1
|
Dai M, Qi Z, Yan D. In Situ Generation of Microwire Heterojunctions with Flexible Optical Waveguide and Hydration-Mediated Photochromism. Angew Chem Int Ed Engl 2025; 64:e202420139. [PMID: 39607074 DOI: 10.1002/anie.202420139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Flexible heterojunctions based on molecular systems are in high demand for applications in photonics, electronics, and smart materials, but fabrication challenges have hindered progress. Herein, we present an in situ approach to creating optical heterojunctions using hydration-mediated flexible molecular crystals. These hydrated multi-component molecular solids display strong blue emitting optical waveguides with minimal optical loss (0.005 dB/μm) and excellent flexibility (elastic modulus: 3.87 GPa). The water-mediated process enables the molecular microwires with tunable elastic and plastic deformation, as well as reversible uptake and release of lattice water, facilitating the formation of flexible heterojunctions. Spectral analysis and theoretical modeling reveal that these microwires exhibit both photochromism and color-tunable dual emission (fluorescence and phosphorescence), expanding their utility in photonic information encoding. Therefore, this work introduces a hydration-mediated molecular engineering strategy for fabricating crystalline heterojunctions with on-demand processability and controllable emission sequences, enabling optical signal manipulation at the micro/nanoscale.
Collapse
Affiliation(s)
- Meiqi Dai
- Beijing Key laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenhong Qi
- Beijing Key laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
2
|
Cui B, Xu P, Fan K, Zhen Y, Li X, Lu R, Wang P, Guo X, Tong L. Small-molecule organic ice microfibers. SCIENCE ADVANCES 2025; 11:eads2538. [PMID: 39772679 PMCID: PMC11708885 DOI: 10.1126/sciadv.ads2538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Small organic molecules are essential building blocks of our universe, from cosmic dust to planetary surfaces to life. Compared to their well-known gaseous and liquid forms that have been extensively studied, small organic molecules in the form of ice at low temperatures receive much less attention. Here, we show that supercooled small-molecule droplets can be drawn into highly uniform amorphous ice microfibers with lengths up to 5 cm and diameters down to 200 nm. In the experimental test, these fiber-like ices manifest excellent mechanical flexibilities with elastic strain up to 3.3%. Meanwhile, they can guide light with loss down to 0.025 dB/cm that approaches the material absorption limit and offer high optical nonlinearity for low-threshold supercontinuum generation. Notable temperature-dependent Young's modulus and icing-induced refractive-index increase are also found. These results may open a promising category of low-temperature materials for both scientific research and technological applications.
Collapse
Affiliation(s)
- Bowen Cui
- New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peizhen Xu
- New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kailong Fan
- New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuqi Zhen
- New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiangzheng Li
- New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rusi Lu
- New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pan Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
| | - Xin Guo
- New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
| | - Limin Tong
- New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Liu H, Su H, Chen N, Cen J, Tan J, Zhang B, Chen X, Cheng A, Fu S, Zhou X, Liu S, Zhang X, Liu S, Luo Y, Zhang G. Water-Ice Microstructures and Hydration States of Acridinium Iodide Studied by Phosphorescence Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202405314. [PMID: 38602843 DOI: 10.1002/anie.202405314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
Ice has been suggested to have played a significant role in the origin of life partly owing to its ability to concentrate organic molecules and promote reaction efficiency. However, the techniques for studying organic molecules in ice are absorption-based, which limits the sensitivity of measurements. Here we introduce an emission-based method to study organic molecules in water ice: the phosphorescence displays high sensitivity depending on the hydration state of an organic salt probe, acridinium iodide (ADI). The designed ADI aqueous system exhibits phosphorescence that can be severely perturbed when the temperature is higher than 110 K at a concentration of the order of 10-5 M, indicating changes in hydration for ADI. Using the ADI phosphorescent probe, it is found that the microstructures of water ice, i.e., crystalline vs. glassy, can be strongly dictated by a trace amount (as low as 10-5 M) of water-soluble organic molecules. Consistent with cryoSEM images and temperature-dependent Raman spectral data, the ADI is dehydrated in more crystalline ice and hydrated in more glassy ice. The current investigation serves as a starting point for using more sensitive spectroscopic techniques for studying water-organics interactions at a much lower concentration and wider temperature range.
Collapse
Affiliation(s)
- Hongping Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Su
- Hefei National Laboratory, Hefei, 230088, China
| | - Ning Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Cen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jiajia Tan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | | | - Xiaoyu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | | | - Shengquan Fu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shilin Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shiyong Liu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
4
|
Yang X, Shan Y, Hong Y, Zhang Z, Liu S, Yan X, Gong X, Zhang G, Yang Z. Exploring the Mpemba effect: a universal ice pressing enables porous ceramics. MATERIALS HORIZONS 2024; 11:1899-1907. [PMID: 38314804 DOI: 10.1039/d3mh01869e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Piezoceramics with global porosity and local compaction are highly desired to exploit the combination of mechanical and electrical properties. However, achieving such a functional combination is challenging because of the lack of techniques for applying uniform pressure inside porous ceramic green parts. Nature provides many examples of generating strong forces inside the macro and micro channels via the state transformation of water. Inspired by these phenomena, we present a technique of "ice and fire", that is, water freezing (ice pressing) and high-temperature sintering (fire), to produce ideal porous piezoceramics. We introduce a new compaction method called the "ice pressing method", which manipulates liquid phase transition for compaction. This method has several advantages, including uniform pressure distribution, a wide pressure range, high effectiveness, and selective freezing. It can generate an ultrahigh pressure of up to 180 MPa on the piezoceramic green skeletons in minutes while retaining their functional pore structures. By exploiting the Mpemba phenomenon, we further accelerate the compaction procedure by 11%. The first ice-pressed and second fire-consolidated lead zirconate titanate (PZT) ceramics are highly densified and exhibit an outstanding piezoelectric response (d33 = 531 pC N-1), comparable to conventional pressed bulk counterparts and 10-20 times higher than those of unpressed materials. The novel ice pressing method breaks the limitation of lacking a compaction technique for porous ceramics. The versatile and effective ice pressing method is a green and low-cost route promoting applications in sensors, acoustics, water filtration, catalyst substrates, and energy harvesting.
Collapse
Affiliation(s)
- Xiaodan Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xuetian Gong
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramic MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangzu Zhang
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramic MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
5
|
Yang X, Xu L, Xiong S, Rao H, Tan F, Yan J, Bao Y, Albanese A, Camposeo A, Pisignano D, Li B. Light-Emitting Microfibers from Lotus Root for Eco-Friendly Optical Waveguides and Biosensing. NANO LETTERS 2024; 24:566-575. [PMID: 37962055 DOI: 10.1021/acs.nanolett.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.
Collapse
Affiliation(s)
- Xianguang Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Liping Xu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Shijie Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Hao Rao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Fangchang Tan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jiahao Yan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yanjun Bao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Annachiara Albanese
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Dario Pisignano
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
6
|
Zhou B, Qi Z, Dai M, Xing C, Yan D. Ultralow-loss Optical Waveguides through Balancing Deep-Blue TADF and Orange Room Temperature Phosphorescence in Hybrid Antimony Halide Microstructures. Angew Chem Int Ed Engl 2023; 62:e202309913. [PMID: 37574452 DOI: 10.1002/anie.202309913] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Harnessing the potential of thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) is crucial for developing light-emitting diodes (LEDs), lasers, sensors, and many others. However, effective strategies in this domain are still relatively scarce. This study presents a new approach to achieving highly efficient deep-blue TADF (with a PLQY of 25 %) and low-energy orange RTP (with a PLQY of 90 %) through the fabrication of lead-free hybrid halides. This new class of monomeric and dimeric 0D antimony halides can be facilely synthesized using a bottom-up solution process, requiring only a few seconds to minutes, which offer exceptional stability and nontoxicity. By leveraging the highly adaptable molecular arrangement and crystal packing modes, the hybrid antimony halides demonstrate the ability to self-assemble into regular 1D microrod and 2D microplate morphologies. This self-assembly is facilitated by multiple non-covalent interactions between the inorganic cores and organic shells. Notably, these microstructures exhibit outstanding polarized luminescence and function as low-dimensional optical waveguides with remarkably low optical-loss coefficients. Therefore, this work not only presents a pioneering demonstration of deep-blue TADF in hybrid antimony halides, but also introduces 1D and 2D micro/nanostructures that hold promising potential for applications in white LEDs and low-dimensional photonic systems.
Collapse
Affiliation(s)
- Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Meiqi Dai
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Chang Xing
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
7
|
Taylor JN, Pélissier A, Mochizuki K, Hashimoto K, Kumamoto Y, Harada Y, Fujita K, Bocklitz T, Komatsuzaki T. Correction for Extrinsic Background in Raman Hyperspectral Images. Anal Chem 2023; 95:12298-12305. [PMID: 37561910 PMCID: PMC10448497 DOI: 10.1021/acs.analchem.3c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Raman hyperspectral microscopy is a valuable tool in biological and biomedical imaging. Because Raman scattering is often weak in comparison to other phenomena, prevalent spectral fluctuations and contaminations have brought advancements in analytical and chemometric methods for Raman spectra. These chemometric advances have been key contributors to the applicability of Raman imaging to biological systems. As studies increase in scale, spectral contamination from extrinsic background, intensity from sources such as the optical components that are extrinsic to the sample of interest, has become an emerging issue. Although existing baseline correction schemes often reduce intrinsic background such as autofluorescence originating from the sample of interest, extrinsic background is not explicitly considered, and these methods often fail to reduce its effects. Here, we show that extrinsic background can significantly affect a classification model using Raman images, yielding misleadingly high accuracies in the distinction of benign and malignant samples of follicular thyroid cell lines. To mitigate its effects, we develop extrinsic background correction (EBC) and demonstrate its use in combination with existing methods on Raman hyperspectral images. EBC isolates regions containing the smallest amounts of sample materials that retain extrinsic contributions that are specific to the device or environment. We perform classification both with and without the use of EBC, and we find that EBC retains biological characteristics in the spectra while significantly reducing extrinsic background. As the methodology used in EBC is not specific to Raman spectra, correction of extrinsic effects in other types of hyperspectral and grayscale images is also possible.
Collapse
Affiliation(s)
- J. Nicholas Taylor
- Research
Institute for Electronic Science, Hokkaido
University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- Advanced
Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aurélien Pélissier
- Research
Institute for Electronic Science, Hokkaido
University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- IBM
Research Europe, 8803 Rüschlikon, Switzerland
| | - Kentaro Mochizuki
- Department
of Pathology and Cell Regulation, Kyoto
Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kosuke Hashimoto
- Department
of Pathology and Cell Regulation, Kyoto
Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto 602-8566, Japan
- Department
of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Yasuaki Kumamoto
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshinori Harada
- Department
of Pathology and Cell Regulation, Kyoto
Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Katsumasa Fujita
- Advanced
Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Thomas Bocklitz
- Leibniz
Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich Schiller University, D-07443 Jena, Germany
| | - Tamiki Komatsuzaki
- Research
Institute for Electronic Science, Hokkaido
University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- Advanced
Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Graduate
School of Chemical Sciences and Engineering Materials Chemistry and
Energy Course, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
- The
Institute of Scientific and Industrial Research, Osaka University, Mihogaoka,
Ibaraki, 8-1, Osaka 567-0047, Japan
| |
Collapse
|
8
|
Thompson AJ, Powell JA, Melville JN, McMurtrie JC, Clegg JK. Crystals of Aliphatic Derivatives of [Cu(acac) 2 ] have Distinct Atomic-Scale Mechanisms of Bending. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207431. [PMID: 36932939 DOI: 10.1002/smll.202207431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Molecular crystals displaying elastic flexibility have important applications in the fields of optoelectronics and nanophotonic technologies. Understanding the mechanisms by which these materials bend is critical to the design of future materials incorporating these properties. Based on the known elastic properties of bis(acetylacetonato)copper(II), a series of 14 aliphatic derivatives are synthesized and crystallized. All those which grew in a needle morphology display noticeable elasticity, with 1D chains of π-stacked molecules parallel to the long metric length of the crystal a consistent crystallographic feature. Crystallographic mapping is used to measure the mechanism of elasticity at an atomic-scale. Symmetric derivatives with ethyl and propyl side chains are found to have different mechanisms of elasticity, which are further distinguished from the previously reported mechanism of bis(acetylacetonato)copper(II). While crystals of bis(acetylacetonato)copper(II) are known to bend elastically via a molecular rotation mechanism, the elasticity of the compounds presented is facilitated by expansion of their π-stacking interactions.
Collapse
Affiliation(s)
- Amy J Thompson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Joshua A Powell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jamie N Melville
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
9
|
Zhang W, Zhang X, Edwards BW, Zhong L, Gao H, Malaska MJ, Hodyss R, Greer JR. Deformation characteristics of solid-state benzene as a step towards understanding planetary geology. Nat Commun 2022; 13:7949. [PMID: 36572686 PMCID: PMC9792550 DOI: 10.1038/s41467-022-35647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022] Open
Abstract
Small organic molecules, like ethane and benzene, are ubiquitous in the atmosphere and surface of Saturn's largest moon Titan, forming plains, dunes, canyons, and other surface features. Understanding Titan's dynamic geology and designing future landing missions requires sufficient knowledge of the mechanical characteristics of these solid-state organic minerals, which is currently lacking. To understand the deformation and mechanical properties of a representative solid organic material at space-relevant temperatures, we freeze liquid micro-droplets of benzene to form ~10 μm-tall single-crystalline pyramids and uniaxially compress them in situ. These micromechanical experiments reveal contact pressures decaying from ~2 to ~0.5 GPa after ~1 μm-reduction in pyramid height. The deformation occurs via a series of stochastic (~5-30 nm) displacement bursts, corresponding to densification and stiffening of the compressed material during cyclic loading to progressively higher loads. Molecular dynamics simulations reveal predominantly plastic deformation and densified region formation by the re-orientation and interplanar shear of benzene rings, providing a two-step stiffening mechanism. This work demonstrates the feasibility of in-situ cryogenic nanomechanical characterization of solid organics as a pathway to gain insights into the geophysics of planetary bodies.
Collapse
Affiliation(s)
- Wenxin Zhang
- grid.20861.3d0000000107068890Division of Engineering and Applied Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 USA
| | - Xuan Zhang
- grid.425202.30000 0004 0548 6732INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Bryce W. Edwards
- grid.20861.3d0000000107068890Division of Engineering and Applied Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 USA
| | - Lei Zhong
- grid.40263.330000 0004 1936 9094School of Engineering, Brown University, Providence, RI 02912 USA
| | - Huajian Gao
- grid.40263.330000 0004 1936 9094School of Engineering, Brown University, Providence, RI 02912 USA ,grid.59025.3b0000 0001 2224 0361School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 70 Nanyang Drive, 639798 Singapore, Singapore ,grid.185448.40000 0004 0637 0221Institute of High Performance Computing, A*STAR, 138632 Singapore, Singapore
| | - Michael J. Malaska
- grid.20861.3d0000000107068890Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Robert Hodyss
- grid.20861.3d0000000107068890Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Julia R. Greer
- grid.20861.3d0000000107068890Division of Engineering and Applied Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 USA ,grid.20861.3d0000000107068890Kavli Nanoscience Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 USA
| |
Collapse
|
10
|
Perturbative vibration of the coupled hydrogen-bond (O:H-O) in water. Adv Colloid Interface Sci 2022; 310:102809. [PMID: 36356480 DOI: 10.1016/j.cis.2022.102809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Perturbation Raman spectroscopy has underscored the hydrogen bond (O:H-O or HB) cooperativity and polarizability (HBCP) for water, which offers a proper parameter space for the performance of the HB and electrons in the energy-space-time domains. The OO repulsive coupling drives the O:H-O segmental length and energy to relax cooperatively upon perturbation. Mechanical compression shortens and stiffens the O:H nonbond while lengthens and softens the HO bond associated with polarization. However, electrification by an electric field or charge injection, or molecular undercoordination at a surface, relaxes the O:H-O in a contrasting way to the compression with derivation of the supersolid phase that is viscoelastic, less dense, thermally diffusive, and mechanically and thermally more stable. The HO bond exhibits negative thermal expansivity in the liquid and the ice-I phase while its length responds in proportional to temperature in the quasisolid phase. The O:H-O relaxation modifies the mass densities, phase boundaries, critical temperatures and the polarization endows the slipperiness of ice and superfluidity of water at the nanometer scale. Protons injection by acid solvation creates the H↔H anti-HB and introduction of electron lone pairs derives the O:⇔:O super-HB into the solutions of base or H2O2 hydrogen-peroxide. The repulsive H↔H and O:⇔:O interactions lengthen the solvent HO bond while the solute HO bond contracts because its bond order loss. Differential phonon spectroscopy quantifies the abundance, structure order, and stiffness of the bonds transiting from the mode of pristine water to the perturbed states. The HBCP and the perturbative spectroscopy have enabled the dynamic potentials for the relaxing O:H-O bond. Findings not only amplified the power of the Raman spectroscopy but also substantiated the understanding of anomalies of water subjecting to perturbation.
Collapse
|
11
|
Sun B, Chen D, Cheng Y, Fei W, Jiang D, Tang S, Zhao G, Song J, Hou C, Zhang W, Wu S, Yang Y, Tan M, Zhang J, Wei D, Guo C, Zhang W, Dong S, Du S, Han J, Luo J, Zhang X. Sugar-Derived Isotropic Nanoscale Polycrystalline Graphite Capable of Considerable Plastic Deformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200363. [PMID: 35686916 DOI: 10.1002/adma.202200363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Obtaining large plastic deformation in polycrystalline van der Waals (vdW) materials is challenging. Achieving such deformation is especially difficult in graphite because it is highly anisotropic. The development of sugar-derived isotropic nanostructured polycrystalline graphite (SINPG) is discussed herein. The structure of this material preserves the high in-plane rigidity and out-of-plane flexibility of graphene layers and enables prominent plasticity by activating the rotation of nanoscale (5-10 nm) grains. Thus, micrometer-sized SINPG samples demonstrate enhanced compressive strengths of up to 3.0 GPa and plastic strains of 30-50%. These findings suggest a new pathway for enabling plastic deformation in otherwise brittle vdW materials. This new class of nanostructured carbon materials is suitable for use in a broad range of fields, from semiconductor to aerospace applications.
Collapse
Affiliation(s)
- Boqian Sun
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Daming Chen
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Yuan Cheng
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Weidong Fei
- The National Key Laboratory for Precision Hot Forming of Metals, Harbin Institute of Technology, Harbin, 150000, China
| | - Danyu Jiang
- Analysis and Testing Center for Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200000, China
| | - Sufang Tang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110000, China
| | - Guangdong Zhao
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150000, China
| | - Juntao Song
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Chenlin Hou
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Wenzheng Zhang
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Shiqi Wu
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Yu Yang
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Mingyi Tan
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Jie Zhang
- Center of Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin, 150000, China
| | - Daqing Wei
- Center of Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin, 150000, China
| | - Chaowei Guo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Zhang
- Electron Microscopy Center, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Shun Dong
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Shanyi Du
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Jiecai Han
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| | - Jian Luo
- Department of NanoEngineering, Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xinghong Zhang
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, 150000, China
| |
Collapse
|
12
|
Wondraczek L, Bouchbinder E, Ehrlicher A, Mauro JC, Sajzew R, Smedskjaer MM. Advancing the Mechanical Performance of Glasses: Perspectives and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109029. [PMID: 34870862 DOI: 10.1002/adma.202109029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Glasses are materials that lack a crystalline microstructure and long-range atomic order. Instead, they feature heterogeneity and disorder on superstructural scales, which have profound consequences for their elastic response, material strength, fracture toughness, and the characteristics of dynamic fracture. These structure-property relations present a rich field of study in fundamental glass physics and are also becoming increasingly important in the design of modern materials with improved mechanical performance. A first step in this direction involves glass-like materials that retain optical transparency and the haptics of classical glass products, while overcoming the limitations of brittleness. Among these, novel types of oxide glasses, hybrid glasses, phase-separated glasses, and bioinspired glass-polymer composites hold significant promise. Such materials are designed from the bottom-up, building on structure-property relations, modeling of stresses and strains at relevant length scales, and machine learning predictions. Their fabrication requires a more scientifically driven approach to materials design and processing, building on the physics of structural disorder and its consequences for structural rearrangements, defect initiation, and dynamic fracture in response to mechanical load. In this article, a perspective is provided on this highly interdisciplinary field of research in terms of its most recent challenges and opportunities.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Allen Ehrlicher
- Department of Bioengineering, McGill University, Montreal, H3A 2A7, Canada
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Roman Sajzew
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| |
Collapse
|
13
|
Altering elastic-plastic mechanical response of a series of isostructural metal-organic complexes crystals. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1203-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Schulson EM. A flexible and springy form of ice. Science 2021; 373:158. [PMID: 34244397 DOI: 10.1126/science.abj4441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Erland M Schulson
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755 USA.
| |
Collapse
|