1
|
Wang C, Dai YH, Wang Z, Lu B, Cao W, Zhao J, Mei G, Yang Q, Guo J, Duan WL. Nickel-Catalyzed Enantioselective Alkylation of Primary Phosphines. J Am Chem Soc 2024; 146:27843-27851. [PMID: 39324666 DOI: 10.1021/jacs.4c10211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Functional molecules derived from stereogenic phosphorus centers have important applications in the discovery of drugs and agrochemicals. They are also widely utilized as chiral ligands or organocatalysts for diverse asymmetric transformations. However, access to P-stereogenic motifs has always been regarded as a highly challenging yet desirable goal in organic synthesis. The development of general and practical methods for the stereoselective construction of synthetically versatile P(III)-stereogenic phosphines is particularly appealing but remains elusive. Herein, we describe a nickel-catalyzed asymmetric alkylation of primary phosphines with alkyl halides for the synthesis of P-stereogenic secondary phosphine-boranes with high enantioselectivity and broad substrate scope. The resulting optically active secondary phosphine-boranes allow for further stereospecific transformations, thereby establishing a modular and efficient platform for the diversity-oriented construction of P-stereogenic phosphine compounds.
Collapse
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yuan-Hao Dai
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zheng Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Bin Lu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Wanxin Cao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Zhao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guoshun Mei
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qingliang Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jiandong Guo
- Institute for Innovative Materials and Energy, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Sun Z, Zong J, Ren H, Lu C, Tu D, Poater J, Solà M, Shi Z, Yan H. Couple-close construction of non-classical boron cluster-phosphonium conjugates. Nat Commun 2024; 15:7934. [PMID: 39256342 PMCID: PMC11387837 DOI: 10.1038/s41467-024-51506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Heteropolycyclic molecular systems, which are essential components in the fields of materials and pharmacology, frequently consist of 2D extended organic aromatic rings. Here, we introduce a type of inorganic-organic hybrid 3D conjugates by merging an aromatic boron cluster with a phosphine and a π-conjugated unit. To achieve this, a couple-close synthetic strategy via B-H activation of nido-carboranes with alkynes has been developed, which leads to diverse boron cluster-extended phosphoniums in a twisted structure with high yields under mild conditions. Experimental and theoretical results reveal that the fusion between the boron cluster and the formed borophosphonium heterocycle facilitates electron delocalization throughout the structure. The unusual framework demonstrates distinct properties from bare boron clusters and pure aromatic ring-extended counterparts, such as improved thermal/chemical stability and photophysical properties. Thus, the boron cluster-based 3D conjugates expand the library of aromatic-based heterocyclics, showcasing great potential in functional materials.
Collapse
Affiliation(s)
- Zhaofeng Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jibo Zong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, 08028, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona, 17003, Catalonia, Spain.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Handjaya JP, Patankar N, Reid JP. The Diversity and Evolution of Chiral Brønsted Acid Structures. Chemistry 2024; 30:e202400921. [PMID: 38706381 DOI: 10.1002/chem.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
The chemical space of chiral Brønsted acid catalysts is defined by quantity and complexity, reflecting the diverse synthetic challenges confronted and the innovative molecular designs introduced. Here, we detail how this successful outcome is a powerful demonstration of the benefits of utilizing both local structure searches and a comprehensive understanding of catalyst performance for effective and efficient exploration of Brønsted acid properties. In this concept article we provide an evolutionary overview of this field by summarizing the approaches to catalyst optimization, the resulting structures, and functions.
Collapse
Affiliation(s)
- Jasemine P Handjaya
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Niraja Patankar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
4
|
He L, Xiang Y. Interrogating the Presence of RNA Phosphorothioate in Nature by a Highly Selective and Sensitive Fluorescence Method. Anal Chem 2024. [PMID: 39138966 DOI: 10.1021/acs.analchem.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In nature, DNA phosphorothioate (PT) is found in the genomic materials of some prokaryotes. In contrast, whether there is natural RNA PT is still a question under debate. A groundbreaking study reported the discovery of RNA PT in cellular RNA samples from both prokaryotes and eukaryotes at contents of >100 PT per million nucleotides (PPM-nt) according to liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis. However, this finding was challenged by a later work showing that other RNA modifications, such as 2'-O-methylation, could give almost the same LC-MS/MS signal patterns as RNA PT. As the LC-MS/MS technique led to contradicting conclusions, another independent method is thus needed to interrogate the presence of RNA PT in nature. In this work, we have developed a highly selective and sensitive fluorescence method for RNA PT quantification based on a new RNA PT-specific conversion reaction. It can detect as low as 2.8 PPM-nt in RNA without interference from RNA thiobases or protein cysteines. We measured the total RNA samples from some bacteria and human cells using this method. None of these samples gave any RNA PT signal above the detection limit (2.8 PPM-nt), suggesting that the widespread presence of natural RNA PT at the 100 PPM-nt level or above is highly unlikely. Nevertheless, due to the limited number of cell species tested in this work, the possible existence of natural RNA PT cannot be excluded. The fluorescence method reported here is simple and low-cost; therefore, it should be an ideal assay for broadly screening various types of cells to search for the clue of RNA PT in nature.
Collapse
Affiliation(s)
- Luo He
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Luo Z, Liao M, Li W, Zhao S, Tang K, Zheng P, Chi YR, Zhang X, Wu X. Ionic Hydrogen Bond-Assisted Catalytic Construction of Nitrogen Stereogenic Center via Formal Desymmetrization of Remote Diols. Angew Chem Int Ed Engl 2024; 63:e202404979. [PMID: 38745374 DOI: 10.1002/anie.202404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The control of noncarbon stereogenic centers is of profound importance owing to their enormous interest in bioactive compounds and chiral catalyst or ligand design for enantioselective synthesis. Despite various elegant approaches have been achieved for construction of S-, P-, Si- and B-stereocenters over the past decades, the catalyst-controlled strategies to govern the formation of N-stereogenic compounds have garnered less attention. Here, we disclose the first organocatalytic approach for efficient access to a wide range of nitrogen-stereogenic compounds through a desymmetrization approach. Intriguingly, the pro-chiral remote diols, which are previously not well addressed with enantiocontrol, are well differentiated by potent chiral carbene-bound acyl azolium intermediates. Preliminary studies shed insights on the critical importance of the ionic hydrogen bond (IHB) formed between the dimer aggregate of diols to afford the chiral N-oxide products that feature a tetrahedral nitrogen as the sole stereogenic element with good yields and excellent enantioselectivities. Notably, the chiral N-oxide products could offer an attractive strategy for chiral ligand design and discovery of potential antibacterial agrochemicals.
Collapse
Grants
- National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas)-YQHW
- the starting grant of Guizhou University [(2022)47)]
- National Natural Science Foundation of China (21732002, 22061007, 22071036, and 22207022)
- Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules
- Department of Education, Science and Technology Department of Guizhou Province [Qiankehe-jichu-ZK[2022]zhongdian024]
- Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University
- Singapore National Research Foundation under its NRF Investigatorship (NRF-NRFI2016-06) and Competitive Research Program (NRF-CRP22-2019-0002)
- Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award (RG7/20, RG70/21), MOE AcRF Tier 2 (MOE2019-T2-2-117)
- a Chair Professorship Grant, and Nanyang Technological University
- (2022)47 starting grant of Guizhou University
- 21732002 National Natural Science Foundation of China
- 22061007 National Natural Science Foundation of China
- 22071036 National Natural Science Foundation of China
- 22207022 National Natural Science Foundation of China
- Qiankehe-jichu-ZK[2022]zhongdian024 Department of Education, Science and Technology Department of Guizhou Province
- Qiankehejichu-ZK[2024]yiban030 Department of Education, Science and Technology Department of Guizhou Province
- NRF-NRFI2016-06 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- RG7/20, RG70/21 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- MOE2019-T2-2-117 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- Chair Professorship Grant, and Nanyang Technological University
- C210812008 Agency for Science, Technology and Research (A*STAR) under its Career Development Fund
- M22K3c0091 Manufacturing, TradeConnectivity (MTC) Young Individual Research Grants.
Collapse
Affiliation(s)
- Zhongfu Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Minghong Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Wei Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Sha Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Kun Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), A*STAR, Singapore, 138632, Singapore
| | - Xingxing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
6
|
Khajuria C, Saini N, Subba P, Singh VK. Asymmetric Cascade Dearomatization-Cyclization Reaction of Tryptamines with β,γ-Alkynyl-α-imino Esters: Access to Hexahydropyrrolo[2,3- b]indole-Containing Tetrasubstituted α-Amino Allenoates. J Org Chem 2024; 89:10148-10162. [PMID: 38959521 DOI: 10.1021/acs.joc.4c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
An organocatalytic enantio- and diastereoselective synthesis of hexahydropyrrolo[2,3-b]indole-containing tetrasubstituted α-amino allenoates, exhibiting both axial and central chirality, has been accomplished via cascade dearomatization-cyclization reaction. The γ-addition to β,γ-alkynyl-α-imino esters provides a library of densely substituted highly enantioenriched allenes in high yields and excellent stereoselectivities. In addition, the scope of this methodology has been extended to tryptophol as well. A scale-up reaction and synthetic transformations of the products were performed to demonstrate the practical usefulness of this approach.
Collapse
Affiliation(s)
- Chhavi Khajuria
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Nidhi Saini
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Parbat Subba
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
7
|
Yeboah SK, Zigli A, Sintim HO. 2',4'-LNA-Functionalized 5'-S-Phosphorothioester CDNs as STING Agonists. Chembiochem 2024; 25:e202400321. [PMID: 38720428 DOI: 10.1002/cbic.202400321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Indexed: 07/03/2024]
Abstract
Cyclic dinucleotides (CDNs) have garnered popularity over the last decade as immunotherapeutic agents, which activate the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway to trigger an immune response. Many analogs of 2'3'-cGAMP, c-di-GMP, and c-di-AMP have been developed and shown as effective cancer vaccines and immunomodulators for the induction of both the adaptive and innate immune systems. Unfortunately, the effectiveness of these CDNs is limited by their chemical and enzymatic instability. We recently introduced 5'-endo-phosphorothoiate 2'3'-cGAMP analogs as potent STING agonist with improved resistance to cleavage by clinically relevant phosphodiesterases. We herein report the synthesis of locked nucleic acid-functionalized (LNA) endo-S-CDNs and evaluate their ability to activate STING in THP1 monocytes. Interestingly, some of our synthesized LNA 3'3'-endo-S-CDNs can moderately activate hSTING REF haplotype (R232H), which exhibit diminished response to both 2'3'-cGAMP and ADU-S100. Also, we show that one of our most potent endo-S-CDNs has remarkable chemical (oxidants I2 and H2O2) and phosphodiesterase stability.
Collapse
Affiliation(s)
- Simpa K Yeboah
- Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, 47907-2084
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Abdulai Zigli
- Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, 47907-2084
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Herman O Sintim
- Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, 47907-2084
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Saito Y, Cho SM, Danieli LA, Matsunaga A, Kobayashi S. A highly efficient catalytic method for the synthesis of phosphite diesters. Chem Sci 2024; 15:8190-8196. [PMID: 38817565 PMCID: PMC11134407 DOI: 10.1039/d4sc01401d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
In contrast to conventional methods that rely on stoichiometric activation of phosphonylating reagents, we have developed a highly efficient catalytic method for the synthesis of phosphite diesters using a readily available phosphonylation reagent and alcohols with environmentally benign Zn(ii) catalysts. Two alcohols could be introduced consecutively on the P center with release of trifluoroethanol as the sole byproduct, without any additive, under mild conditions. The products could be oxidized smoothly to access phosphate triesters. A range of alcohols, including sterically demanding and highly functionalized alcohols such as carbohydrates and nucleosides, can be applied in this reaction.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Soo Min Cho
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Luca Alessandro Danieli
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Akira Matsunaga
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
9
|
Obexer R, Nassir M, Moody ER, Baran PS, Lovelock SL. Modern approaches to therapeutic oligonucleotide manufacturing. Science 2024; 384:eadl4015. [PMID: 38603508 DOI: 10.1126/science.adl4015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
Therapeutic oligonucleotides are a powerful drug modality with the potential to treat many diseases. The rapidly growing number of therapies that have been approved and that are in advanced clinical trials will place unprecedented demands on our capacity to manufacture oligonucleotides at scale. Existing methods based on solid-phase phosphoramidite chemistry are limited by their scalability and sustainability, and new approaches are urgently needed to deliver the multiton quantities of oligonucleotides that are required for therapeutic applications. The chemistry community has risen to the challenge by rethinking strategies for oligonucleotide production. Advances in chemical synthesis, biocatalysis, and process engineering technologies are leading to increasingly efficient and selective routes to oligonucleotide sequences. We review these developments, along with remaining challenges and opportunities for innovations that will allow the sustainable manufacture of diverse oligonucleotide products.
Collapse
Affiliation(s)
- R Obexer
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - M Nassir
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - E R Moody
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - P S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - S L Lovelock
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Desai SP, Yatzoglou G, Turner JA, Taylor MS. Boronic Acid-Catalyzed Regio- and Stereoselective N-Glycosylations of Purines and Other Azole Heterocycles: Access to Nucleoside Analogues. J Am Chem Soc 2024; 146:4973-4984. [PMID: 38330907 DOI: 10.1021/jacs.3c14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In the presence of an arylboronic acid catalyst, azole-type heterocycles, including purines, tetrazoles, triazoles, indazoles, and benzo-fused congeners, undergo regio- and stereoselective N-glycosylations with furanosyl and pyranosyl trichloroacetimidate donors. The protocol, which does not require stoichiometric activators, specialized leaving groups, or drying agents, provides access to nucleoside analogues and enables late-stage N-glycosylation of azole-containing pharmaceutical agents. A mechanism involving simultaneous activation of the glycosyl donor and acceptor by the organoboron catalyst has been proposed, supported by kinetic analysis and computational modeling.
Collapse
Affiliation(s)
- Shrey P Desai
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Giorgos Yatzoglou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
11
|
Lu Y, You L, Li L, Kilgore JA, Liu S, Wang X, Dai Y, Wei Q, Shi H, Han L, Sun L, Chen ZJ, Zhang X, Williams NS, Chen C. Orthogonal Hydroxyl Functionalization of cGAMP Confers Metabolic Stability and Enables Antibody Conjugation. ACS CENTRAL SCIENCE 2023; 9:2298-2305. [PMID: 38161369 PMCID: PMC10755847 DOI: 10.1021/acscentsci.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
cGAMP is a signaling molecule produced by the cGAS-DNA complex to establish antimicrobial and antitumor immunity through STING. Whereas STING activation holds potential as a new strategy to treat cancer, cGAMP is generally considered unsuitable for in vivo use because of the rapid cleavage of its phosphodiester linkages and the limited cellular uptake under physiological conditions. Consequently, phosphorothioation and fluorination are commonly used to improve the metabolic stability and permeability of cGAMP and its synthetic analogues. We now show that methylation of the 3'-hydroxyl group of cGAMP also confers metabolic stability and that acylation of the 2'-hydroxyl group can be achieved directly and selectively to enable receptor-mediated intracellular delivery. Unlike phosphorothioation and fluorination, these modifications do not create a new stereogenic center and do not require laborious building block synthesis. As such, orthogonal hydroxyl functionalization is a simple solution to issues associated with the in vivo use of cGAMP.
Collapse
Affiliation(s)
- Yong Lu
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lin You
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Liping Li
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Jessica A. Kilgore
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Shun Liu
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Xiaoyu Wang
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Yuanwei Dai
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Qi Wei
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Heping Shi
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lei Han
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lijun Sun
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Zhijian J. Chen
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Xuewu Zhang
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Noelle S. Williams
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Chuo Chen
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| |
Collapse
|
12
|
Budeev A, Dong J, Häussinger D, Sparr C. Catalyst control over pentavalent stereocentres. Nat Commun 2023; 14:8013. [PMID: 38049395 PMCID: PMC10696079 DOI: 10.1038/s41467-023-43750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
A monumental diversity of catalytic methods imparts the ability to select one of two configurations of tetravalent stereocentres. Conversely, catalyst control over pentavalent stereocentres, where a fifth moiety bound to the central atom encodes an expanded stereochemical space, remained a challenge to be accomplished. Herein, we report the feasibility of the catalytic tractability of pentavalent stereocentres. A bifunctional iminophosphorane thiourea catalyst enables enantio- and diastereocontrol over pentavalent phosphoranes to differentiate configurationally stable enantiomers and ensembles of diastereomers which emerge together from a single stereocentre. The desired dioxophosphorane stereoisomers are obtained with excellent yield and selectivity (up to 99% yield, 96:4 e.r. and 99:1 d.r.), while stereodivergent catalysis reroutes the reaction for selective access to each of the viable stereoisomeric states of pentavalent phosphoranes. Considering the diversity of high-valent main group species, it is expected that catalyst control over pentavalent stereocentres significantly increases the synthetically addressable stereochemical space.
Collapse
Affiliation(s)
- Anton Budeev
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Jianyang Dong
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Subba P, Sadhu MM, Singh VK. Chiral Phosphoric Acid-Catalyzed Asymmetric Friedel-Crafts Addition of Indolizine to Cyclic N-Sulfonyl Imine. J Org Chem 2023; 88:14676-14687. [PMID: 37787981 DOI: 10.1021/acs.joc.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A highly efficient chiral phosphoric acid-catalyzed enantioselective Friedel-Crafts addition of indolizine to cyclic N-sulfonyl imine has been established. The newly developed protocol, which probably proceeds via a monoactivation reaction pathway, allows the access of enantioenriched sulfonamide functionalized indolizines with excellent yields (up to 99%) and enantioselectivities (up to 99%). Moreover, the synthetic utility of this protocol has been explored with some chemical transformations.
Collapse
Affiliation(s)
- Parbat Subba
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Milon M Sadhu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
14
|
Zou Y, Zhang M, Zhou J. Recent trends in STING modulators: Structures, mechanisms, and therapeutic potential. Drug Discov Today 2023; 28:103694. [PMID: 37393985 DOI: 10.1016/j.drudis.2023.103694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
The cyclic GMP-AMP synthase stimulator (cGAS)-stimulator of interferon gene (STING) signaling pathway has an integral role in the host immune response through DNA sensing followed by inducing a robust innate immune defense program. STING has become a promising therapeutic target associated with multiple diseases, including various inflammatory diseases, cancer, and infectious diseases, among others. Thus, modulators of STING are regarded as emerging therapeutic agents. Recent progress has been made in STING research, including recently identified STING-mediated regulatory pathways, the development of a new STING modulator, and the new association of STING with disease. In this review, we focus on recent trends in the development of STING modulators, including structures, mechanisms, and clinical application.
Collapse
Affiliation(s)
- Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
15
|
Sun S, Homer JA, Smedley CJ, Cheng QQ, Sharpless KB, Moses JE. Phosphorus fluoride exchange: Multidimensional catalytic click chemistry from phosphorus connective hubs. Chem 2023; 9:2128-2143. [PMID: 38882554 PMCID: PMC11172371 DOI: 10.1016/j.chempr.2023.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Phosphorus Fluoride Exchange (PFEx) represents a cutting-edge advancement in catalytic click-reaction technology. Drawing inspiration from Nature's phosphate connectors, PFEx facilitates the reliable coupling of P(V)-F loaded hubs with aryl alcohols, alkyl alcohols, and amines to produce stable, multidimensional P(V)-O and P(V)-N linked products. The rate of P-F exchange is significantly enhanced by Lewis amine base catalysis, such as 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). PFEx substrates containing multiple P-F bonds are capable of selective, serial exchange reactions via judicious catalyst selection. In fewer than four synthetic steps, controlled projections can be deliberately incorporated along three of the four tetrahedral axes departing from the P(V) central hub, thus taking full advantage of the potential for generating three-dimensional diversity. Furthermore, late-stage functionalization of drugs and drug fragments can be achieved with the polyvalent PFEx hub, hexafluorocyclotriphosphazene (HFP), as has been demonstrated in prior research.
Collapse
Affiliation(s)
- Shoujun Sun
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- These authors contributed equally
| | - Christopher J. Smedley
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- These authors contributed equally
| | - Qing-Qing Cheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Lead contact
| |
Collapse
|
16
|
Moody ER, Obexer R, Nickl F, Spiess R, Lovelock SL. An enzyme cascade enables production of therapeutic oligonucleotides in a single operation. Science 2023; 380:1150-1154. [PMID: 37319201 DOI: 10.1126/science.add5892] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Therapeutic oligonucleotides have emerged as a powerful drug modality with the potential to treat a wide range of diseases; however, the rising number of therapies poses a manufacturing challenge. Existing synthetic methods use stepwise extension of sequences immobilized on solid supports and are limited by their scalability and sustainability. We report a biocatalytic approach to efficiently produce oligonucleotides in a single operation where polymerases and endonucleases work in synergy to amplify complementary sequences embedded within catalytic self-priming templates. This approach uses unprotected building blocks and aqueous conditions. We demonstrate the versatility of this methodology through the synthesis of clinically relevant oligonucleotide sequences containing diverse modifications.
Collapse
Affiliation(s)
- E R Moody
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - R Obexer
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - F Nickl
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - R Spiess
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - S L Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Inagaki M, Abe N, Li Z, Nakashima Y, Acharyya S, Ogawa K, Kawaguchi D, Hiraoka H, Banno A, Meng Z, Tada M, Ishida T, Lyu P, Kokubo K, Murase H, Hashiya F, Kimura Y, Uchida S, Abe H. Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures. Nat Commun 2023; 14:2657. [PMID: 37169757 PMCID: PMC10175277 DOI: 10.1038/s41467-023-38244-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Starting with the clinical application of two vaccines in 2020, mRNA therapeutics are currently being investigated for a variety of applications. Removing immunogenic uncapped mRNA from transcribed mRNA is critical in mRNA research and clinical applications. Commonly used capping methods provide maximum capping efficiency of around 80-90% for widely used Cap-0- and Cap-1-type mRNAs. However, uncapped and capped mRNA possesses almost identical physicochemical properties, posing challenges to their physical separation. In this work, we develop hydrophobic photocaged tag-modified cap analogs, which separate capped mRNA from uncapped mRNA by reversed-phase high-performance liquid chromatography. Subsequent photo-irradiation recovers footprint-free native capped mRNA. This approach provides 100% capping efficiency even in Cap-2-type mRNA with versatility applicable to 650 nt and 4,247 nt mRNA. We find that the Cap-2-type mRNA shows up to 3- to 4-fold higher translation activity in cultured cells and animals than the Cap-1-type mRNA prepared by the standard capping method.
Collapse
Affiliation(s)
- Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Susit Acharyya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Kazuya Ogawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Ayaka Banno
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Zheyu Meng
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Tatsuma Ishida
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Pingxue Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Kengo Kokubo
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Hirotaka Murase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Satoshi Uchida
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
18
|
Abstract
The discovery of cGAMP in 2012 filled an important gap in our understanding of innate immune signaling. It has been known for over a century that DNA can induce immune responses, but the underlying mechanism was not clear. With the identification of STING as a key player in interferon induction, the DNA detector that activates STING was the last missing link in TBK1-IRF3 signaling. Somewhat unexpectedly, it turns out that nature relays the DNA danger signal through a small molecule. cGAMP is a cyclic dinucleotide produced from cyclodimerization of ATP and GTP upon detection of cytosolic DNA by cGAS, a previously uncharacterized protein, to promote the assembly of the STING signalosome. This article covers a personal account of the discovery of cGAMP, a short history of the relevant nucleotide chemistry, and a summary of the latest development in this field of research in chemistry. It is the author's hope that, with a historic perspective, the readers can better appreciate the synergy between chemistry and biology in drug development.
Collapse
Affiliation(s)
- Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| |
Collapse
|
19
|
Liu J, Chen H, Wang M, He W, Yan JL. Organocatalytic asymmetric synthesis of P-stereogenic molecules. Front Chem 2023; 11:1132025. [PMID: 36874062 PMCID: PMC9978094 DOI: 10.3389/fchem.2023.1132025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023] Open
Abstract
P-chirality broadly appears in natural and synthetic functional molecules. The catalytic synthesis of organophosphorus compounds bearing P-stereogenic centers is still challenging, due to the lack of efficient catalytic systems. This review summarizes the key achievements in organocatalytic methodologies for the synthesis of P-stereogenic molecules. Different catalytic systems are emphasized for each strategy class (desymmetrization, kinetic resolution, and dynamic kinetic resolution) with examples cited to illustrate the potential applications of the accessed P-stereogenic organophosphorus compounds.
Collapse
Affiliation(s)
- Junyang Liu
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hang Chen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Min Wang
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Wangjin He
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jia-Lei Yan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
20
|
Chen ZH, Li TZ, Wang NY, Ma XF, Ni SF, Zhang YC, Shi F. Organocatalytic Enantioselective Synthesis of Axially Chiral N,N'-Bisindoles. Angew Chem Int Ed Engl 2023; 62:e202300419. [PMID: 36749711 DOI: 10.1002/anie.202300419] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
This study establishes the first organocatalytic enantioselective synthesis of axially chiral N,N'-bisindoles via chiral phosphoric acid-catalyzed formal (3+2) cycloadditions of indole-based enaminones as novel platform molecules with 2,3-diketoesters, where de novo indole-ring formation is involved. Using this new strategy, various axially chiral N,N'-bisindoles were synthesized in good yields and with excellent enantioselectivities (up to 87 % yield and 96 % ee). More importantly, this class of axially chiral N,N'-bisindoles exhibited some degree of cytotoxicity toward cancer cells and was derived into axially chiral phosphine ligands with high catalytic activity. This study provides a new strategy for enantioselective synthesis of axially chiral N,N'-bisindoles using asymmetric organocatalysis and is the first to realize the applications of such scaffolds in medicinal chemistry and asymmetric catalysis.
Collapse
Affiliation(s)
- Zhi-Han Chen
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tian-Zhen Li
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ning-Yi Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiao-Fang Ma
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
21
|
Wohlgemuth R. Advances in the Synthesis and Analysis of Biologically Active Phosphometabolites. Int J Mol Sci 2023; 24:3150. [PMID: 36834560 PMCID: PMC9961378 DOI: 10.3390/ijms24043150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Phosphorus-containing metabolites cover a large molecular diversity and represent an important domain of small molecules which are highly relevant for life and represent essential interfaces between biology and chemistry, between the biological and abiotic world. The large but not unlimited amount of phosphate minerals on our planet is a key resource for living organisms on our planet, while the accumulation of phosphorus-containing waste is associated with negative effects on ecosystems. Therefore, resource-efficient and circular processes receive increasing attention from different perspectives, from local and regional levels to national and global levels. The molecular and sustainability aspects of a global phosphorus cycle have become of much interest for addressing the phosphorus biochemical flow as a high-risk planetary boundary. Knowledge of balancing the natural phosphorus cycle and the further elucidation of metabolic pathways involving phosphorus is crucial. This requires not only the development of effective new methods for practical discovery, identification, and high-information content analysis, but also for practical synthesis of phosphorus-containing metabolites, for example as standards, as substrates or products of enzymatic reactions, or for discovering novel biological functions. The purpose of this article is to review the advances which have been achieved in the synthesis and analysis of phosphorus-containing metabolites which are biologically active.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland; or
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
| |
Collapse
|
22
|
Cross-assembly confined bifunctional catalysis via non-covalent interactions for asymmetric halogenation. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
23
|
Van Giesen KJ, Thompson MJ, Meng Q, Lovelock SL. Biocatalytic Synthesis of Antiviral Nucleosides, Cyclic Dinucleotides, and Oligonucleotide Therapies. JACS AU 2023; 3:13-24. [PMID: 36711092 PMCID: PMC9875237 DOI: 10.1021/jacsau.2c00481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Nucleosides, nucleotides, and oligonucleotides modulate diverse cellular processes ranging from protein production to cell signaling. It is therefore unsurprising that synthetic analogues of nucleosides and their derivatives have emerged as a versatile class of drug molecules for the treatment of a wide range of disease areas. Despite their great therapeutic potential, the dense arrangements of functional groups and stereogenic centers present in nucleic acid analogues pose a considerable synthetic challenge, especially in the context of large-scale manufacturing. Commonly employed synthetic methods rely on extensive protecting group manipulations, which compromise step-economy and result in high process mass intensities. Biocatalytic approaches have the potential to address these limitations, enabling the development of more streamlined, selective, and sustainable synthetic routes. Here we review recent achievements in the biocatalytic manufacturing of nucleosides and cyclic dinucleotides along with progress in developing enzymatic strategies to produce oligonucleotide therapies. We also highlight opportunities for innovations that are needed to facilitate widespread adoption of these biocatalytic methods across the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Sarah L. Lovelock
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
24
|
Sarkar S, Kalek M. Metal-Free S-Arylation of Phosphorothioate Diesters and Related Compounds with Diaryliodonium Salts. Org Lett 2023; 25:671-675. [PMID: 36662120 PMCID: PMC9903330 DOI: 10.1021/acs.orglett.2c04310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We developed a direct metal-free S-arylation of phosphorothioate diesters using diaryliodonium salts. The method allows for the preparation under simple conditions of a broad range of S-aryl phosphorothioates, including complex molecules (e.g., dinucleotide or TADDOL derivatives), as well as other related organophosphorus compounds arylated at a chalcogen. The reaction proceeds with a full retention of the stereogenic center at the phosphorus atom, opening convenient access to P-chiral products. The mechanism of the reaction was established using DFT calculations.
Collapse
Affiliation(s)
- Sudeep Sarkar
- Centre
of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland,Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Marcin Kalek
- Centre
of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland,
| |
Collapse
|
25
|
Huang R, Wang M, Deng H, Xu J, Yan H, Zhao Y, Shi Z. Stereospecific nickel-catalyzed [4+2] heteroannulation of alkynes with aminophosphanes. SCIENCE ADVANCES 2023; 9:eade8638. [PMID: 36638162 PMCID: PMC9839338 DOI: 10.1126/sciadv.ade8638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Enantioenriched phosphorus compounds play crucial roles in many fields ranging from catalyst to materials science to drug development. Despite advances in the construction of phosphacycles, incorporation of a P-chirogenic center into heterocycles remains challenging. Here, we report an effective method for the preparation of phosphacycles through nickel-catalyzed [4+2] heteroannulation of internal alkynes with aminophosphanes derived from o-haloanilines. Notably, chiral 2-λ5-phosphaquinolines can be prepared from P-stereogenic substrates via NH/PH tautomeric equilibrium without loss of stereochemical integrity. The strategy is found to exhibit a broad scope in terms of both reaction components, enabling modular construction of libraries of 2-λ5-phosphaquinolines with different steric and electronic properties for fine-tuning photophysical properties, where some of these compounds showed distinct fluorescence with high quantum yields. A series of mechanistic studies further shed light on the pathway of the heteroannulation and reasons for stereospecificity.
Collapse
Affiliation(s)
- Ronghui Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Deng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
26
|
Chen T, Tang S, Fu Y, Napolitano JG, Zhang K. Analytical techniques for characterizing diastereomers of phosphorothioated oligonucleotides. J Chromatogr A 2022; 1678:463349. [PMID: 35908512 DOI: 10.1016/j.chroma.2022.463349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
Abstract
Oligonucleotides have emerged as powerful therapeutics for treating diverse diseases. To fully unlock the therapeutic potential of oligonucleotides, there is still a great need to further improve their drug-like properties. Numerous chemical modifications have been explored to achieve this goal, with phosphorothioation being one of the most widely used strategies. However, phosphorothioate modification produces diastereomers that are reported to have different properties and performances, demanding detailed characterization of these diastereomers. Here we provide an overview of phosphorothioated oligonucleotide diastereomers, covering their origin and configurations, physicochemical and pharmacological properties, and stereo-selective chemical synthesis, followed by a summary of currently available analytical techniques for characterizing these diastereomers, with a focus on liquid chromatography-based approaches, including ion-pair reversed-phase liquid chromatography, anion exchange chromatography, mixed-mode chromatography, and hybrid approaches. Non-chromatographic techniques, such as capillary electrophoresis, spectroscopy and other methods, are also being reviewed.
Collapse
Affiliation(s)
- Tao Chen
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Shijia Tang
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Yige Fu
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - José G Napolitano
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Kelly Zhang
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
27
|
Forbes KC, Jacobsen EN. Enantioselective hydrogen-bond-donor catalysis to access diverse stereogenic-at-P(V) compounds. Science 2022; 376:1230-1236. [PMID: 35679409 PMCID: PMC9427129 DOI: 10.1126/science.abp8488] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stereoselective synthesis of molecules bearing stereogenic phosphorus(V) centers represents an enduring challenge in organic chemistry. Although stereospecific nucleophilic substitution at P(V) provides a general strategy for elaborating optically active P(V) compounds, existing methods for accessing the requisite chiral building blocks rely almost entirely on diastereocontrol using chiral auxiliaries. Catalytic, enantioselective methods for the synthesis of synthetically versatile stereogenic P(V) building blocks offer an alternative approach to stereogenic-at-P(V) targets without requiring stoichiometric quantities of chiral control elements. Here, we report an enantioselective hydrogen-bond-donor-catalyzed synthesis of aryl chlorophosphonamidates and the development of these products as versatile chiral P(V) building blocks. We demonstrate that the two leaving groups on these chlorophosphonamidates can be displaced sequentially and stereospecifically to access a wide variety of stereogenic-at-P(V) compounds featuring diverse substitution patterns.
Collapse
Affiliation(s)
- Katherine C. Forbes
- Department of Chemistry and Chemical Biology, Harvard University; Cambridge, MA 02138, USA
| | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University; Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Verdaguer X. Phosphorus through the looking glass. Science 2022; 376:1157-1158. [PMID: 35679417 DOI: 10.1126/science.abq5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A key building block enables a general synthesis of chiral phosphorus drugs.
Collapse
Affiliation(s)
- Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
29
|
Miyazaki Y, Yoshida A, Okaniwa T, Miyauchi K, Ohkubo A. Oligonucleotide Synthesis on Porous Glass Resins Containing Activators. Org Lett 2022; 24:3807-3811. [PMID: 35593903 DOI: 10.1021/acs.orglett.2c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the advancement of nucleic acid-related research, high-efficiency, low-cost synthesis of high-purity oligonucleotides is necessary. Herein, we introduced hydroxybenzotriazole (HOBt) activators on controlled pore glass resins to improve the efficiency of chain elongation (the synthesis efficiency increased from 48% without an activator to 92% with an activator). In particular, the use of the resin containing 6-trifluoromethyl HOBt with a linker of lauric acid and succinic acid significantly improved the synthesis efficiency for both DNA and RNA syntheses.
Collapse
Affiliation(s)
- Yu Miyazaki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Aoma Yoshida
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Teruyuki Okaniwa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Kouichiro Miyauchi
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Akihiro Ohkubo
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| |
Collapse
|
30
|
Catalytic Asymmetric Synthesis of Axially Chiral 3,3'‐Bisindoles by Direct Coupling of Indole Rings. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Lv WX, Chen H, Zhang X, Ho CC, Liu Y, Wu S, Wang H, Jin Z, Chi YR. Programmable selective acylation of saccharides mediated by carbene and boronic acid. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Haegele JA, Boyanapalli R, Goyal J. Improvements to Hybridization-Ligation Enzyme-Linked Immunosorbent Assay Methods to Overcome Bioanalytical Challenges Posed by Novel Oligonucleotide Therapeutics. Nucleic Acid Ther 2022; 32:350-359. [PMID: 35404142 PMCID: PMC9416565 DOI: 10.1089/nat.2021.0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
As oligonucleotides (ONs) and similar nucleic acid therapeutic modalities enter development pipelines, there is continual need to develop bioanalytical methodologies addressing unique challenges they pose. Novel ONs back bone chemistries, especially those enabling stereochemical control, and base modifications are being exploited to improve pharmacological properties, potency, and increase half-lives. These changes have strained established methods, oftentimes precluding development of assays sensitive and specific enough to meet the needs of preclinical programs. For stereopure ONs representing a single molecular species, nontrivial presence of chain-shortened metabolites in biological samples necessitate assays with high specificity. To meet these needs, this report presents a toolbox of novel techniques, easy to implement for existing hybridization-ligation enzyme-linked immunosorbent assay formats, which address this challenge and yield significant sensitivity and specificity enhancements. Ligation efficiency was improved up to 61-fold through addition of polyethylene glycol, betaine, or dimethylsulfoxide, mitigating major differences among sequence-matched ONs of varying stereopurity, enabling sensitivities below 0.100 ng/mL for quantitation. These improvements enabled further refinement of capture probe designs engendering sufficient specificity to discriminate N-1 chain-shortened metabolites at both the 5′ and 3′ end of the ONs. These generalizable methods advance the performance of mainstay bioanalytical assays, facilitating research and development of innovative ONs therapeutics.
Collapse
Affiliation(s)
| | | | - Jaya Goyal
- Wave Life Sciences USA, Inc., Lexington, Massachusetts, USA
| |
Collapse
|
33
|
Zhang YQ, Han XY, Wu Y, Qi PJ, Zhang Q, Zhang QW. Ni-catalyzed asymmetric hydrophosphinylation of conjugated enynes and mechanistic studies. Chem Sci 2022; 13:4095-4102. [PMID: 35440997 PMCID: PMC8985578 DOI: 10.1039/d2sc00091a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The catalytic asymmetric synthesis of P-stereogenic phosphines is an efficient strategy to access structurally diverse chiral phosphines that could serve as organocatalysts and ligands to transition metals and motifs of antiviral drugs. Herein, we describe a Ni catalyzed highly regio and enantioselective hydrophosphinylation reaction of secondary phosphine oxides and enynes. This method afforded a plethora of alkenyl phosphine oxides which could serve as valuable precursors to bidentate ligands. A new type of mechanism was discovered by combined kinetic studies and density functional theory (DFT) calculations, which was opposed to the widely accepted Chalk-Harrod type mechanism. Notably, the alkene moiety which could serve as a directing group by coordinating with the Ni catalyst in the transition state, plays a vital role in determining the reactivity, regio and enantioselectivity.
Collapse
Affiliation(s)
- Ya-Qian Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Xue-Yu Han
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Yue Wu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Peng-Jia Qi
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Qing Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
34
|
Benkovics T, Peng F, Phillips EM, An C, Bade RS, Chung CK, Dance ZEX, Fier PS, Forstater JH, Liu Z, Liu Z, Maligres PE, Marshall NM, Salehi Marzijarani N, McIntosh JA, Miller SP, Moore JC, Neel AJ, Obligacion JV, Pan W, Pirnot MT, Poirier M, Reibarkh M, Sherry BD, Song ZJ, Tan L, Turnbull BWH, Verma D, Waldman JH, Wang L, Wang T, Winston MS, Xu F. Diverse Catalytic Reactions for the Stereoselective Synthesis of Cyclic Dinucleotide MK-1454. J Am Chem Soc 2022; 144:5855-5863. [PMID: 35333525 DOI: 10.1021/jacs.1c12106] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As practitioners of organic chemistry strive to deliver efficient syntheses of the most complex natural products and drug candidates, further innovations in synthetic strategies are required to facilitate their efficient construction. These aspirational breakthroughs often go hand-in-hand with considerable reductions in cost and environmental impact. Enzyme-catalyzed reactions have become an impressive and necessary tool that offers benefits such as increased selectivity and waste limitation. These benefits are amplified when enzymatic processes are conducted in a cascade in combination with novel bond-forming strategies. In this article, we report a highly diastereoselective synthesis of MK-1454, a potent agonist of the stimulator of interferon gene (STING) signaling pathway. The synthesis begins with the asymmetric construction of two fluoride-bearing deoxynucleotides. The routes were designed for maximum convergency and selectivity, relying on the same benign electrophilic fluorinating reagent. From these complex subunits, four enzymes are used to construct the two bridging thiophosphates in a highly selective, high yielding cascade process. Critical to the success of this reaction was a thorough understanding of the role transition metals play in bond formation.
Collapse
Affiliation(s)
- Tamas Benkovics
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Feng Peng
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Eric M Phillips
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Chihui An
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Rachel S Bade
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Cheol K Chung
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zachary E X Dance
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Patrick S Fier
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jacob H Forstater
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zhijian Liu
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zhuqing Liu
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Peter E Maligres
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Nicholas M Marshall
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Nastaran Salehi Marzijarani
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - John A McIntosh
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Steven P Miller
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jeffrey C Moore
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew J Neel
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jennifer V Obligacion
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Weilan Pan
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michael T Pirnot
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Marc Poirier
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Benjamin D Sherry
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zhiguo Jake Song
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Lushi Tan
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ben W H Turnbull
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Deeptak Verma
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jacob H Waldman
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Lu Wang
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Tao Wang
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Matthew S Winston
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Feng Xu
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
35
|
A kinase-cGAS cascade to synthesize a therapeutic STING activator. Nature 2022; 603:439-444. [PMID: 35296845 DOI: 10.1038/s41586-022-04422-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/10/2022] [Indexed: 01/02/2023]
Abstract
The introduction of molecular complexity in an atom- and step-efficient manner remains an outstanding goal in modern synthetic chemistry. Artificial biosynthetic pathways are uniquely able to address this challenge by using enzymes to carry out multiple synthetic steps simultaneously or in a one-pot sequence1-3. Conducting biosynthesis ex vivo further broadens its applicability by avoiding cross-talk with cellular metabolism and enabling the redesign of key biosynthetic pathways through the use of non-natural cofactors and synthetic reagents4,5. Here we describe the discovery and construction of an enzymatic cascade to MK-1454, a highly potent stimulator of interferon genes (STING) activator under study as an immuno-oncology therapeutic6,7 (ClinicalTrials.gov study NCT04220866 ). From two non-natural nucleotide monothiophosphates, MK-1454 is assembled diastereoselectively in a one-pot cascade, in which two thiotriphosphate nucleotides are simultaneously generated biocatalytically, followed by coupling and cyclization catalysed by an engineered animal cyclic guanosine-adenosine synthase (cGAS). For the thiotriphosphate synthesis, three kinase enzymes were engineered to develop a non-natural cofactor recycling system in which one thiotriphosphate serves as a cofactor in its own synthesis. This study demonstrates the substantial capacity that currently exists to use biosynthetic approaches to discover and manufacture complex, non-natural molecules.
Collapse
|
36
|
Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol 2022; 19:313-332. [PMID: 35188077 PMCID: PMC8865321 DOI: 10.1080/15476286.2022.2027150] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Collapse
Affiliation(s)
- François Halloy
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Katherine E. Bujold
- Department of Chemistry & Chemical Biology, McMaster University, (Ontario), Canada
| | | | - Alyssa C. Hill
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eth Zürich, Zürich, Switzerland
| | - Aurélie Lacroix
- Sixfold Bioscience, Translation & Innovation Hub, London, UK
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Linda Sundstrom
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (Hiri), Helmholtz Center for Infection Research (Hzi), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
37
|
Peng B, Ma J, Guo J, Gong Y, Wang R, Zhang Y, Zeng J, Chen WW, Ding K, Zhao B. A Powerful Chiral Super Brønsted C-H Acid for Asymmetric Catalysis. J Am Chem Soc 2022; 144:2853-2860. [PMID: 35143204 DOI: 10.1021/jacs.1c12723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new type of chiral super Brønsted C-H acids, BINOL-derived phosphoryl bis((trifluoromethyl)sulfonyl) methanes (BPTMs), were developed. As compared to widely utilized BINOL-derived chiral phosphoric acids (BPAs) and N-triflyl phosphoramides (NTPAs), BPTMs displayed much higher Brønsted acidity, resulting in dramatically improved activity and excellent enantioselectivity as demonstrated in catalytic asymmetric Mukaiyama-Mannich reaction, allylic amination, three-component coupling of allyltrimethylsilane with 9-fluorenylmethyl carbamate and aldehydes, and protonation of silyl enol ether. These new strong Brønsted C-H acids have provided a platform for expanding the chemistry of asymmetric Brønsted acid catalysis.
Collapse
Affiliation(s)
- Bingfei Peng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jianhua Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yating Gong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ronghao Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yi Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinlong Zeng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
38
|
Kandasamy P, Liu Y, Aduda V, Akare S, Alam R, Andreucci A, Boulay D, Bowman K, Byrne M, Cannon M, Chivatakarn O, Shelke JD, Iwamoto N, Kawamoto T, Kumarasamy J, Lamore S, Lemaitre M, Lin X, Longo K, Looby R, Marappan S, Metterville J, Mohapatra S, Newman B, Paik IH, Patil S, Purcell-Estabrook E, Shimizu M, Shum P, Standley S, Taborn K, Tripathi S, Yang H, Yin Y, Zhao X, Dale E, Vargeese C. Impact of guanidine-containing backbone linkages on stereopure antisense oligonucleotides in the CNS. Nucleic Acids Res 2022; 50:5401-5423. [PMID: 35106589 PMCID: PMC9177980 DOI: 10.1093/nar/gkac037] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
Attaining sufficient tissue exposure at the site of action to achieve the desired pharmacodynamic effect on a target is an important determinant for any drug discovery program, and this can be particularly challenging for oligonucleotides in deep tissues of the CNS. Herein, we report the synthesis and impact of stereopure phosphoryl guanidine-containing backbone linkages (PN linkages) to oligonucleotides acting through an RNase H-mediated mechanism, using Malat1 and C9orf72 as benchmarks. We found that the incorporation of various types of PN linkages to a stereopure oligonucleotide backbone can increase potency of silencing in cultured neurons under free-uptake conditions 10-fold compared with similarly modified stereopure phosphorothioate (PS) and phosphodiester (PO)-based molecules. One of these backbone types, called PN-1, also yielded profound silencing benefits throughout the mouse brain and spinal cord at low doses, improving both the potency and durability of response, especially in difficult to reach brain tissues. Given these benefits in preclinical models, the incorporation of PN linkages into stereopure oligonucleotides with chimeric backbone modifications has the potential to render regions of the brain beyond the spinal cord more accessible to oligonucleotides and, consequently, may also expand the scope of neurological indications amenable to oligonucleotide therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xuena Lin
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | - Pochi Shum
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Kris Taborn
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Hailin Yang
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Yuan Yin
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Xiansi Zhao
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Elena Dale
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | |
Collapse
|
39
|
|
40
|
Zhang Q, Liu XT, Wu Y, Zhang QW. Ni-Catalyzed Enantioselective Allylic Alkylation of H-Phosphinates. Org Lett 2021; 23:8683-8687. [PMID: 34734721 DOI: 10.1021/acs.orglett.1c02986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The asymmetric synthesis of P-stereogenic phosphinates through allylic alkylation of H-phosphinates has been developed. With H-phosphinates and allylic acetates as the starting materials, a variety of allylic P-chiral phosphinates were accessed in high enantioselectivities of up to 92% ee and generally high yields. In addition, a further study demonstrated the applicability of this protocol, including the scale-up synthesis and facile transformation of chiral products from phosphinates to phosphine oxides with organolithium reagents under mild reaction conditions.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xu-Teng Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yue Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
41
|
Zhang QW, Liu XT, Wu Y. Nickel-Catalyzed Asymmetric Synthesis of P-Stereogenic Vinyl Phosphines. Synlett 2021. [DOI: 10.1055/a-1695-4979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAddition reaction to alkynes is an efficient strategy for constructing valuable alkenyl compounds. However, the elusive regioselectivity has been a persistent challenge. In the context of hydrophosphination reaction which could afford valuable P-stereogenic phosphines, the control of enantioselectivity as well as regioselectivity were especially tricky. Here, we highlighted our recent work on the nickel-catalyzed regio- and enantioselective hydrophosphination of unactivated alkynes with in situ generated secondary phosphines.1 Introduction2 Hydrophosphination of Alkynes3 Derivatization Reactions4 Mechanism Research5 Summary and Outlook
Collapse
|
42
|
Oka Y, Tsuzuki S, Moriyama K. Chiral anthranilic pyrrolidine as custom-made amine catalyst for enantioselective Michael reaction of nitroalkenes with carbonyl compounds. Chem Commun (Camb) 2021; 57:11457-11460. [PMID: 34632990 DOI: 10.1039/d1cc04453b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A chiral anthranilic pyrrolidine catalyst as a custom-made amine-catalyst was developed for the enantio- and diastereo selective Michael reaction of nitroalkenes with carbonyl compounds. In particular, a peptide-like catalyst in which an α-amino acid is attached to the anthranilic acid skeleton induced the high stereoselectivity of the reaction with aldehydes. Studies of the reaction mechanism indicated that the catalyst exhibits a divergent stereocontrol in the reaction, namely, steric control by a 2-substituted group on the catalyst and hydrogen-bonding control by a carboxylic acid group on the catalyst.
Collapse
Affiliation(s)
- Yukari Oka
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Seiji Tsuzuki
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | - Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
43
|
Liu XT, Han XY, Wu Y, Sun YY, Gao L, Huang Z, Zhang QW. Ni-Catalyzed Asymmetric Hydrophosphination of Unactivated Alkynes. J Am Chem Soc 2021; 143:11309-11316. [PMID: 34283592 DOI: 10.1021/jacs.1c05649] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The practical synthesis of P-stereogenic tertiary phosphines, which have wide applications in asymmetric catalysis, materials, and pharmaceutical chemistry, represents a significant challenge. A regio- and enantioselective hydrophosphination using cheap and ubiquitous alkynes catalyzed by a nickel complex was designed, in which the toxic and air-sensitive secondary phosphines were prepared in situ from bench-stable secondary phosphine oxides. This methodology has been demonstrated with unprecedented substrate scope and functional group compatibility to afford electronically and structurally diversified P(III) compounds. The products could be easily converted into various precursors of bidentate ligands and organocatalysts, as well as a variety of transition-metal complexes containing both P- and metal-stereogenic centers.
Collapse
Affiliation(s)
- Xu-Teng Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xue-Yu Han
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yue Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ying-Ying Sun
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Li Gao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhuo Huang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
44
|
Zheng B, Hang C, Zhu J, Purdum GE, Sezen-Edmonds M, Treitler DS, Yu M, Yuan C, Zhu Y, Freitag A, Guo S, Zhu G, Hritzko B, Paulson J, Shackman JG, He BL, Fu W, Tai HC, Ayers S, Park H, Eastgate MD, Cohen B, Rogers A, Wang Q, Schmidt MA. P(III) vs P(V): A P(V) Reagent for Thiophosphoramidate Linkages and Application to an Asymmetric Synthesis of a Cyclic Dinucleotide STING Agonist. J Org Chem 2021; 87:1934-1940. [PMID: 34232659 DOI: 10.1021/acs.joc.1c01055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A highly stereoselective synthesis of a cyclic dinucleotide (CDN) STING agonist containing two chiral thiophosphoramidate linkages is described. These rare yet key functional groups were, for the first time, installed efficiently and with high diastereoselectivity using a specially designed P(V) reagent. By utilizing this strategy, the CDN was prepared in greater than 16-fold higher yield than the prior P(III) approach, with fewer hazardous reagents and chromatographic purifications.
Collapse
Affiliation(s)
- Bin Zheng
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Chao Hang
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jason Zhu
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Geoffrey E Purdum
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Melda Sezen-Edmonds
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Daniel S Treitler
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Miao Yu
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Changxia Yuan
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ye Zhu
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Adam Freitag
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Siwei Guo
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Guanghui Zhu
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ben Hritzko
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - James Paulson
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jonathan G Shackman
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Brian L He
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Weiqing Fu
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Hua Chia Tai
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Sloan Ayers
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Hyunsoo Park
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D Eastgate
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ben Cohen
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Amanda Rogers
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Qinggang Wang
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael A Schmidt
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|