1
|
Wang Y, Yang K, Chen F, Qu X, He Y, Han D, Tang X. Structural Stability and Photoluminescence Property of Cs 2UCl 6 Single Crystal Derived from Spent Nuclear Fuel. Inorg Chem 2025; 64:3178-3187. [PMID: 39935380 DOI: 10.1021/acs.inorgchem.4c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/13/2025]
Abstract
The recycling and reuse of trace uranium from spent nuclear fuel is of great significance for the safety management of the nuclear fuel cycle. However, stabilization of low-valent uranium has always been a challenge due to the ultraoxidizable nature of uranium ions, which remains relatively uncharted territory in spent fuel treatment. In the current study, U4+ was immobilized in Cs2UCl6 single crystal with a perovskite structure from uranyl under a strong acidic environment. A comprehensive and detailed understanding of Cs2UCl6 at the atomic scale has been achieved by combining density functional theory (DFT) with high-resolution integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM) imaging, which was captured by utilizing Cs-corrected TEM for the first time. Furthermore, the results obtained from X-ray excitation and the photoexcitation effects produced by PL at 280, 330, and 360 nm provide compelling evidence for the ability of U4+ to form excitable bands around the Fermi level. The as-synthesized Cs2UCl6 demonstrates excellent thermal stability above 275 °C, as evidenced by in situ Raman spectroscopy and thermogravimetric analysis, while a degradation pathway initiated by CsCl upon exposure to water vapor was revealed by synchrotron X-ray diffraction. Thermal and chemical stability can be further elevated by consolidating it into a metal-organic framework (MOF) via hot pressing. The current study provides a promising strategy to reuse and functionalize the spent nuclear fuel.
Collapse
Affiliation(s)
- Yibo Wang
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Kun Yang
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Feida Chen
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xianlin Qu
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing 211016, China
| | - Yanmei He
- Department of Chemical Physics and NanoLund, Lund University, Lund 22100, Sweden
| | - Daniu Han
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xiaobin Tang
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
2
|
Lee J, Xie Z, Huang W, Chai M, Li X, Chan B, Cheng H, He D, Han EQ, Chen Y, Chen V, Wang L, Hou J. Aggregation suppression and enhanced blue emission of perylene in zinc-based coordination polymer glass. Chem Commun (Camb) 2025; 61:3492-3495. [PMID: 39878537 DOI: 10.1039/d4cc05790b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2025]
Abstract
Reducing aggregation caused quenching and enhancing stability is crucial in the fabrication of organic light-emitting diodes. Herein, we successfully fabricated blue-emitting coordination polymer glasses using perylene dye and a zinc-based coordination glass. The aggregation of perylene monomers in the solid state was significantly suppressed, and the hybrid glass demonstrated high stability and strong photoluminescent quantum yield (75.5%) under ambient conditions.
Collapse
Affiliation(s)
- Jaeho Lee
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Zixi Xie
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Wengang Huang
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xuemei Li
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasa-ki, 852-8521, Japan
| | - Huiyuan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dongxu He
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - E Q Han
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Yuelei Chen
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Vicki Chen
- University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Lianzhou Wang
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Peng QP, Wei JH, He ZL, Luo JB, Chen JH, Zhang ZZ, Guo XX, Kuang DB. In Situ Crystallization of CsPbBr 3 Nanocrystals within a Melt-Quenched Glassy Coordination Polymer. ACS NANO 2025; 19:5295-5304. [PMID: 39871484 DOI: 10.1021/acsnano.4c12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2025]
Abstract
Lead halide perovskite nanocrystal materials such as CsPbX3 (X = Cl, Br, and I) have triggered an intense research upsurge due to their excellent scintillation performance. Herein, an in situ crystallization strategy is developed to grow CsPbBr3 nanocrystals (NCs) within a low-melting-point (280 °C) coordination polymer (CP) glass. The viscosity of coordination glass is reduced through a low-temperature (e.g., 50 °C) thermal treatment, enabling the short-distance migration of uniformly dispersed ions (Cs+, Pb2+, and Br-) to achieve in situ crystallization of CsPbBr3 NCs. Benefiting from the high transmittance (80% within the 500-800 nm range) and outstanding scintillation performance, the prepared CsPbBr3@ZnBr2(bIm+DMSO)2 (bIm = benzimidazole, DMSO = dimethyl sulfoxide) transparent luminescence glass exhibits an excellent X-ray imaging resolution of up to 25 lp/mm, outperforming many perovskite glass and crystalline scintillators. This work would provide an idea for the development of high-resolution scintillation screens that can be prepared at low temperatures.
Collapse
Affiliation(s)
- Qing-Peng Peng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun-Hua Wei
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zi-Lin He
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Bin Luo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jing-Hua Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhi-Zhong Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiu-Xian Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dai-Bin Kuang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Huang G, Zhang F, Xiong X, Sun K, Ruan H, Wang C, Li C, Zhao Y, Li M, Cheng G, Du Z. Tailorable Fluorescent Perovskite Quantum Dots for Multiform Manufacturing via Two-Step Thiol-Ene Click Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411453. [PMID: 39478587 DOI: 10.1002/adma.202411453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/04/2024] [Revised: 10/17/2024] [Indexed: 02/06/2025]
Abstract
In practical applications, fluorescent perovskite quantum dots (PQDs) must exhibit high efficiency, stability, and processibility. So far, it remains a challenge to synthesize PQDs with stable dispersibility in tailorable monomers both before and after photocuring. In this work, a novel strategy of UV-induced two-step thiol-ene "click chemistry" is proposed to prepare PQDs with these attributes. The first step aims to epitaxially grow a shell around the PQD core to ensure stable dispersibility in a thiol-ene monomer solution. The second step is to achieve stable dispersibility in the photocured thiol-ene matrixes for multiform manufacturing processes. The tailorable PQDs (T-PQDs) not only have the highest photoluminescence quantum yield (PLQY) to ≈100% for green emission and over 96% for red emission, but also exhibit remarkable stability under severe conditions, including "double 85" aging, water exposure, and mechanical stress. Moreover, their exceptional processability allows for various processing techniques, including slot-die coating, inkjet printing, direct-laser writing, UV-light 3D printing, nanoimprinting, and spin coating. The high efficiency and stability of T-PQDs facilitate their multiform manufacturing for a wide range of applications.
Collapse
Affiliation(s)
- Guangguang Huang
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Fengyi Zhang
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Xinyang Xiong
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Kaiwei Sun
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Haoran Ruan
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Chunyang Wang
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Chenguang Li
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Yaolong Zhao
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Meng Li
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Gang Cheng
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| | - Zuliang Du
- National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China
| |
Collapse
|
5
|
Huang W, Chan B, Yang Y, Chen P, Wang J, Casey L, Atzori C, Schulli T, Mathon O, Hackbarth HG, Bedford NM, Appadoo D, Li X, Lin T, Lin R, Lee J, Wang Z, Chen V, Cheetham AK, Wang L, Hou J. Intermarrying MOF Glass and Lead Halide Perovskites for Artificial Photosynthesis. J Am Chem Soc 2025; 147:3195-3205. [PMID: 39733349 DOI: 10.1021/jacs.4c12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2024]
Abstract
The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass. The construction of a well-defined interface between the light-harvesting perovskite and stable Rh single-atom-containing MOF glass mimics the functions of photosystem I (PS I). This facilitates efficient photoinduced electron generation under visible light and subsequent electron transfer for coenzyme (NADH) regeneration with high selectivity. The regenerated NADH can then be consumed by immobilized enzymes for CO2 reduction, realizing the artificial photosynthesis process for formic acid generation. This work also elucidates the interactions and optoelectronic responses between MOF glass and perovskites, offering insights into the design and fabrication of nanocomposite photocatalysts for other advanced chemical syntheses.
Collapse
Affiliation(s)
- Wengang Huang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yuwei Yang
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jingjing Wang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lachlan Casey
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cesare Atzori
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Tobias Schulli
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Olivier Mathon
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Haira G Hackbarth
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Dominique Appadoo
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Xuemei Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Tongen Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jaeho Lee
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiliang Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vicki Chen
- University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Brisbane 4072, Australia
| |
Collapse
|
6
|
Im JH, Han M, Hong J, Kim H, Oh KS, Choi T, Yusoff ARB, Vasilopoulou M, Lee E, Hwang CC, Noh YY, Kim YK. Controlled Synthesis of Perovskite Nanocrystals at Room Temperature by Liquid Crystalline Templates. ACS NANO 2025; 19:1177-1189. [PMID: 39748139 PMCID: PMC11752507 DOI: 10.1021/acsnano.4c13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Perovskite nanocrystals (PNCs) are promising active materials because of their outstanding optoelectronic properties, which are finely tunable via size and shape. However, previous synthetic methods such as hot-injection and ligand-assisted reprecipitation require a high synthesis temperature or provide limited access to homogeneous PNCs, leading to the present lack of commercial value and real-world applications of PNCs. Here, we report a room-temperature approach to synthesize PNCs within a liquid crystalline antisolvent, enabling access to PNCs with a precisely defined size and shape and with reduced surface defects. We demonstrate that elastic strains and long-range molecular ordering of the liquid crystals play a key role in not only regulating the growth of PNCs but also promoting high surface passivation of PNCs with ligands. The approach is a simple, rapid, and room-temperature process, yet it enables access to highly homogeneous PNCs on a mass scale with substantially reduced surface defect states leading to significantly enhanced optoelectronic features. Our results provide a versatile and generalizable strategy to be broadly compatible with a range of nanomaterials and other synthetic methods such as ligand exchange and microfluidic processes.
Collapse
Affiliation(s)
- Jun-Hyung Im
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Myeonggeun Han
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jisu Hong
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyein Kim
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kwang-Suk Oh
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Taesu Choi
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Abd Rashid bin
Mohd Yusoff
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department
of Physics, Faculty of Science, Universiti
Teknologi Malaysia, Johor
Bahru 81310, Malaysia
| | - Maria Vasilopoulou
- Institute
of Nanoscience and Nanotechnology, National Centre for Scientific
Research Demokritos, Attica 15341, Greece
| | - Eunsook Lee
- Pohang
Accelerator Laboratory, Pohang 37673, Republic
of Korea
| | - Chan-Cuk Hwang
- Pohang
Accelerator Laboratory, Pohang 37673, Republic
of Korea
| | - Yong-Young Noh
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Young-Ki Kim
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
7
|
Wang A, Li J, Zhang Y, Cheng S, Wang Y, Xie Y, Yu C, Chen H, Dong J, Cao J, Wang F, Huang W, Qin T. Double-Shell Encapsulation of Lead-Free Tin Halide Perovskite for Self-Powered Smart Windows. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404149. [PMID: 39440669 DOI: 10.1002/smll.202404149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/22/2024] [Revised: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Luminescent solar concentrators (LSC) have the potential application in building integrated photovoltaic (BIPV). 0D tin-based perovskites are a promising embedding phosphor in LSC due to the large Stokes shift and high photoluminescence quantum yield. But the instability and uncontrollable crystal growth are severe limiting their successful utilization in device fabrication. To tackle these issues, double-shell encapsulated configurations are presented, soft ligands of hypophosphorous acid and hard-shell of hollow mesoporous silica are simultaneously suppressing the oxidation of Sn2+ and restricting crystal growth within nano-matrix. The stable phosphor is subsequently embedded into LSC for harvesting solar energy and the resulting output power efficiently drives the combined electrochromic glass under natural light. These fabricated devices also offer the self-adaptable switch on/off functionality to regulate light absorption with variable solar irradiation intensity in real time. This approach is anticipated to open new avenues for utilizing lead-free perovskite nanomaterials in self-powered smart windows for BIPV.
Collapse
Affiliation(s)
- Aifei Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Junjie Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Yupeng Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Suwen Cheng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Yanchen Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Yuan Xie
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Chen Yu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Haoyu Chen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Jingjin Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Jiupeng Cao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies (OEMT), Sun Yat-sen University, Shenzhen, Guangdong, 510080, P. R. China
- Henan Institute of Flexible Electronics (HIFE), Zhengzhou, Henan, 450046, P. R. China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies (OEMT), Sun Yat-sen University, Shenzhen, Guangdong, 510080, P. R. China
- Henan Institute of Flexible Electronics (HIFE), Zhengzhou, Henan, 450046, P. R. China
| |
Collapse
|
8
|
Wang C, Yan L, Si J, Wang N, Li T, Hou X. Exceptional Stability against Water, UV Light, and Heat for CsPbBr 3@Pb-MOF Composites. SMALL METHODS 2024; 8:e2400241. [PMID: 38644347 DOI: 10.1002/smtd.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/18/2024] [Revised: 03/20/2024] [Indexed: 04/23/2024]
Abstract
All-inorganic lead halide perovskite nanocrystals (NCs) have been widely applied in optoelectronic devices owing to their excellent photoluminescence (PL) properties. However, poor stability upon exposure to water, UV light or heat strongly limits their practical application. Herein, CsPbBr3@Pb-MOF composites with exceptional stability against water, UV light, and heat are synthesized by ultrasonic processing the precursors of lead-based MOF (Pb-MOF), oleylammonium bromide (OAmBr) and cesium oleate (Cs-OA) solutions at room temperature. Pb-MOF can not only provide the lead source for the in situ growth of CsPbBr3 NCs, but also the protective layer of perovskites NCs. The formed CsPbBr3@Pb-MOF composites show a considerable PL quantum yield (PLQY) of 67.8%, and can maintain 90% of the initial PL intensity when immersed in water for 2 months. In addition, the outstanding PL stability against UV light and heat is demonstrated with CsPbBr3 NCs synthesized by the conventional method as a comparison. Finally, a green (light-emitting diode) LED is fabricated using green-emitting CsPbBr3@Pb-MOF composites and exhibits excellent stability without packaging when immersed in water for 30 days. This study provides a practical approach to improve the stability in aqueous phase, which may pave the way for future applications for various optoelectronic devices.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, 710049, China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, 710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, 710049, China
| | - Ning Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, 710049, China
| | - Ting Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, 710049, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, 710049, China
| |
Collapse
|
9
|
Wu W, Zhang J, Liu C, Zhang J, Lai H, Hu Z, Zhou H. Spontaneous Cooling Enables High-Quality Perovskite Wafers for High-Sensitivity X-Ray Detectors with a Low-Detection Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410303. [PMID: 39429205 PMCID: PMC11633536 DOI: 10.1002/advs.202410303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Developing high-quality perovskite wafers is essential for integrating perovskite technology throughout the chip industry chain. In this article, a spontaneous cooling strategy with a hot-pressing technique is presented to develop high-purity, wafer-scale, pinhole-free perovskite wafers with a reflective surface. This method can be extended to a variety of perovskite wafers, including organic-inorganic, 2D, and lead-free perovskites. Besides, the size of the wafer with diameters of 10, 15, and 20 mm can be tailored by changing the mold. Furthermore, the mechanism of spontaneous cooling for improving the quality of perovskite wafers is revealed. Finally, the high-quality lead-free Cs3Cu2I5 perovskite wafers demonstrate excellent X-ray detection performances with a high sensitivity of 3433.6 µC Gyair -1 cm-2 and a low detection limit of 33.17 nGyair s-1. Moreover, the Cs3Cu2I5 wafers exhibit outstanding environmental and operational stability even without encapsulation. These research presents a spontaneous cooling strategy to achieve wafer-scale, high-quality perovskites with mirror-like surfaces for X-ray detection, paving the way for integrating perovskites into electronic and optoelectronic devices and promoting the practical application of perovskite X-ray detectors.
Collapse
Affiliation(s)
- Wenyi Wu
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Jianqiang Zhang
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Ciyu Liu
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Jiankai Zhang
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Hoajie Lai
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Zhongqiang Hu
- School of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049P. R. China
| | - Hai Zhou
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| |
Collapse
|
10
|
Bi W, Han L, Liu Y, Li L. The Key to MOF Membrane Fabrication and Application: the Trade-off between Crystallization and Film Formation. Chemistry 2024; 30:e202401868. [PMID: 39136607 DOI: 10.1002/chem.202401868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), owing the merits of ordered and tailored channel structures in the burgeoning crystalline porous materials, have demonstrated significant promise in construction of high-performance separation membranes. However, precisely because this crystal structure with strong molecular interaction in their lattice provides robust structural integrity and resistance to chemical and thermal degradation, crystalline MOFs typically exhibit insolubility, infusibility, stiffness and brittleness, and therefore their membrane-processing properties are far inferior to the flexible amorphous polymers and hinder their subsequent storage, transportation, and utilization. Hence, focusing on film-formation and crystallization is the foundation for exploring the fabrication and application of MOF membranes. In this review, the film-forming properties of crystalline MOFs are fundamentally analyzed from their inherent characteristics and compared with those of amorphous polymers, influencing factors of polycrystalline MOF membrane formation are summarized, the trade-off relationship between crystallization and membrane formation is discussed, and the strategy solving the film formation of crystalline MOFs in recent years are systematically reviewed, in anticipation of realizing the goal of preparing crystalline membranes with optimized processability and excellent performance.
Collapse
Affiliation(s)
- Wendie Bi
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Linxuan Han
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yutao Liu
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030024, China
| |
Collapse
|
11
|
Bennett TD, Horike S, Mauro JC, Smedskjaer MM, Wondraczek L. Looking into the future of hybrid glasses. Nat Chem 2024; 16:1755-1766. [PMID: 39394264 DOI: 10.1038/s41557-024-01616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2023] [Accepted: 07/15/2024] [Indexed: 10/13/2024]
Abstract
Glasses are typically formed by melt-quenching, that is, cooling of a liquid on a timescale fast enough to avoid ordering to a crystalline state, and formerly thought to comprise three categories: inorganic (non-metallic), organic and metallic. Their impact is huge, providing safe containers, allowing comfortable and bright living spaces and even underlying the foundations of modern telecommunication. This impact is tempered by the inability to chemically design glasses with precise, well-defined and tunable structures: the literal quest for order in disorder. However, metal-organic or hybrid glasses are now considered to belong to a fourth category of glass chemistry. They have recently been demonstrated upon melt-quenching of coordination polymer, metal-organic framework and hybrid perovskite framework solids. In this Review, we discuss hybrid glasses through the lens of both crystalline metal-organic framework and glass chemistry, physics and engineering, to provide a vision for the future of this class of materials.
Collapse
Affiliation(s)
- Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, University of Jena, Jena, Germany
| |
Collapse
|
12
|
Xue WL, Das C, Weiß JB, Henke S. Insights Into the Mechanochemical Glass Formation of Zeolitic Imidazolate Frameworks. Angew Chem Int Ed Engl 2024; 63:e202405307. [PMID: 38874082 DOI: 10.1002/anie.202405307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Metal-organic framework (MOF) glasses, known for their potential in gas separation, optics, and solid-state electrolytes, benefit from the processability of their (supercooled) liquid state. Traditionally, MOF glasses are produced by heating MOF crystals to their melting point and then cooling the liquid MOF to room temperature under an inert atmosphere. While effective, this melt-quenching technique requires high energy due to the high temperatures involved. It also limits the scope of new material development by restricting the compositional range to only those combinations of metal ions and linkers that are highly thermally stable. An alternative, mechanical milling at room temperature, has demonstrated its capability to transform MOF crystals into amorphous phases. However, the specific conditions under which these amorphous phases exhibit glass-like behavior remain uncharted. In this study, we explore the mechanochemical amorphization and vitrification of a variety of zeolitic imidazolate frameworks (ZIFs) with diverse linkers and different metal ions (Zn2+, Co2+ and Cu2+) at room temperature. Our findings demonstrate that ZIFs capable of melting can be successfully converted into glasses through ball-milling. Remarkably, some non-meltable ZIFs can also be vitrified using the ball-milling technique, as highlighted by the preparation of the first Cu2+-based ZIF glass.
Collapse
Affiliation(s)
- Wen-Long Xue
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Chinmoy Das
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
- Department of Chemistry, SRM University-AP, Andhra Pradesh, 522240, India
| | - Jan-Benedikt Weiß
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Sebastian Henke
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
13
|
Ohara Y, Nishiguchi T, Zheng X, Noro SI, Packwood DM, Horike S. Entropically driven melting of Cu-based 1D coordination polymers. Chem Commun (Camb) 2024; 60:9833-9836. [PMID: 39171495 DOI: 10.1039/d4cc02925a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/23/2024]
Abstract
We investigated the melting behavior of four CPs with one-dimensional structures from a thermodynamic point-of-view. The difference in melting points depending on the crystal structures is observed. The interactions within the crystals were analyzed using DFT calculations. These analyses suggest that entropic terms dominate the melting points.
Collapse
Affiliation(s)
- Yuki Ohara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Xin Zheng
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin-Ichiro Noro
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Daniel M Packwood
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
14
|
Tao Y, Zhang M, Li D, Liu K, Xu J, Wei L, Zhang K, Wang Y, Dai F, Teng L, Wang L, Wu Z, Xing J. Near-unity quantum yield and long-term emission stability in halide perovskite nanocrystal glass composite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124379. [PMID: 38692106 DOI: 10.1016/j.saa.2024.124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Metal halide perovskites are promising optoelectronic materials due to their outstanding luminescent properties. However, the instability of perovskites has long been the bottleneck to their practical applications. Here Cs4PbBr6 nanocrystals based glass composite (Cs4PbBr6 NCs@glass) are successfully prepared, which displays green emission color (520 nm), narrow bandwidth (23 nm) and a near-unity photoluminescence quantum yield (PLQY). The H2O molecules permeating in the lattice of Cs4PbBr6 were found to be a crucial role in the subband energy emission. The Cs4PbBr6 NCs@glass has excellent emission stability; maintains 93 % of initial PL intensity after ultraviolet light irradiation for over 5000 h. In addition, by adjusting the halogen content, we have achieved tunable emission color from blue (450 nm) to green (520 nm) and red (670 nm) on Cs4PbX6 NCs@glass (X = Cl, Br, I), which covers up to 127 % of the National Television Systems Board (NTSC) standard system. Our finding indicates the commercial applications of perovskite materials in lighting and display.
Collapse
Affiliation(s)
- Yafei Tao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Mingming Zhang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; College of Sino-German Science and Technology, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Deyu Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Kang Liu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jixiang Xu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lulu Wei
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Kai Zhang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yunhu Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Fangxu Dai
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lihua Teng
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhanchao Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Jun Xing
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
15
|
Zhang J, Ding Z, Liu X, He Z, Chen Y, Cai S, Wang J, Li G, Liu Y. Stable, Scalable, and Free-Standing Perovskite Quantum Dots Composite Reinforced by Cellulose Fibers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36811-36820. [PMID: 38961726 DOI: 10.1021/acsami.4c06762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/05/2024]
Abstract
Perovskite quantum dots (PQDs) have attracted emerging attention as fluorescent and light-absorbing materials for next-generation optoelectronics due to their outstanding properties and cost-efficiency. However, PQD thin film suffers significant instability due to structure and material failures, which hinders their application in flexible and reliable PQD-based advanced wearable devices. Herein, we use commercial cellulose fiber-based filter paper as a substrate to synthesize PQDs in situ and fabricate PQD-paper free-standing flexible composite film. The abundant hydroxy capping ligands of cellulose fibers and the unique dense network structure of the filter paper can facilitate confined crystallization, forming strong interactions between the PQDs and substrate, the unpackaged PQD composite film showed extraordinary stability (>30 days) in the air with high humidity (90%). Meanwhile, the strong interaction between PQDs and paper enables an ultrasimple drop-cast synthesis process with excellent process tolerance, making it customizable and easy to scale up (10 cm in diameter). Due to the uniformly dispersed PQDs on cellulose fibers of the substrate, the composite demonstrates impressive photo-responsive properties. Photodetector (PD) arrays were designed on free-standing PQD paper and flexible graphitic electrodes, and circuits were fabricated by drawing. The PD arrays can work as optical and electrical dual-mode image sensors with incredible bending robustness, enduring up to 100,000 cycles at 180°.
Collapse
Affiliation(s)
- Jianfeng Zhang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| | - Ziyi Ding
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinhui Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhui He
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| | - Yili Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuting Cai
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinshan Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Guijun Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuan Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Kosasang S, Ma N, Impeng S, Bureekaew S, Namiki Y, Tsujimoto M, Saothayanun T, Yamada H, Horike S. Prussian Blue Analogue Glasses for Photoinduced CO 2 Conversion. J Am Chem Soc 2024; 146:17793-17800. [PMID: 38913361 DOI: 10.1021/jacs.4c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/25/2024]
Abstract
Crystal-to-glass transformation is a powerful approach to modulating the chemical and physical properties of crystals. Here we demonstrate that the glass transformation of cobalt hexacyanoferrate crystals, one of the Prussian blue analogues, increased the concentration of open metal sites and altered the electronic state while maintaining coordination geometries and short-range ordering in the structure. The compositional and structural changes were characterized by X-ray absorption fine structure, energy dispersive X-ray spectroscopy, and X-ray total scattering. The changes contribute to the flat band potential of the glass becoming closer to the redox potential of CO2 reduction. The valence band energy of the glass also shifts, resulting in lower band gap energy. Both the increased open metal sites and the optimal electronic structure upon vitrification enhance photocatalytic activity toward CO2-to-CO conversions (9.9 μmol h-1 CO production) and selectivity (72.4%) in comparison with the crystalline counterpart (3.9 μmol h-1 and 42.8%).
Collapse
Affiliation(s)
- Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nattapol Ma
- Center for Membrane Separations, Adsorption, Catalysis &; Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200 F Box 2454, 3001 Leuven, Belgium
| | - Sarawoot Impeng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sareeya Bureekaew
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Yuji Namiki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Frontier Research Center, POLA Chemical Industries, Inc., Kashio-cho, Totsuka-ku, Yokohama, Kanagawa 244-0812, Japan
| | - Masahiko Tsujimoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Taya Saothayanun
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Hiroki Yamada
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
17
|
Xia ZH, Sun YT, Wei Z, Peng Y, Hou Y, Yang S. Cold Pressing of Perovskite-ZIF Glass Interpenetrating Networks with Stable Photoelectric Response. Chemistry 2024; 30:e202401172. [PMID: 38682408 DOI: 10.1002/chem.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
The protection of lead halide perovskite within a stable matrix normally leads to the loss of semiconducting properties. Here, we report the synthesis of perovskite-ZIF glass interpenetrating networks via a cold pressing method, which allows the advantages of bright photoluminescence, high photoconductivity and environmental stability. This hybrid architecture has provided a novel design strategy for the real-world application of perovskite-based devices.
Collapse
Affiliation(s)
- Zhu Hui Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Ting Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhanpeng Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Peng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Hou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
18
|
Yao X, Li Y, Shi H, Yu Z, Wu B, Zhou Z, Zhou C, Zheng X, Tang M, Wang X, Ma H, Meng Z, Huang W, An Z. Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect. Nat Commun 2024; 15:4520. [PMID: 38806515 PMCID: PMC11133472 DOI: 10.1038/s41467-024-48856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Luminescent materials with narrowband emission show great potential for diverse applications in optoelectronics. Purely organic phosphors with room-temperature phosphorescence (RTP) have made significant success in rationally manipulating quantum efficiency, lifetimes, and colour gamut in the past years, but there is limited attention on the purity of the RTP colours. Herein we report a series of closed-loop molecules with narrowband phosphorescence by multiple resonance effect, which significantly improves the colour purity of RTP. Phosphors show narrowband phosphorescence with full width at half maxima (FWHM) of 30 nm after doping into a rigid benzophenone matrix under ambient conditions, of which the RTP efficiency reaches 51.8%. At 77 K, the FWHM of phosphorescence is only 11 nm. Meanwhile, the colour of narrowband RTP can be tuned from sky blue to green with the modification of methyl groups. Additionally, the potential applications in X-ray imaging and display are demonstrated. This work not only outlines a design principle for developing narrowband RTP materials but also makes a major step forward extending the potential applications of narrowband luminescent materials in optoelectronics.
Collapse
Affiliation(s)
- Xiaokang Yao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yuxin Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Ze Yu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Beishen Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zixing Zhou
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Chifeng Zhou
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xifang Zheng
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Mengting Tang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiao Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zhengong Meng
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, China
- Henan Institute of Flexible Electronics (HIFE) and School of Flexible Electronics (SoFE), Henan University, Zhengzhou, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- Henan Institute of Flexible Electronics (HIFE) and School of Flexible Electronics (SoFE), Henan University, Zhengzhou, China.
| |
Collapse
|
19
|
Ao D, Yang Z, Chen A, Sun Y, Ye M, Tian L, Cen X, Xie Z, Du J, Qiao Z, Cheetham AK, Hou J, Zhong C. Effective C 4 Separation by Zeolite Metal-Organic Framework Composite Membranes. Angew Chem Int Ed Engl 2024; 63:e202401118. [PMID: 38433100 DOI: 10.1002/anie.202401118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Inorganic zeolites have excellent molecular sieving properties, but they are difficult to process into macroscopic structures. In this work, we use metal-organic framework (MOF) glass as substrates to engineer the interface with inorganic zeolites, and then assemble the discrete crystalline zeolite powders into monolithic structures. The zeolites are well dispersed and stabilized within the MOF glass matrix, and the monolith has satisfactory mechanical stabilities for membrane applications. We demonstrate the effective separation performance of the membrane for 1,3-butadiene (C4H6) from other C4 hydrocarbons, which is a crucial and challenging separation in the chemical industry. The membrane achieves a high permeance of C4H6 (693.00±21.83 GPU) and a high selectivity over n-butene, n-butane, isobutene, and isobutane (9.72, 9.94, 10.31, and 11.94, respectively). This strategy opens up new possibilities for developing advanced membrane materials for difficult hydrocarbon separations.
Collapse
Affiliation(s)
- De Ao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Zibo Yang
- Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan, 056005, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Mao Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Lei Tian
- Institute of Seawater Desalination and Multipurpose Utilization MNR (Tianjin), Tianjin, 300192, China
| | - Xixi Cen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Zixi Xie
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, California, 93106, USA
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
20
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
21
|
Li Z, Wang Y, Zhang J, Cheng S, Sun Y. A Short Review of Advances in MOF Glass Membranes for Gas Adsorption and Separation. MEMBRANES 2024; 14:99. [PMID: 38786934 PMCID: PMC11123022 DOI: 10.3390/membranes14050099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The phenomenon of melting in metal-organic frameworks (MOFs) has recently garnered attention. Crystalline MOF materials can be transformed into an amorphous glassy state through melt-quenching treatment. The resulting MOF glass structure eliminates grain boundaries and retains short-range order while exhibiting long-range disorder. Based on these properties, it emerges as a promising candidate for high-performance separation membranes. MOF glass membranes exhibit permanent and accessible porosity, allowing for selective adsorption of different gas species. This review summarizes the melting mechanism of MOFs and explores the impact of ligands and metal ions on glassy MOFs. Additionally, it presents an analysis of the diverse classes of MOF glass composites, outlining their structures and properties, which are conducive to gas adsorption and separation. The absence of inter-crystalline defects in the structures, coupled with their distinctive mechanical properties, renders them highly promising for industrial gas separation applications. Furthermore, this review provides a summary of recent research on MOF glass composite membranes for gas adsorption and separation. It also addresses the challenges associated with membrane production and suggests future research directions.
Collapse
Affiliation(s)
- Zichen Li
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| | - Yumei Wang
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| | - Jianxin Zhang
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| | - Shiqi Cheng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| |
Collapse
|
22
|
Zhang K, Fan W, Yao T, Wang S, Yang Z, Yao J, Xu L, Song J. Polymer-Surface-Mediated Mechanochemical Reaction for Rapid and Scalable Manufacture of Perovskite QD Phosphors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310521. [PMID: 38211956 DOI: 10.1002/adma.202310521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Perovskite quantum dots (QDs) have been considered new-generation emitters for lighting and displays due to their high photoluminescence (PL) efficiency, and pure color. However, their commercialization process is currently hindered by the challenge of mass production in a quick and environmentally friendly manner. In this study, a polymer-surface-mediated mechanochemical reaction (PMR) is proposed to prepare perovskite QDs using a high-speed multifunction grinder for the first time. PMR possesses two distinctive features: i) The ultra-high rotating speed (>15 000 rpm) of the grinder facilitates the rapid conversion of the precursor to perovskite; ii) The surface-rich polymer particulate ensures QDs with high dispersity, avoiding QD aggregation-induced PL quenching. Therefore, PMR can successfully manufacture green perovskite QDs with a high PL quantum yield (PLQY) exceeding 90% in a highly material- (100% yield), time- (1 kg min-1), and effort- (solvent-free) efficient manner. Moreover, the PMR demonstrates remarkable versatility, including synthesizing by various polymers and producing diverse colored and Pb-free phosphors. Importantly, these phosphors featuring a combination of polymer and perovskite, are facilely processed into various solid emitters. The proposed rapid, green, and scalable approach has great potential to accelerate the commercialization of perovskite QDs.
Collapse
Affiliation(s)
- Kaishuai Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Wenxuan Fan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Tianliang Yao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Shalong Wang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Zhi Yang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Jisong Yao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Leimeng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Jizhong Song
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| |
Collapse
|
23
|
Sørensen SS, Christensen AKR, Bouros-Bandrabur EA, Andersen ES, Christiansen HF, Lang S, Cao F, Jalaludeen MFU, Christensen JS, Winters WMW, Andersen BP, Nielsen AB, Nielsen NC, Ravnsbæk D, Kristensen PK, Yue Y, Smedskjaer MM. Water Promotes Melting of a Metal-Organic Framework. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2756-2766. [PMID: 38558915 PMCID: PMC10976635 DOI: 10.1021/acs.chemmater.3c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/10/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Water is one of the most reactive and abundant molecules on Earth, and it is thus crucial to understand its reactivity with various material families. One of the big unknown questions is how water in liquid and vapor forms impact the fast-emerging class of metal-organic frameworks (MOFs). Here, we discover that high-pressure water vapor drastically modifies the structure and hence the dynamic, thermodynamic, and mechanical properties of MOF glasses. In detail, we find that an archetypical MOF (ZIF-62) is extremely sensitive to heat treatments performed at 460 °C and water vapor pressures up to ∼110 bar. Both the melting and glass transition temperatures decrease remarkably (by >100 °C), and simultaneously, hardness and Young's modulus increase by up to 100% under very mild treatment conditions (<20 bar of hydrothermal pressure). Structural analyses suggest water to partially coordinate to Zn in the form of a hydroxide ion by replacing a bridging imidazolate-based linker. The work provides insight into the role of hot-compressed water in influencing the structure and properties of MOF glasses and opens a new route for systematically changing the thermodynamics and kinetics of MOF liquids and thus altering the thermal and mechanical properties of the resulting MOF glasses.
Collapse
Affiliation(s)
- Søren S. Sørensen
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | | | | | - Emil S. Andersen
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Heidi F. Christiansen
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Sofie Lang
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Fengming Cao
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | | | | | - Wessel M. W. Winters
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | | | | | - Niels Chr. Nielsen
- Department
of Chemistry, Aarhus University, Aarhus DK-8000, Denmark
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus DK-8000, Denmark
| | | | - Peter K. Kristensen
- Department
of Materials and Production, Aalborg University, Aalborg DK-9220, Denmark
| | - Yuanzheng Yue
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Morten M. Smedskjaer
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| |
Collapse
|
24
|
Liu D, Zheng Y, Sui XY, Wu XF, Zou C, Peng Y, Liu X, Lin M, Wei Z, Zhou H, Yao YF, Dai S, Yuan H, Yang HG, Yang S, Hou Y. Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection. Nat Commun 2024; 15:2390. [PMID: 38493199 PMCID: PMC10944467 DOI: 10.1038/s41467-024-46712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Metal-halide perovskite thin monocrystals featuring efficient carrier collection and transport capabilities are well suited for radiation detectors, yet their growth in a generic, well-controlled manner remains challenging. Here, we reveal that mass transfer is one major limiting factor during solution growth of perovskite thin monocrystals. A general approach is developed to overcome synthetic limitation by using a high solute flux system, in which mass diffusion coefficient is improved from 1.7×10-10 to 5.4×10-10 m2 s-1 by suppressing monomer aggregation. The generality of this approach is validated by the synthesis of 29 types of perovskite thin monocrystals at 40-90 °C with the growth velocity up to 27.2 μm min-1. The as-grown perovskite monocrystals deliver a high X-ray sensitivity of 1.74×105 µC Gy-1 cm-2 without applied bias. The findings regarding limited mass transfer and high-flux crystallization are crucial towards advancing the preparation and application of perovskite thin monocrystals.
Collapse
Affiliation(s)
- Da Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Yichu Zheng
- School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Xin Yuan Sui
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Xue Feng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Can Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Yu Peng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Xinyi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Miaoyu Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Zhanpeng Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Hang Zhou
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, 200062, Shanghai, China
| | - Ye-Feng Yao
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, 200062, Shanghai, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Haiyang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Yu Hou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| |
Collapse
|
25
|
Sun Y, Wang Y, Chen W, Jiang Q, Chen D, Dong G, Xia Z. Rapid synthesis of phosphor-glass composites in seconds based on particle self-stabilization. Nat Commun 2024; 15:1033. [PMID: 38310125 PMCID: PMC10838289 DOI: 10.1038/s41467-024-45293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Phosphor-glass composites (PGC) are excellent candidates for highly efficient and stable photonic converters; however, their synthesis generally requires harsh procedures and long time, resulting in additional performance loss and energy consumption. Here we develop a rapid synthetic route to PGC within about 10 seconds, which enables uniform dispersion of Y3Al5O12:Ce3+ (YAG:Ce) phosphor particles through a particle self-stabilization model in molten tellurite glass. Thanks for good wettability between YAG:Ce micro-particles and tellurite glass melt, it creates an energy barrier of 6.94 × 105 zJ to prevent atomic-scale contact and sintering of particles in the melt. This in turn allows the generation of YAG:Ce-based PGC as attractive emitters with high quantum efficiency (98.4%) and absorption coefficient (86.8%) that can produce bright white light with luminous flux of 1227 lm and luminous efficiency of 276 lm W-1 under blue laser driving. This work shows a generalizable synthetic strategy for the development of functional glass composites.
Collapse
Affiliation(s)
- Yongsheng Sun
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| | - Yuzhen Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| | - Weibin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Qingquan Jiang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Dongdan Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Guoping Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhiguo Xia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
26
|
Li S, Zhang J, He J, Liu W, Wang Y, Huang Z, Pang H, Chen Y. Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304506. [PMID: 37814364 DOI: 10.1002/advs.202304506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/05/2023] [Indexed: 10/11/2023]
Abstract
Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS-based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS-based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next-generation soft materials and devices.
Collapse
Affiliation(s)
- Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jian He
- Yizhi Technology (Shanghai) Co., Ltd, No. 99 Danba Road, Putuo District, Shanghai, 200062, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Composites, COMAC Shanghai Aircraft Manufacturing Co. Ltd, Shanghai, 201620, China
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
27
|
Fan Z, Wei YS, Das C, Kanamori K, Yamada H, Ohara K, Horike S. Creating glassy states of dicarboxylate-bridged coordination polymers. Chem Commun (Camb) 2023; 59:14317-14320. [PMID: 37971093 DOI: 10.1039/d3cc04518h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2023]
Abstract
We report the direct formation of dicarboxylate-based coordination polymer glasses through thermal dehydration. The rearrangement of the coordination networks caused by dehydration was monitored by in situ powder X-ray diffraction, infrared spectroscopy, and synchrotron X-ray characterizations. The microporosity and mechanical properties of these glasses were investigated.
Collapse
Affiliation(s)
- Zeyu Fan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yong-Sheng Wei
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Chinmoy Das
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroki Yamada
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Koji Ohara
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
28
|
Li X, Huang W, Krajnc A, Yang Y, Shukla A, Lee J, Ghasemi M, Martens I, Chan B, Appadoo D, Chen P, Wen X, Steele JA, Hackbarth HG, Sun Q, Mali G, Lin R, Bedford NM, Chen V, Cheetham AK, Tizei LHG, Collins SM, Wang L, Hou J. Interfacial alloying between lead halide perovskite crystals and hybrid glasses. Nat Commun 2023; 14:7612. [PMID: 37993424 PMCID: PMC10665442 DOI: 10.1038/s41467-023-43247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
The stellar optoelectronic properties of metal halide perovskites provide enormous promise for next-generation optical devices with excellent conversion efficiencies and lower manufacturing costs. However, there is a long-standing ambiguity as to whether the perovskite surface/interface (e.g. structure, charge transfer or source of off-target recombination) or bulk properties are the more determining factor in device performance. Here we fabricate an array of CsPbI3 crystal and hybrid glass composites by sintering and globally visualise the property-performance landscape. Our findings reveal that the interface is the primary determinant of the crystal phases, optoelectronic quality, and stability of CsPbI3. In particular, the presence of a diffusion "alloying" layer is discovered to be critical for passivating surface traps, and beneficially altering the energy landscape of crystal phases. However, high-temperature sintering results in the promotion of a non-stoichiometric perovskite and excess traps at the interface, despite the short-range structure of halide is retained within the alloying layer. By shedding light on functional hetero-interfaces, our research offers the key factors for engineering high-performance perovskite devices.
Collapse
Affiliation(s)
- Xuemei Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wengang Huang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Andraž Krajnc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001, Ljubljana, Slovenia
| | - Yuwei Yang
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Atul Shukla
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jaeho Lee
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mehri Ghasemi
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Isaac Martens
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Dominique Appadoo
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Julian A Steele
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Haira G Hackbarth
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001, Ljubljana, Slovenia
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
- University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Sean M Collins
- School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
29
|
Ma M, Zhang X, Chen X, Xiong H, Xu L, Cheng T, Yuan J, Wei F, Shen B. In situ imaging of the atomic phase transition dynamics in metal halide perovskites. Nat Commun 2023; 14:7142. [PMID: 37932253 PMCID: PMC10628210 DOI: 10.1038/s41467-023-42999-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Phase transition dynamics are an important concern in the wide applications of metal halide perovskites, which fundamentally determine the optoelectronic properties and stabilities of perovskite materials and devices. However, a more in-depth understanding of such a phase transition process with real atomic resolution is still limited by the immature low-dose electron microscopy and in situ imaging studies to date. Here, we apply an emergent low-dose imaging technique to identify different phase structures (α, β and γ) in CsPbI3 nanocrystals during an in-situ heating process. The rotation angles of PbI6 octahedrons can be measured in these images to quantitatively describe the thermal-induced phase distribution and phase transition. Then, the dynamics of such a phase transition are studied at a macro time scale by continuously imaging the phase distribution in a single nanocrystal. The structural evolution process of CsPbI3 nanocrystals at the particle level, including the changes in morphology and composition, is also visualized with increasing temperature. These results provide atomic insights into the transition dynamics of perovskite phases, indicating a long-time transition process with obvious intermediate states and spatial distribution that should be generally considered in the further study of structure-property relations and device performance.
Collapse
Affiliation(s)
- Mengmeng Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123, Suzhou, Jiangsu, PR China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123, Suzhou, Jiangsu, PR China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, PR China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, PR China
| | - Liang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123, Suzhou, Jiangsu, PR China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123, Suzhou, Jiangsu, PR China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123, Suzhou, Jiangsu, PR China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, PR China
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, Jiangsu, PR China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123, Suzhou, Jiangsu, PR China.
| |
Collapse
|
30
|
Chester AM, Castillo-Blas C, Sajzew R, Rodrigues BP, Mas-Balleste R, Moya A, Snelson JE, Collins SM, Sapnik AF, Robertson GP, Irving DJM, Wondraczek L, Keen DA, Bennett TD. Structural insights into hybrid immiscible blends of metal-organic framework and sodium ultraphosphate glasses. Chem Sci 2023; 14:11737-11748. [PMID: 37920351 PMCID: PMC10619634 DOI: 10.1039/d3sc02305b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2023] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting the formation of immiscible blends.
Collapse
Affiliation(s)
- Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | - Roman Sajzew
- Otto Schott Institute Materials Research, University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - Bruno P Rodrigues
- Otto Schott Institute Materials Research, University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - Ruben Mas-Balleste
- Department of Inorganic Chemistry, Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Alicia Moya
- Department of Inorganic Chemistry, Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Jessica E Snelson
- School of Chemical and Process Engineering, School of Chemistry, Bragg Centre for Materials Research, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Sean M Collins
- School of Chemical and Process Engineering, School of Chemistry, Bragg Centre for Materials Research, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | - Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
- Diamond Light Source Ltd Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Daniel J M Irving
- Diamond Light Source Ltd Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Lothar Wondraczek
- Otto Schott Institute Materials Research, University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory Harwell Campus, Didcot, Oxfordshire OX11 0QX UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| |
Collapse
|
31
|
Guo J, Meng G, Zhang X, Huang H, Shi J, Wang B, Hu X, Yuan J, Ma W. Dual-Interface Modulation with Covalent Organic Framework Enables Efficient and Durable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302839. [PMID: 37391877 DOI: 10.1002/adma.202302839] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
Dual-interface modulation including buried interface as well as the top surface has recently been proven to be crucial for obtaining high photovoltaic performance in lead halide perovskite solar cells (PSCs). Herein, for the first time, the strategy of using functional covalent organic frameworks (COFs), namely HS-COFs for dual-interface modulation, is reported to further understand its intrinsic mechanisms in optimizing the bottom and top surfaces. Specifically, the buried HS-COFs layer can enhance the resistance against ultraviolet radiation, and more importantly, release the tensile strain, which is beneficial for enhancing device stability and improving the order of perovskite crystal growth. Furthermore, the detailed characterization results reveal that the HS-COFs on the top surface can effectively passivate the surface defects and suppress non-radiation recombination, as well as optimize the crystallization and growth of the perovskite film. Benefiting from the synergistic effects, the dual-interface modified devices deliver champion efficiencies of 24.26% and 21.30% for 0.0725 cm2 and 1 cm2 -sized devices, respectively. Moreover, they retain 88% and 84% of their initial efficiencies after aging for 2000 h under the ambient conditions (25 °C, relative humidity: 35-45%) and a nitrogen atmosphere with heating at 65 °C, respectively.
Collapse
Affiliation(s)
- Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Genping Meng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Hehe Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Junwei Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
32
|
Ghasemi M, Li X, Tang C, Li Q, Lu J, Du A, Lee J, Appadoo D, Tizei LHG, Pham ST, Wang L, Collins SM, Hou J, Jia B, Wen X. Effective Suppressing Phase Segregation of Mixed-Halide Perovskite by Glassy Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304236. [PMID: 37616513 DOI: 10.1002/smll.202304236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/23/2023] [Revised: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Lead mixed-halide perovskites offer tunable bandgaps for optoelectronic applications, but illumination-induced phase segregation can quickly lead to changes in their crystal structure, bandgaps, and optoelectronic properties, especially for the Br-I mixed system because CsPbI3 tends to form a non-perovskite phase under ambient conditions. These behaviors can impact their performance in practical applications. By embedding such mixed-halide perovskites in a glassy metal-organic framework, a family of stable nanocomposites with tunable emission is created. Combining cathodoluminescence with elemental mapping under a transmission electron microscope, this research identifies a direct relationship between the halide composition and emission energy at the nanoscale. The composite effectively inhibits halide ion migration, and consequently, phase segregation even under high-energy illumination. The detailed mechanism, studied using a combination of spectroscopic characterizations and theoretical modeling, shows that the interfacial binding, instead of the nanoconfinement effect, is the main contributor to the inhibition of phase segregation. These findings pave the way to suppress the phase segregation in mixed-halide perovskites toward stable and high-performance optoelectronics.
Collapse
Affiliation(s)
- Mehri Ghasemi
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xuemei Li
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Cheng Tang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4001, Australia
| | - Qi Li
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Junlin Lu
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Aijun Du
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4001, Australia
| | - Jaeho Lee
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Dominique Appadoo
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Sang T Pham
- Bragg Centre for Materials Research, School of Chemical and Process Engineering and School of Chemistry, University of Leeds, LS2 9JT, Leeds, UK
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sean M Collins
- Bragg Centre for Materials Research, School of Chemical and Process Engineering and School of Chemistry, University of Leeds, LS2 9JT, Leeds, UK
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
33
|
Izu H, Tabe H, Namiki Y, Yamada H, Horike S. Heterogenous CO 2 Reduction Photocatalysis of Transparent Coordination Polymer Glass Membranes Containing Metalloporphyrins. Inorg Chem 2023. [PMID: 37432910 DOI: 10.1021/acs.inorgchem.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/13/2023]
Abstract
Transparent and grain boundary-free substrates are essential to immobilize molecular photocatalysts for efficient photoirradiation reactions without unexpected light scattering and absorption by the substrates. Herein, membranes of coordination polymer glass immobilizing metalloporphyrins were examined as a heterogeneous photocatalyst for carbon dioxide (CO2) reduction under visible-light irradiation. [Zn(HPO4)(H2PO4)2](ImH2)2 (Im = imidazolate) liquid containing iron(III) 5,10,15,20-tetraphenyl-21H,23H-porphine chloride (Fe(TPP)Cl, 0.1-0.5 w/w%) was cast on a borosilicate glass substrate, followed by cooling to room temperature, resulting in transparent and grain boundary-free membranes with the thicknesses of 3, 5, and 9 μm. The photocatalytic activity of the membranes was in proportion to the membrane thickness, indicating that Fe(TPP)Cl in the subsurface of membranes effectively absorbed light and contributed to the reactions. The membrane photocatalysts were intact during the photocatalytic reaction and showed no recrystallization or leaching of Fe(TPP)Cl.
Collapse
Affiliation(s)
- Hitoshi Izu
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyasu Tabe
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Namiki
- Frontier Research Center, POLA Chemical Industries, Inc., Kashio-cho, Totsuka-ku, Yokohama, Kanagawa 244-0812, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroki Yamada
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
34
|
Wang Y, Zhao W, Guo Y, Hu W, Peng C, Li L, Wei Y, Wu Z, Xu W, Li X, Suh YD, Liu X, Huang W. Efficient X-ray luminescence imaging with ultrastable and eco-friendly copper(I)-iodide cluster microcubes. LIGHT, SCIENCE & APPLICATIONS 2023; 12:155. [PMID: 37357223 DOI: 10.1038/s41377-023-01208-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
The advancement of contemporary X-ray imaging heavily depends on discovering scintillators that possess high sensitivity, robust stability, low toxicity, and a uniform size distribution. Despite significant progress in this field, the discovery of a material that satisfies all of these criteria remains a challenge. In this study, we report the synthesis of monodisperse copper(I)-iodide cluster microcubes as a new class of X-ray scintillators. The as-prepared microcubes exhibit remarkable sensitivity to X-rays and exceptional stability under moisture and X-ray exposure. The uniform size distribution and high scintillation performance of the copper(I)-iodide cluster microcubes make them suitable for the fabrication of large-area, flexible scintillating films for X-ray imaging applications in both static and dynamic settings.
Collapse
Affiliation(s)
- Yanze Wang
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenjing Zhao
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yuanyuan Guo
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenbo Hu
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Chenxi Peng
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Lei Li
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory of Magnetic Materials Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuan Wei
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zhongbin Wu
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weidong Xu
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Xiaowang Liu
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| | - Wei Huang
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
35
|
Abstract
The melting phenomenon in metal-organic frameworks (MOFs) has been recognised as one of the fourth generation MOF paradigm behaviours. Molten MOFs have high processibility for producing mechanically robust glassy MOF macrostructures, and they also offer highly tunable interfacial characteristics when combined with other types of functional materials, such as crystalline MOFs, inorganic glass and metal halide perovskites. As a result, MOF glass composites have emerged as a family of functional materials with dynamic properties and hierarchical structural control. These nanocomposites allow for sophisticated materials science studies as well as the fabrication of next-generation separation, catalysis, optical, and biomedical devices. Here, we review the approaches for designing, fabricating, and characterising MOF glass composites. We determine the key application opportunities enabled by these composites and explore the remaining hurdles, such as improving thermal and chemical compatibility, regulating interfacial properties, and scalability.
Collapse
Affiliation(s)
- Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
- University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, Cambridge University, CB3 0FS, Cambridge, UK
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
36
|
Zhao G, Zhang M, Li H, Guo Y, Liu T, Wang H, Wang H, Fang Y. Velocity field distribution control in antisolvent flow realizing highly stable and efficient perovskite nanocrystals. J Colloid Interface Sci 2023; 649:214-222. [PMID: 37348341 DOI: 10.1016/j.jcis.2023.06.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Achieving highly stable and efficient perovskite nanocrystals (NCs) without applying functional additives or encapsulation, particularly sustaining the stability in ultra-dilute solution, is still a formidable challenge. Here, we show the FAPbI3 perovskite NCs with achieved ∼100 % photoluminescence quantum yield (PLQY) and low defect density (∼0.2 cm-3 per NCs), which is obtained by controlling the velocity field distribution of antisolvent flow in ligand-assisted reprecipitation process. The NCs show incredible reproducibility with narrow deviation of PLQY and linewidth between batch by batch, as well as remarkable stability of maintaining over 80 % PLQY, either in an ultra-diluted solution (9.3 × 10-6 mg/mL), or storing in ambient condition after 90 days with concentration of 0.09 mg/mL. The results in this work demonstrate the interplay of fluid mechanics and crystallization kinetics of perovskite, which pioneers a novel and unprecedent understanding for improving the stability of perovskite NCs for efficient quantum light source.
Collapse
Affiliation(s)
- Guanguan Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, PR China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Huixin Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, PR China
| | - Yangyang Guo
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, PR China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, PR China; Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, PR China.
| | - Hongyue Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, PR China; Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, PR China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| |
Collapse
|
37
|
Wang M, Zhao H, Du B, Lu X, Ding S, Hu X. Functions and applications of emerging metal-organic-framework liquids and glasses. Chem Commun (Camb) 2023. [PMID: 37191098 DOI: 10.1039/d3cc00834g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/17/2023]
Abstract
Traditional metal-organic-frameworks (MOFs) have been extensively studied and applied in various fields across chemistry, biology and engineering in the past decades. Recently, a family of emerging MOF liquids and glasses have gained ever-growing research interests owing to their fascinating phase transitions and unique functions. To date, a growing number of MOF crystals have been found to be capable of transforming into liquid and glassy states under external stimuli, which overcomes the limitations of MOF crystals by introducing functional disorder in a controlled manner and offering some desirable properties. This review is dedicated to compiling recent advances in the fundamental understanding of the phase and structure evolution during crystal melting and glass formation in order to give insights into the underlying conversion mechanism. Benefiting from the disordered metal-ligand arrangement and free grain boundaries, various functional properties of liquid and glassy MOFs including porosity, ionic conductivity, and optical/mechanical properties are summarized and evaluated in detail, accompanied by the structure-property correlation. At the same time, their potential applications are further assessed from a developmental perspective according to their unique functions. Finally, we summarize the current progress in the development of liquid/glassy MOFs and point out the serious challenges as well as the potential solutions. This work provides perspectives on the functional applications of liquid/glassy MOFs and highlights the future research directions for the advancement of MOF liquids and glasses.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Hongyang Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
| | - Bowei Du
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
| | - Xuan Lu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shujiang Ding
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
| | - Xiaofei Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Sapnik AF, Sun C, Laulainen JEM, Johnstone DN, Brydson R, Johnson T, Midgley PA, Bennett TD, Collins SM. Mapping nanocrystalline disorder within an amorphous metal-organic framework. Commun Chem 2023; 6:92. [PMID: 37169838 PMCID: PMC10175482 DOI: 10.1038/s42004-023-00891-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
Intentionally disordered metal-organic frameworks (MOFs) display rich functional behaviour. However, the characterisation of their atomic structures remains incredibly challenging. X-ray pair distribution function techniques have been pivotal in determining their average local structure but are largely insensitive to spatial variations in the structure. Fe-BTC (BTC = 1,3,5-benzenetricarboxylate) is a nanocomposite MOF, known for its catalytic properties, comprising crystalline nanoparticles and an amorphous matrix. Here, we use scanning electron diffraction to first map the crystalline and amorphous components to evaluate domain size and then to carry out electron pair distribution function analysis to probe the spatially separated atomic structure of the amorphous matrix. Further Bragg scattering analysis reveals systematic orientational disorder within Fe-BTC's nanocrystallites, showing over 10° of continuous lattice rotation across single particles. Finally, we identify candidate unit cells for the crystalline component. These independent structural analyses quantify disorder in Fe-BTC at the critical length scale for engineering composite MOF materials.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Chao Sun
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | | | - Duncan N Johnstone
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Rik Brydson
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK.
- School of Chemistry, University of Leeds, Leeds, UK.
| |
Collapse
|
39
|
Yang Z, Belmabkhout Y, McHugh LN, Ao D, Sun Y, Li S, Qiao Z, Bennett TD, Guiver MD, Zhong C. ZIF-62 glass foam self-supported membranes to address CH 4/N 2 separations. NATURE MATERIALS 2023:10.1038/s41563-023-01545-w. [PMID: 37169976 DOI: 10.1038/s41563-023-01545-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/30/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200-330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4-6).
Collapse
Affiliation(s)
- Zibo Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Youssef Belmabkhout
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE) and Technology Development Cell (TechCell), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Lauren N McHugh
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - De Ao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| |
Collapse
|
40
|
Guo X, He X, Degnan Z, Chiu CC, Donose BC, Bertling K, Fedorov A, Rakić AD, Jacobson P. Terahertz nanospectroscopy of plasmon polaritons for the evaluation of doping in quantum devices. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1865-1875. [PMID: 39635138 PMCID: PMC11614332 DOI: 10.1515/nanoph-2023-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/30/2023] [Accepted: 03/22/2023] [Indexed: 12/07/2024]
Abstract
Terahertz (THz) waves are a highly sensitive probe of free carrier concentrations in semiconducting materials. However, most experiments operate in the far-field, which precludes the observation of nanoscale features that affect the material response. Here, we demonstrate the use of nanoscale THz plasmon polaritons as an indicator of surface quality in prototypical quantum devices properties. Using THz near-field hyperspectral measurements, we observe polaritonic features in doped silicon near a metal-semiconductor interface. The presence of the THz surface plasmon polariton indicates the existence of a thin film doped layer on the device. Using a multilayer extraction procedure utilising vector calibration, we quantitatively probe the doped surface layer and determine its thickness and complex permittivity. The recovered multilayer characteristics match the dielectric conditions necessary to support the THz surface plasmon polariton. Applying these findings to superconducting resonators, we show that etching of this doped layer leads to an increase of the quality factor as determined by cryogenic measurements. This study demonstrates that THz scattering-type scanning near-field optical microscopy (s-SNOM) is a promising diagnostic tool for characterization of surface dielectric properties of quantum devices.
Collapse
Affiliation(s)
- Xiao Guo
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, 4072, QLD, Australia
| | - Xin He
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, 4072, QLD, Australia
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Brisbane, 4072, QLD, Australia
| | - Zachary Degnan
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, 4072, QLD, Australia
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Brisbane, 4072, QLD, Australia
| | - Chun-Ching Chiu
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, 4072, QLD, Australia
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Brisbane, 4072, QLD, Australia
| | - Bogdan C. Donose
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, 4072, QLD, Australia
| | - Karl Bertling
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, 4072, QLD, Australia
| | - Arkady Fedorov
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, 4072, QLD, Australia
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Brisbane, 4072, QLD, Australia
| | - Aleksandar D. Rakić
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, 4072, QLD, Australia
| | - Peter Jacobson
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, 4072, QLD, Australia
| |
Collapse
|
41
|
Carulli F, He M, Cova F, Erroi A, Li L, Brovelli S. Silica-Encapsulated Perovskite Nanocrystals for X-ray-Activated Singlet Oxygen Production and Radiotherapy Application. ACS ENERGY LETTERS 2023; 8:1795-1802. [PMID: 37090166 PMCID: PMC10111416 DOI: 10.1021/acsenergylett.3c00234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Multicomponent systems consisting of lead halide perovskite nanocrystals (CsPbX3-NCs, X = Br, I) grown inside mesoporous silica nanospheres (NSs) with selectively sealed pores combine intense scintillation and strong interaction with ionizing radiation of CsPbX3 NCs with the chemical robustness in aqueous environment of silica particles, offering potentially promising candidates for enhanced radiotherapy and radio-imaging strategies. We demonstrate that CsPbX3 NCs boost the generation of singlet oxygen species (1O2) in water under X-ray irradiation and that the encapsulation into sealed SiO2 NSs guarantees perfect preservation of the inner NCs after prolonged storage in harsh conditions. We find that the 1O2 production is triggered by the electromagnetic shower released by the CsPbX3 NCs with a striking correlation with the halide composition (I3 > I3-x Br x > Br3). This opens the possibility of designing multifunctional radio-sensitizers able to reduce the local delivered dose and the undesired collateral effects in the surrounding healthy tissues by improving a localized cytotoxic effect of therapeutic treatments and concomitantly enabling optical diagnostics by radio imaging.
Collapse
Affiliation(s)
- Francesco Carulli
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Mengda He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Francesca Cova
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Andrea Erroi
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Liang Li
- Macao
Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Sergio Brovelli
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| |
Collapse
|
42
|
Ali MA, Winters WMW, Mohamed MA, Tan D, Zheng G, Madsen RSK, Magdysyuk OV, Diaz-Lopez M, Cai B, Gong N, Xu Y, Hung I, Gan Z, Sen S, Sun HT, Bennett TD, Liu X, Yue Y, Qiu J. Fabrication of Super-Sized Metal Inorganic-Organic Hybrid Glass with Supramolecular Network via Crystallization-Suppressing Approach. Angew Chem Int Ed Engl 2023; 62:e202218094. [PMID: 36744674 DOI: 10.1002/anie.202218094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Metal coordination compound (MCC) glasses [e.g., metal-organic framework (MOF) glass, coordination polymer glass, and metal inorganic-organic complex (MIOC) glass] are emerging members of the hybrid glass family. So far, a limited number of crystalline MCCs can be converted into glasses by melt-quenching. Here, we report a universal wet-chemistry method, by which the super-sized supramolecular MIOC glasses can be synthesized from non-meltable MOFs. Alcohol and acid were used as agents to inhibit crystallization. The MIOC glasses demonstrate unique features including high transparency, shaping capability, and anisotropic network. Directional photoluminescence with a large polarization ratio (≈47 %) was observed from samples doped with organic dyes. This crystallization-suppressing approach enables fabrication of super-sized MCC glasses, which cannot be achieved by conventional vitrification methods, and thus allows for exploring new MCC glasses possessing photonic functionalities.
Collapse
Affiliation(s)
- Mohamed A Ali
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wessel M W Winters
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Moushira A Mohamed
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dezhi Tan
- Zhejiang Lab, Hangzhou, 310027, China
| | - Guojun Zheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rasmus S K Madsen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Oxana V Magdysyuk
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Maria Diaz-Lopez
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Biao Cai
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nan Gong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yijue Xu
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL-32310, USA
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL-32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL-32310, USA
| | - Sabyasachi Sen
- Department of Materials Science and Engineering, University of California at Davis, Davis, CA-95616, USA
| | - Hong-Tao Sun
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB30FS, UK
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanzheng Yue
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
43
|
Peng Y, Huang J, Zhou L, Mu Y, Han S, Zhou S, Gao P. Efficient thin-film perovskite solar cells from a two-step sintering of nanocrystals. NANOSCALE 2023; 15:2924-2931. [PMID: 36692099 DOI: 10.1039/d2nr06745e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/17/2023]
Abstract
Creating semiconductor thin films from sintering of colloidal nanocrystals (NCs) represents a very important technology for high throughput and low cost thin-film photovoltaics. Here we report the creation of all-inorganic cesium lead bromide (CsPbBr3) polycrystalline films with grain size exceeding 1 μm from the bottom up by sintering of CsPbBr3 NCs terminated with short and low-boiling-point alky ligands that are ideal for use in sintered photovoltaics. The grain growth behavior during the sintering process was carefully investigated and correlated to the solar cell performance. To achieve precise control over the microstructural development we propose a facile two-step sintering process involving the grain growth via coarsening at a relative low temperature followed by densification at a high temperature. Compared with the one-step sintering, the two-step process yields a more uniform CsPbBr3 bulk film with larger grain size, higher density and lower trap density. Consequently, the photovoltaic device based on the two-step sintering process demonstrates a significant enhancement of efficiency with reduced hysteresis that approaches the best reported CsPbBr3 solar cells using a similar configuration. Our study specifies a rarely addressed perspective concerning the sintering mechanism of perovskite NCs and should contribute to the development of high-performance bulk perovskite devices based on the building blocks of perovskite NCs.
Collapse
Affiliation(s)
- Yuhao Peng
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Junli Huang
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Lue Zhou
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Yuncheng Mu
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Shuyao Han
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Pingqi Gao
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
44
|
Luo JB, Wei JH, Zhang ZZ, He ZL, Kuang DB. A Melt-Quenched Luminescent Glass of an Organic-Inorganic Manganese Halide as a Large-Area Scintillator for Radiation Detection. Angew Chem Int Ed Engl 2023; 62:e202216504. [PMID: 36504433 DOI: 10.1002/anie.202216504] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Glass is a group of materials with appealing qualities, including simplicity in fabrication, durability, and high transparency, and they play a crucial role in the optics field. In this paper, a new organic-inorganic metal halide luminescent glass exhibiting >78 % transmittance at 506-800 nm range together with a high photoluminescence quantum yield (PLQY) of 28.5 % is reported through a low-temperature melt-quenching approach of pre-synthesized (HTPP)2 MnBr4 (HTPP=hexyltriphenylphosphonium) single crystal. Temperature-dependent X-ray diffraction, polarizing microscopy, and molecular dynamics simulations were combined to investigate the glass-crystal interconversion process, revealing the disordered nature of the glassy state. Benefiting from the transparent nature, (HTPP)2 MnBr4 glass yields an outstanding spatial resolution of 10 lp mm-1 for X-ray imaging. The superb optical properties and facility of large-scale fabrication distinguish the organic-inorganic metal halide glass as a highly promising class of materials for optical devices.
Collapse
Affiliation(s)
- Jian-Bin Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jun-Hua Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhi-Zhong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zi-Lin He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
45
|
Heveling J. La-Doped Alumina, Lanthanum Aluminate, Lanthanum Hexaaluminate, and Related Compounds: A Review Covering Synthesis, Structure, and Practical Importance. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Affiliation(s)
- Josef Heveling
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
46
|
Liu X, Yang HG, Yang S, Hou Y. Spontaneous Formation of Heterostructured Perovskite Films for Photovoltaic Application. Chemistry 2023; 29:e202202895. [PMID: 36350329 DOI: 10.1002/chem.202202895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Perovskite solar cells (PSCs) are the one of most promising photovoltaic technologies that can be achieved by a simple solution process. At the current stage, the key issues concern further improvements in efficiency and operational lifetime. Constructing a self-assembled perovskite structure with manipulated chemical and physical properties is a useful and effective strategy to solve these problems. Herein, we review the basic principles of and recent progress in the spontaneous formation behavior of heterostructured perovskite thin films. This concept provides insightful clues for the design and fabrication of stable and efficient PSCs for next-generation photovoltaics.
Collapse
Affiliation(s)
- Xinyi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Hou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.,Shenzhen Research Institute of East China University of Science and Technology, Shenzhen, 518057, P. R. China
| |
Collapse
|
47
|
Tian T, Yang M, Fang Y, Zhang S, Chen Y, Wang L, Wu WQ. Large-area waterproof and durable perovskite luminescent textiles. Nat Commun 2023; 14:234. [PMID: 36646678 PMCID: PMC9842651 DOI: 10.1038/s41467-023-35830-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023] Open
Abstract
Lead halide perovskites show great potential to be used in wearable optoelectronics. However, obstacles for real applications lie in their instability under light, moisture and temperature stress, noxious lead ions leakage and difficulties in fabricating uniform luminescent textiles at large scale and high production rates. Overcoming these obstacles, we report simple, high-throughput electrospinning of large-area (> 375 cm2) flexible perovskite luminescent textiles woven by ultra-stable polymer@perovskite@cyclodextrin@silane composite fibers. These textiles exhibit bright and narrow-band photoluminescence (a photoluminescence quantum yield of 49.7%, full-width at half-maximum <17 nm) and the time to reach 50% photoluminescence of 14,193 h under ambient conditions, showcasing good stability against water immersion (> 3300 h), ultraviolet irradiation, high temperatures (up to 250 °C) and pressure surge (up to 30 MPa). The waterproof PLTs withstood fierce water scouring without any detectable leaching of lead ions. These low-cost and scalable woven PLTs enable breakthrough application in marine rescue.
Collapse
Affiliation(s)
- Tian Tian
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
| | - Meifang Yang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
| | - Yuxuan Fang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
| | - Shuo Zhang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
| | - Yuxin Chen
- grid.12981.330000 0001 2360 039XInstrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275 P. R. China
| | - Lianzhou Wang
- grid.1003.20000 0000 9320 7537Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Wu-Qiang Wu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
| |
Collapse
|
48
|
Yin Z, Zhao Y, Zeng M. Challenge, Advance and Emerging Opportunities for Metal-Organic Framework Glasses: from Dynamic Chemistry to Material Science and Noncrystalline Physics. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/03/2023]
|
49
|
Abstract
Perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency exceeding 20% have been achieved in both green and red wavelengths1-5; however, the performance of blue-emitting PeLEDs lags behind6,7. Ultrasmall CsPbBr3 quantum dots are promising candidates with which to realize efficient and stable blue PeLEDs, although it has proven challenging to synthesize a monodispersed population of ultrasmall CsPbBr3 quantum dots, and difficult to retain their solution-phase properties when casting into solid films8. Here we report the direct synthesis-on-substrate of films of suitably coupled, monodispersed, ultrasmall perovskite QDs. We develop ligand structures that enable control over the quantum dots' size, monodispersity and coupling during film-based synthesis. A head group (the side with higher electrostatic potential) on the ligand provides steric hindrance that suppresses the formation of layered perovskites. The tail (the side with lower electrostatic potential) is modified using halide substitution to increase the surface binding affinity, constraining resulting grains to sizes within the quantum confinement regime. The approach achieves high monodispersity (full-width at half-maximum = 23 nm with emission centred at 478 nm) united with strong coupling. We report as a result blue PeLEDs with an external quantum efficiency of 18% at 480 nm and 10% at 465 nm, to our knowledge the highest reported among perovskite blue LEDs by a factor of 1.5 and 2, respectively6,7.
Collapse
|
50
|
Chen R, Shen H, Chang Q, Tang Z, Nie S, Chen B, Ping T, Wu B, Yin J, Li J, Zheng N. Conformal Imidazolium 1D Perovskite Capping Layer Stabilized 3D Perovskite Films for Efficient Solar Modules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204017. [PMID: 36372521 PMCID: PMC9798973 DOI: 10.1002/advs.202204017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Although the perovskite solar cells have been developed rapidly, the industrialization of perovskite photovoltaics is still facing challenges, especially considering their stability issues. Here, the new type of benzimidazolium salt, N,N'-dialkylbenzimidazolium iodide, is proposed and functionalized to convert the three-dimensional (3D) FACs-perovskite films into one-dimensional (1D) capping layer topped 1D/3D structure either in individual device or module levels. This conformal interface modulation demonstrates that not only can effectively stabilize FACs-based perovskite films by inhibiting the lateral and vertical iodide diffusions in devices or modules, ensuring an excellent operation and environmental stability, but also provides an excellent charge transporting channel through the well-designed 1D crystal structure. Consequently, efficient device performance with power conversion efficiency up to 24.3% is readily achieved. And the large-area perovskite solar modules with high efficiency (19.6% for the active areas of 18 cm2 ) and long-term stability (about 500 h in AM 1.5G illumination or about 1000 h under double-85 conditions) are also successfully verified.
Collapse
Affiliation(s)
- Ruihao Chen
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of GrapheneXi'an710072China
| | - Hui Shen
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Qing Chang
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Ziheng Tang
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Siqing Nie
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Bili Chen
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Tan Ping
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Binghui Wu
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jun Yin
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jing Li
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Nanfeng Zheng
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|