, Barnes I, Soulier MC, Schmidt A, Szymanski M, Tsanova T, Sirakov N, Endarova E, McPherron SP, Hublin JJ, Kelso J, Pääbo S, Hajdinjak M, Soressi M, Meyer M. Ancient human DNA recovered from a Palaeolithic pendant. Nature 2023:10.1038/s41586-023-06035-2. [PMID: 37138083 DOI: 10.1038/s41586-023-06035-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.
Collapse
Affiliation(s)
- Elena Essel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Elena I Zavala
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biology, San Francisco State University, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ellen Schulz-Kornas
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Helen Fewlass
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Vernot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Katerina Douka
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS) Research Network, University of Vienna, Vienna, Austria
| | - Ian Barnes
- Earth Sciences Department, Natural History Museum, London, UK
| | - Marie-Cécile Soulier
- Maison de la Recherche, Université de Toulouse-Jean Jaurès, CNRS UMR 5608 TRACES, Toulouse, France
| | - Anna Schmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Merlin Szymanski
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tsenka Tsanova
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Nikolay Sirakov
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, Collège de France, Paris, France
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marie Soressi
- Faculty of Archaeology, Leiden University, Leiden, The Netherlands.
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
23
|
Orlando L. The genomic history of ice-age Europeans. Nature 2023; 615:41-42. [PMID: 36859577 DOI: 10.1038/d41586-023-00371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
24
|
Richards GD, Jabbour RS, Guipert G, Defleur A. Endocranial anatomy of the Guercy 1 early Neanderthal from Baume Moula-Guercy (Soyons, Ardèche, France). Anat Rec (Hoboken) 2023; 306:564-593. [PMID: 36336759 DOI: 10.1002/ar.25118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
We provide the first comparative description of the endocranium of the Guercy 1 Early Neanderthal and examine its affinities to Preneanderthals, Neanderthals, and Homo sapiens. The Guercy 1 cranium derives from deposits chronostratigraphically and biostratigraphically dated to the Eemian Interglacial (MIS 5e). For comparative purposes, we compiled a sample of European and Southwest Asian subadult and adult Middle-to-Late Pleistocene hominins (≈MIS 12-MIS 1; N = 65). We sampled both a Preneanderthal-Neanderthal group and a Homo sapiens group. The Preneanderthal-Neanderthal group was further divided into three time-successive subgroups defined by associated MIS stages. Metric and morphological observations were made on original fossils and physical and virtual endocranial reconstructions. Guercy 1 and other Early Neanderthals, differ from Preneanderthals by increased development of the prefrontal cortex, precentral and postcentral gyri, inferior parietal lobule, and frontoparietal operculum. Early Neanderthal differ, in general, from Late Neanderthals by exhibiting less development in most of the latter brain structures. The late group additionally differentiates itself from the early group by a greater development of the rostral superior parietal lobule, angular gyrus, superior and middle temporal gyri, and caudal branches of the superior temporal gyrus. Endocranial morphology assessed along the Preneanderthal-Neanderthal sequence show that brain structures prominent in Preneanderthals are accentuated in Early-to-Late Neanderthals. However, both the Early and Late groups differentiate themselves by also showing regionally specific changes in brain development. This pattern of morphological change is consistent with a mosaic pattern of neural evolution in these Middle-to-Late Pleistocene hominins.
Collapse
Affiliation(s)
- Gary D Richards
- Department of Biomedical Sciences, A. A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Rebecca S Jabbour
- Department of Biology, Saint Mary's College of California, Moraga, California, USA
| | - Gaspard Guipert
- Institut de Paléontologie Humaine, Fondation Albert Ier Prince de Monaco, Paris, France
| | - Alban Defleur
- CEPAM - UMR 7264 CNRS, Université de Nice, Nice Cedex 4, France
| |
Collapse
|
25
|
Song M, Wang X, Zhao C, Qian X, Lang M, Hou Y, Song F. Inference of population structure and admixture proportion from Y chromosomal data of Chinese population. Electrophoresis 2022; 43:2351-2362. [PMID: 35973689 DOI: 10.1002/elps.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
In the past two decades, Y chromosome data has been generated for human population genetic studies. These Y chromosome datasets were produced with various testing methods and markers, thus difficult to combine them for a comprehensive analysis. In this study, we combine four human Y chromosomal datasets of Han, Tibetan, Hui, and Li ethnic groups. The dataset contains 27 microsatellites and 137 single nucleotide polymorphisms these populations share in common. We assembled a single dataset containing 2439 individuals from 25 nationwide populations in China. A systematic analysis of genetic distance and clustering was performed. To determine the gene flow of the studied population with worldwide populations, we modeled the ancestry informative markers. The reference panel was regarded as a mixture of South Asian (SAS), East Asian (EAS), European (EUR), African (AFR), and American (AMR) populations from 1000 Genomes data of Y chromosome using nonlinear data-fitting. We then calculated the admixture proportion of these four studied populations with 26 worldwide populations. The results showed that the Han and Hui have great genetic affinity, and Hui is the most admixed ethnic group, with 61.53% EAS, 34.65% SAS, 1.91% AFR, 1.56% AMR, and 0.04% EUR ancestry component (the AMR is highly admixed and thus should be ignored). All the other three ethnic groups contained more than 97% EAS ancestry component. The Li is the least admixed population in this study. The combined dataset in this study is the largest of this kind reported to date and proposes reference population data for use in future paternal genetic studies and forensic genealogical identification.
Collapse
Affiliation(s)
- Mengyuan Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Med+Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, P. R. China.,Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Xindi Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Chenxi Zhao
- College of Computer Science, Sichuan University, Chengdu, P. R. China
| | - Xiaoqin Qian
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Min Lang
- Law School, Sichuan University, Chengdu, P. R. China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
26
|
ter Schure AT, Bruch AA, Kandel AW, Gasparyan B, Bussmann RW, Brysting AK, de Boer HJ, Boessenkool S. Sedimentary ancient DNA metabarcoding as a tool for assessing prehistoric plant use at the Upper Paleolithic cave site Aghitu-3, Armenia. J Hum Evol 2022; 172:103258. [DOI: 10.1016/j.jhevol.2022.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/15/2022]
|
27
|
Wang Y, Korneliussen TS, Holman LE, Manica A, Pedersen MW.
ngs
LCA
—A toolkit for fast and flexible lowest common ancestor inference and taxonomic profiling of metagenomic data. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yucheng Wang
- Department of Zoology University of Cambridge Cambridge UK
- Lundbeck Foundation GeoGenetics Centre, Globe Institute University of Copenhagen Copenhagen K Denmark
- ALPHA, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER) Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS) Beijing China
- BGI BGI‐Shenzhen Shanghai China
| | | | - Luke E. Holman
- School of Ocean and Earth Science, National Oceanography Centre Southampton University of Southampton Southampton UK
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, Globe Institute University of Copenhagen Copenhagen Denmark
| | - Andrea Manica
- Department of Zoology University of Cambridge Cambridge UK
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute University of Copenhagen Copenhagen K Denmark
| |
Collapse
|
28
|
Zubova AV, Kulkov AM, Pikhur OL, Moiseyev VG, Kolobova KA, Markin SV. A Case of Chronic Maxillary Sinusitis in a Late Neanderthal Population of the Altai Mountains. ARCHAEOLOGY, ETHNOLOGY & ANTHROPOLOGY OF EURASIA 2022. [DOI: 10.17746/1563-0110.2022.50.3.131-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We describe a likely case of chronic maxillary sinusitis (CMS) in a Neanderthal skeletal sample from Chagyrskaya Cave, in the Altai Mountains. Signs of CMS were recorded in the Chagyrskaya 57 specimen, which is a fragment of a left maxilla. Alveoli of the upper fi rst molar are partially preserved, and so are the second and third upper molars, with adjacent parts of the walls, and the fl oor of the maxillary sinus. The fragment was found in layer 6b, dating to 53,100–51,100 BP. We analyze the factors that had caused the development of the disease, and assess its etiology. In the 3D-model, generated by computed microtomography, and in the original specimen, porotic changes were registered, situated at the fracture line of the alveoli of M1, lost post-mortem, and near the vestibular roots of both preserved molars. Also, there were isolated bone spicules, 1.0–2.6 mm in size. These signs indicate incipient CMS, evidently caused by chronic periodontal disease combined with a deep alveolar recess of the maxillary sinus. As the periodontal gap expanded, several small nutrient foramina, piercing the bottom of the sinus, merged. As a result, several oro-antral channels formed, whereupon the infection spread into the maxillary sinus. Since the deep alveolar recess is observed in the vast majority of Neanderthal crania with published images or reconstructed maxillary cavities, it can be assumed that Neanderthals were predisposed to odontogenic CMS.
Collapse
Affiliation(s)
- A. V. Zubova
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences; Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences
| | | | | | - V. G. Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences
| | - K. A. Kolobova
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences
| | - S. V. Markin
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences
| |
Collapse
|
29
|
Skov L, Peyrégne S, Popli D, Iasi LNM, Devièse T, Slon V, Zavala EI, Hajdinjak M, Sümer AP, Grote S, Bossoms Mesa A, López Herráez D, Nickel B, Nagel S, Richter J, Essel E, Gansauge M, Schmidt A, Korlević P, Comeskey D, Derevianko AP, Kharevich A, Markin SV, Talamo S, Douka K, Krajcarz MT, Roberts RG, Higham T, Viola B, Krivoshapkin AI, Kolobova KA, Kelso J, Meyer M, Pääbo S, Peter BM. Genetic insights into the social organization of Neanderthals. Nature 2022; 610:519-525. [PMID: 36261548 PMCID: PMC9581778 DOI: 10.1038/s41586-022-05283-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
Abstract
Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.
Collapse
Affiliation(s)
- Laurits Skov
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Divyaratan Popli
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Leonardo N M Iasi
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Thibaut Devièse
- European Centre for Research and Education in Environmental Geosciences (CEREGE), Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Aix-en-Provence, France
| | - Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology Sackler, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elena I Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- The Francis Crick Institute, London, UK
| | - Arev P Sümer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Steffi Grote
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alba Bossoms Mesa
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - David López Herráez
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Richter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marie Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Schmidt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Petra Korlević
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Wellcome Sanger Institute, Hinxton, UK
| | - Daniel Comeskey
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, UK
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Aliona Kharevich
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V Markin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Katerina Douka
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, Vienna, Austria
| | - Maciej T Krajcarz
- Institute of Geological Sciences, Polish Academy of Sciences, Warsaw, Poland
| | - Richard G Roberts
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Thomas Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, Vienna, Austria
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Andrey I Krivoshapkin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Kseniya A Kolobova
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
30
|
Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol 2022; 32:R970-R983. [PMID: 36167050 PMCID: PMC9741939 DOI: 10.1016/j.cub.2022.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.
Collapse
Affiliation(s)
| | - Audrey Tjahjadi
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - Joshua M Akey
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Andreeva TV, Malyarchuk AB, Soshkina AD, Dudko NA, Plotnikova MY, Rogaev EI. Methodologies for Ancient DNA Extraction from Bones for Genomic Analysis: Approaches and Guidelines. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Extended longevity of DNA preservation in Levantine Paleolithic sediments, Sefunim Cave, Israel. Sci Rep 2022; 12:14528. [PMID: 36008437 PMCID: PMC9411205 DOI: 10.1038/s41598-022-17399-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Paleogenomic research can elucidate the evolutionary history of human and faunal populations. Although the Levant is a key land-bridge between Africa and Eurasia, thus far, relatively little ancient DNA data has been generated from this region, since DNA degrades faster in warm climates. As sediments can be a source of ancient DNA, we analyzed 33 sediment samples from different sedimentological contexts in the Paleolithic layers of Sefunim Cave (Israel). Four contained traces of ancient Cervidae and Hyaenidae mitochondrial DNA. Dating by optical luminescence and radiocarbon indicates that the DNA comes from layers between 30,000 and 70,000 years old, surpassing theoretical expectations regarding the longevity of DNA deposited in such a warm environment. Both identified taxa are present in the zooarchaeological record of the site but have since gone extinct from the region, and a geoarchaeological study suggests little movement of the sediments after their deposition, lending further support to our findings. We provide details on the local conditions in the cave, which we hypothesize were particularly conducive to the long-term preservation of DNA-information that will be pertinent for future endeavors aimed at recovering ancient DNA from the Levant and other similarly challenging contexts.
Collapse
|
33
|
Andreeva TV, Manakhov AD, Gusev FE, Patrikeev AD, Golovanova LV, Doronichev VB, Shirobokov IG, Rogaev EI. Genomic analysis of a novel Neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Palaeolithic populations. Sci Rep 2022; 12:13016. [PMID: 35906446 PMCID: PMC9338269 DOI: 10.1038/s41598-022-16164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
The Mezmaiskaya cave is located on the North Caucasus near the border that divides Europe and Asia. Previously, fossil remains for two Neanderthals were reported from Mezmaiskaya Cave. A tooth from the third archaic hominin specimen (Mezmaiskaya 3) was retrieved from layer 3 in Mezmaiskaya Cave. We performed genome sequencing of Mezmaiskaya 3. Analysis of partial nuclear genome sequence revealed that it belongs to a Homo sapiens neanderthalensis female. Based on a high-coverage mitochondrial genome sequence, we demonstrated that the relationships of Mezmaiskaya 3 to Mezmaiskaya 1 and Stajnia S5000 individuals were closer than those to other Neanderthals. Our data demonstrate the close genetic connections between the early Middle Palaeolithic Neanderthals that were replaced by genetically distant later group in the same geographic areas. Based on mitochondrial DNA (mtDNA) data, we suggest that Mezmaiskaya 3 was the latest Neanderthal individual from the early Neanderthal’s branches. We proposed a hierarchical nomenclature for the mtDNA haplogroups of Neanderthals. In addition, we retrieved ancestral mtDNA mutations in presumably functional sites fixed in the Neanderthal clades, and also provided the first data showing mtDNA heteroplasmy in Neanderthal specimen.
Collapse
Affiliation(s)
- Tatiana V Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340. .,Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333. .,Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia, 119192.
| | - Andrey D Manakhov
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340.,Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333.,Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia, 119192
| | - Fedor E Gusev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340.,Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333.,Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia, 119192
| | - Anton D Patrikeev
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333
| | | | | | - Ivan G Shirobokov
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg, Russia, 199034
| | - Evgeny I Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340. .,Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333. .,Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia, 119192. .,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01604, USA.
| |
Collapse
|
34
|
Liu Y, Bennett EA, Fu Q. Evolving ancient DNA techniques and the future of human history. Cell 2022; 185:2632-2635. [PMID: 35868268 DOI: 10.1016/j.cell.2022.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Ancient DNA (aDNA) techniques applied to human genomics have significantly advanced in the past decade, enabling large-scale aDNA research, sometimes independent of human remains. This commentary reviews the major milestones of aDNA techniques and explores future directions to expand the scope of aDNA research and insights into present-day human health.
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Wang Y. Ancient environmental DNA reveals Arctic ecosystem dynamics in last 50,000 years. Sci Bull (Beijing) 2022; 67:1304-1306. [PMID: 36546258 DOI: 10.1016/j.scib.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yucheng Wang
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen K1350, Denmark; BGI, BGI-Shenzhen, Shanghai 201321, China; Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Seeber PA, Epp LS. Environmental
DNA
and metagenomics of terrestrial mammals as keystone taxa of recent and past ecosystems. Mamm Rev 2022. [DOI: 10.1111/mam.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter A. Seeber
- Limnological Institute University of Konstanz Konstanz Germany
| | - Laura S. Epp
- Limnological Institute University of Konstanz Konstanz Germany
| |
Collapse
|
37
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|
38
|
The intrusive nature of the Châtelperronian in the Iberian Peninsula. PLoS One 2022; 17:e0265219. [PMID: 35353845 PMCID: PMC8967055 DOI: 10.1371/journal.pone.0265219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/25/2022] [Indexed: 12/27/2022] Open
Abstract
Multiple factors have been proposed to explain the disappearance of Neandertals between ca. 50 and 40 kyr BP. Central to these discussions has been the identification of new techno-cultural complexes that overlap with the period of Neandertal demise in Europe. One such complex is the Châtelperronian, which extends from the Paris Basin to the Northern Iberian Peninsula between 43,760–39,220 BP. In this study we present the first open-air Châtelperronian site in the Northern Iberian Peninsula, Aranbaltza II. The technological features of its stone tool assemblage show no links with previous Middle Paleolithic technology in the region, and chronological modeling reveals a gap between the latest Middle Paleolithic and the Châtelperronian in this area. We interpret this as evidence of local Neandertal extinction and replacement by other Neandertal groups coming from southern France, illustrating how local extinction episodes could have played a role in the process of disappearance of Neandertals.
Collapse
|
39
|
Zavala EI, Aximu-Petri A, Richter J, Nickel B, Vernot B, Meyer M. Quantifying and reducing cross-contamination in single- and multiplex hybridization capture of ancient DNA. Mol Ecol Resour 2022; 22:2196-2207. [PMID: 35263821 DOI: 10.1111/1755-0998.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The use of hybridization capture has enabled a massive upscaling in sample sizes for ancient DNA studies, allowing the analysis of hundreds of skeletal remains (Mathieson et al., 2015; Narasimhan et al., 2019) or sediments (Vernot et al., 2021; Wang et al., 2021; Zavala et al., 2021) in single studies. Nevertheless, demands in throughput continue to grow, and hybridization capture has become a limiting step in sample preparation due to the large consumption of reagents, consumables and time. Here we explore the possibility of improving the economics of sample preparation via multiplex capture, i.e. the hybridization capture of pools of double-indexed ancient DNA libraries. We demonstrate that this strategy is feasible, at least for small genomic targets such as mitochondrial DNA, if the annealing temperature is increased and PCR cycles are limited in post-capture amplification to avoid index swapping by jumping PCR, which manifests as cross-contamination in resulting sequence data. We also show that the re-amplification of double-indexed libraries to PCR plateau before or after hybridization capture can sporadically lead to small, but detectable cross-contamination even if libraries are amplified in separate reactions. We provide protocols for both manual capture and automated capture in 384-well format that are compatible with single- and multiplex capture and effectively suppress cross-contamination and artefact formation. Last, we provide a simple computational method for quantifying cross-contamination due to index swapping in double-indexed libraries, which we recommend using for routine quality checks in studies that are sensitive to cross-contamination.
Collapse
Affiliation(s)
- Elena I Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ayinuer Aximu-Petri
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Richter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
40
|
Malyarchuk AB, Andreeva TV, Kuznetsova IL, Kunizheva SS, Protasova MS, Uralsky LI, Tyazhelova TV, Gusev FE, Manakhov AD, Rogaev EI. Genomics of Ancient Pathogens: First Advances and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:242-258. [PMID: 35526849 PMCID: PMC8916790 DOI: 10.1134/s0006297922030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Paleogenomics is one of the urgent and promising areas of interdisciplinary research in the today's world science. New genomic methods of ancient DNA (aDNA) analysis, such as next generation sequencing (NGS) technologies, make it possible not only to obtain detailed genetic information about historical and prehistoric human populations, but also to study individual microbial and viral pathogens and microbiomes from different ancient and historical objects. Studies of aDNA of pathogens by reconstructing their genomes have so far yielded complete sequences of the ancient pathogens that played significant role in the history of the world: Yersinia pestis (plague), Variola virus (smallpox), Vibrio cholerae (cholera), HBV (hepatitis B virus), as well as the equally important endemic human infectious agents: Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy), and Treponema pallidum (syphilis). Genomic data from these pathogens complemented the information previously obtained by paleopathologists and allowed not only to identify pathogens from the past pandemics, but also to recognize the pathogen lineages that are now extinct, to refine chronology of the pathogen appearance in human populations, and to reconstruct evolutionary history of the pathogens that are still relevant to public health today. In this review, we describe state-of-the-art genomic research of the origins and evolution of many ancient pathogens and viruses and examine mechanisms of the emergence and spread of the ancient infections in the mankind history.
Collapse
Affiliation(s)
- Alexandra B Malyarchuk
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Tatiana V Andreeva
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Irina L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Svetlana S Kunizheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Maria S Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Lev I Uralsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Tatiana V Tyazhelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Fedor E Gusev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Andrey D Manakhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Evgeny I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
41
|
Zavala EI, Thomas JT, Sturk-Andreaggi K, Daniels-Higginbotham J, Meyers KK, Barrit-Ross S, Aximu-Petri A, Richter J, Nickel B, Berg GE, McMahon TP, Meyer M, Marshall C. Ancient DNA Methods Improve Forensic DNA Profiling of Korean War and World War II Unknowns. Genes (Basel) 2022; 13:genes13010129. [PMID: 35052469 PMCID: PMC8774965 DOI: 10.3390/genes13010129] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
The integration of massively parallel sequencing (MPS) technology into forensic casework has been of particular benefit to the identification of unknown military service members. However, highly degraded or chemically treated skeletal remains often fail to provide usable DNA profiles, even with sensitive mitochondrial (mt) DNA capture and MPS methods. In parallel, the ancient DNA field has developed workflows specifically for degraded DNA, resulting in the successful recovery of nuclear DNA and mtDNA from skeletal remains as well as sediment over 100,000 years old. In this study we use a set of disinterred skeletal remains from the Korean War and World War II to test if ancient DNA extraction and library preparation methods improve forensic DNA profiling. We identified an ancient DNA extraction protocol that resulted in the recovery of significantly more human mtDNA fragments than protocols previously used in casework. In addition, utilizing single-stranded rather than double-stranded library preparation resulted in increased attainment of reportable mtDNA profiles. This study emphasizes that the combination of ancient DNA extraction and library preparation methods evaluated here increases the success rate of DNA profiling, and likelihood of identifying historical remains.
Collapse
Affiliation(s)
- Elena I. Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
- Correspondence: (E.I.Z.); (C.M.)
| | - Jacqueline Tyler Thomas
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
| | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Jennifer Daniels-Higginbotham
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
| | - Kerriann K. Meyers
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
| | - Suzanne Barrit-Ross
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
| | - Ayinuer Aximu-Petri
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
| | - Julia Richter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
| | - Gregory E. Berg
- Defense Personnel Accounting Agency, Central Identification Laboratory, Hickam Air Force Base, Oahu, HI 96853, USA;
| | - Timothy P. McMahon
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
| | - Charla Marshall
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
- Forensic Science Program, Pennsylvania State University, State College, PA 16802, USA
- Correspondence: (E.I.Z.); (C.M.)
| |
Collapse
|
42
|
Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments. Proc Natl Acad Sci U S A 2022; 119:2113666118. [PMID: 34969841 PMCID: PMC8740756 DOI: 10.1073/pnas.2113666118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 01/26/2023] Open
Abstract
DNA preserved in sediments has emerged as an important source of information about past ecosystems, independent of the discovery of skeletal remains. However, little is known about the sources of sediment DNA, the factors affecting its long-term preservation, and the extent to which it may be translocated after deposition. Here, we show that impregnated blocks of intact sediment are excellent archives of DNA. DNA distribution is highly heterogeneous at the microscale in the cave sediment we studied, suggesting that postdepositional movement of DNA is unlikely to be a common phenomenon in cases where the stratigraphy is undisturbed. Combining micromorphological analysis with microstratigraphic retrieval of ancient DNA therefore allows genetic information to be associated with the detailed archaeological and ecological record preserved in sediments. Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale.
Collapse
|
43
|
Bramucci AR, Focardi A, Rinke C, Hugenholtz P, Tyson GW, Seymour JR, Raina JB. Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME COMMUNICATIONS 2021; 1:79. [PMID: 37938281 PMCID: PMC9723667 DOI: 10.1038/s43705-021-00079-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 05/05/2023]
Abstract
Investigating the composition and metabolic capacity of aquatic microbial assemblages usually requires the filtration of multi-litre samples, which are up to 1 million-fold larger than the microenvironments within which microbes are predicted to be spatially organised. To determine if community profiles can be reliably generated from microlitre volumes, we sampled seawater at a coastal and an oceanic site, filtered and homogenised them, and extracted DNA from bulk samples (2 L) and microvolumes (100, 10 and 1 μL) using two new approaches. These microvolume DNA extraction methods involve either physical or chemical lysis (through pH/thermal shock and lytic enzymes/surfactants, respectively), directly followed by the capture of DNA on magnetic beads. Downstream analysis of extracted DNA using both amplicon sequencing and metagenomics, revealed strong correlation with standard large volume approaches, demonstrating the fidelity of taxonomic and functional profiles of microbial communities in as little as 1 μL of seawater. This volume is six orders of magnitude smaller than most standard operating procedures for marine metagenomics, which will allow precise sampling of the heterogenous landscape that microbes inhabit.
Collapse
Affiliation(s)
- Anna R Bramucci
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Justin R Seymour
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
44
|
Ancient DNA diffuses from human bones to cave stones. iScience 2021; 24:103397. [PMID: 34988387 PMCID: PMC8710462 DOI: 10.1016/j.isci.2021.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Recent studies have demonstrated the potential to recover ancient human mitochondrial DNA and nuclear DNA from cave sediments. However, the source of such sedimentary ancient DNA is still under discussion. Here we report the case of a Bronze Age human skeleton, found in a limestone cave, which was covered with layers of calcite stone deposits. By analyzing samples representing bones and stone deposits from this cave, we were able to: i) reconstruct the full human mitochondrial genome from the bones and the stones (same haplotype); ii) determine the sex of the individual; iii) reconstruct six ancient bacterial and archaeal genomes; and finally iv) demonstrate better ancient DNA preservation in the stones than in the bones. Thereby, we demonstrate the direct diffusion of human DNA from bones into the surrounding environment and show the potential to reconstruct ancient microbial genomes from such cave deposits, which represent an additional paleoarcheological archive resource.
Collapse
|
45
|
Cooper A, Turney CSM, Palmer J, Hogg A, McGlone M, Wilmshurst J, Lorrey AM, Heaton TJ, Russell JM, McCracken K, Anet JG, Rozanov E, Friedel M, Suter I, Peter T, Muscheler R, Adolphi F, Dosseto A, Faith JT, Fenwick P, Fogwill CJ, Hughen K, Lipson M, Liu J, Nowaczyk N, Rainsley E, Bronk Ramsey C, Sebastianelli P, Souilmi Y, Stevenson J, Thomas Z, Tobler R, Zech R. Response to Comment on "A global environmental crisis 42,000 years ago". Science 2021; 374:eabi9756. [PMID: 34793203 DOI: 10.1126/science.abi9756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Alan Cooper
- South Australian Museum, Adelaide, SA 5000, Australia, and BlueSky Genetics, P.O. Box 287, Adelaide, SA 5137, Australia
| | - Chris S M Turney
- Chronos 14Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan Palmer
- Chronos Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alan Hogg
- Radiocarbon Dating Laboratory, University of Waikato, Hamilton, New Zealand
| | - Matt McGlone
- Ecosystems and Conservation, Landcare Research, P.O. Box 69040, Lincoln, New Zealand
| | - Janet Wilmshurst
- Ecosystems and Conservation, Landcare Research, P.O. Box 69040, Lincoln, New Zealand.,School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew M Lorrey
- National Institute of Water and Atmospheric Research Ltd., Auckland, New Zealand
| | - Timothy J Heaton
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| | - James M Russell
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | | | - Julien G Anet
- Zurich University of Applied Sciences, Centre for Aviation, Winterthur, Switzerland
| | - Eugene Rozanov
- Institute for Atmospheric and Climatic Science, ETH Zurich, Zurich, Switzerland.,Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Davos, Switzerland.,Department of Physics of Earth, Faculty of Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Marina Friedel
- Institute for Atmospheric and Climatic Science, ETH Zurich, Zurich, Switzerland
| | - Ivo Suter
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climatic Science, ETH Zurich, Zurich, Switzerland
| | - Raimund Muscheler
- Department of Geology, Quaternary Sciences, Lund University, Lund, Sweden
| | - Florian Adolphi
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - J Tyler Faith
- Natural History Museum of Utah and Department of Anthropology, University of Utah, Salt Lake City, UT 84108, USA
| | - Pavla Fenwick
- Gondwana Tree-Ring Laboratory, P.O. Box 14, Little River, Canterbury 7546, New Zealand
| | - Christopher J Fogwill
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire, UK
| | - Konrad Hughen
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Matthew Lipson
- Centre for Excellence in Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiabo Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Norbert Nowaczyk
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.3, Potsdam, Germany
| | - Eleanor Rainsley
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire, UK
| | - Christopher Bronk Ramsey
- Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, Oxford OX1 3TG, UK
| | - Paolo Sebastianelli
- Faculty of Mathematics, Astronomy and Physics (FAMAF), National University of Córdoba, Córdoba, Argentina, and School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Janelle Stevenson
- Archaeology and Natural History, School of Culture History and Language, ANU College of Asia and the Pacific, Canberra, ACT 2601, Australia
| | - Zoe Thomas
- Chronos Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Roland Zech
- Institute of Geography, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
46
|
Dussex N, Bergfeldt N, de Anca Prado V, Dehasque M, Díez-Del-Molino D, Ersmark E, Kanellidou F, Larsson P, Lemež Š, Lord E, Mármol-Sánchez E, Meleg IN, Måsviken J, Naidoo T, Studerus J, Vicente M, von Seth J, Götherström A, Dalén L, Heintzman PD. Integrating multi-taxon palaeogenomes and sedimentary ancient DNA to study past ecosystem dynamics. Proc Biol Sci 2021; 288:20211252. [PMID: 34428961 PMCID: PMC8385357 DOI: 10.1098/rspb.2021.1252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ancient DNA (aDNA) has played a major role in our understanding of the past. Important advances in the sequencing and analysis of aDNA from a range of organisms have enabled a detailed understanding of processes such as past demography, introgression, domestication, adaptation and speciation. However, to date and with the notable exception of microbiomes and sediments, most aDNA studies have focused on single taxa or taxonomic groups, making the study of changes at the community level challenging. This is rather surprising because current sequencing and analytical approaches allow us to obtain and analyse aDNA from multiple source materials. When combined, these data can enable the simultaneous study of multiple taxa through space and time, and could thus provide a more comprehensive understanding of ecosystem-wide changes. It is therefore timely to develop an integrative approach to aDNA studies by combining data from multiple taxa and substrates. In this review, we discuss the various applications, associated challenges and future prospects of such an approach.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Nora Bergfeldt
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Foteini Kanellidou
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Petter Larsson
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Špela Lemež
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Emilio Mármol-Sánchez
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ioana N Meleg
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,'Emil Racoviță' Institute of Speleology of the Romanian Academy, Calea 13 Septembrie, nr. 13, 050711, Sector 5, Bucharest, Romania.,Emil. G. Racoviță Institute, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Johannes Måsviken
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Thijessen Naidoo
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.,Ancient DNA Unit, SciLifeLab, Stockholm and Uppsala, Sweden
| | - Jovanka Studerus
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Mário Vicente
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Peter D Heintzman
- The Arctic University Museum of Norway, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
47
|
Abstract
Researchers in the ancient DNA community have suspected for well over a decade that ancient whole genomes can be found in sediments. Three new studies now provide such evidence and, with it, endless possibilities for future studies of sedimentary ancient DNA.
Collapse
Affiliation(s)
- Anna Linderholm
- Centre for Palaeogenetics, Stockholm University, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
48
|
Bone-free ancient DNA. Nat Rev Genet 2021; 22:342. [PMID: 33911223 DOI: 10.1038/s41576-021-00368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Gelabert P, Sawyer S, Bergström A, Margaryan A, Collin TC, Meshveliani T, Belfer-Cohen A, Lordkipanidze D, Jakeli N, Matskevich Z, Bar-Oz G, Fernandes DM, Cheronet O, Özdoğan KT, Oberreiter V, Feeney RNM, Stahlschmidt MC, Skoglund P, Pinhasi R. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr Biol 2021; 31:3564-3574.e9. [PMID: 34256019 PMCID: PMC8409484 DOI: 10.1016/j.cub.2021.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
Cave sediments have been shown to preserve ancient DNA but so far have not yielded the genome-scale information of skeletal remains. We retrieved and analyzed human and mammalian nuclear and mitochondrial environmental "shotgun" genomes from a single 25,000-year-old Upper Paleolithic sediment sample from Satsurblia cave, western Georgia:first, a human environmental genome with substantial basal Eurasian ancestry, which was an ancestral component of the majority of post-Ice Age people in the Near East, North Africa, and parts of Europe; second, a wolf environmental genome that is basal to extant Eurasian wolves and dogs and represents a previously unknown, likely extinct, Caucasian lineage; and third, a European bison environmental genome that is basal to present-day populations, suggesting that population structure has been substantially reshaped since the Last Glacial Maximum. Our results provide new insights into the Late Pleistocene genetic histories of these three species and demonstrate that direct shotgun sequencing of sediment DNA, without target enrichment methods, can yield genome-wide data informative of ancestry and phylogenetic relationships.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ashot Margaryan
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Tengiz Meshveliani
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Anna Belfer-Cohen
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lordkipanidze
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Nino Jakeli
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | | | - Guy Bar-Oz
- Zinman Institute of Archaeology, University of Haifa, Haifa, Israel
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Mareike C Stahlschmidt
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| |
Collapse
|
50
|
Ahlquist KD, Bañuelos MM, Funk A, Lai J, Rong S, Villanea FA, Witt KE. Our Tangled Family Tree: New Genomic Methods Offer Insight into the Legacy of Archaic Admixture. Genome Biol Evol 2021; 13:evab115. [PMID: 34028527 PMCID: PMC8480178 DOI: 10.1093/gbe/evab115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022] Open
Abstract
The archaic ancestry present in the human genome has captured the imagination of both scientists and the wider public in recent years. This excitement is the result of new studies pushing the envelope of what we can learn from the archaic genetic information that has survived for over 50,000 years in the human genome. Here, we review the most recent ten years of literature on the topic of archaic introgression, including the current state of knowledge on Neanderthal and Denisovan introgression, as well as introgression from other as-yet unidentified archaic populations. We focus this review on four topics: 1) a reimagining of human demographic history, including evidence for multiple admixture events between modern humans, Neanderthals, Denisovans, and other archaic populations; 2) state-of-the-art methods for detecting archaic ancestry in population-level genomic data; 3) how these novel methods can detect archaic introgression in modern African populations; and 4) the functional consequences of archaic gene variants, including how those variants were co-opted into novel function in modern human populations. The goal of this review is to provide a simple-to-access reference for the relevant methods and novel data, which has changed our understanding of the relationship between our species and its siblings. This body of literature reveals the large degree to which the genetic legacy of these extinct hominins has been integrated into the human populations of today.
Collapse
Affiliation(s)
- K D Ahlquist
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mayra M Bañuelos
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Alyssa Funk
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jiaying Lai
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Brown Center for Biomedical Informatics, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Fernando A Villanea
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Anthropology, University of Colorado Boulder, Colorado, USA
| | - Kelsey E Witt
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|