1
|
Kong YY, Shu WJ, Wang S, Yin ZH, Duan H, Li K, Du HN. The methyltransferase SETD3 regulates mRNA alternative splicing through interacting with hnRNPK. CELL INSIGHT 2024; 3:100198. [PMID: 39391005 PMCID: PMC11462206 DOI: 10.1016/j.cellin.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 10/12/2024]
Abstract
The methyltransferase SETD3 is an enzyme essential for catalyzing histidine-73 methylation on β-Actin, thereby promoting its polymerization and regulating muscle contraction. Although increasing evidence suggests that SETD3 is involved in multiple physiological or pathological events, its biological functions remain incompletely understood. In this study, we utilize in situ proximity labeling combined with mass spectrometry analysis to detect potential interacting partners of SETD3. Unexpectedly, we find that many splicing factors are associated with SETD3. Genome-wide RNA sequencing reveals that SETD3 regulates pre-mRNA splicing events, predominantly influencing exon skipping. Biochemical and bioinformatic analyses suggest that SETD3 interacts with hnRNPK, and they collaboratively regulate exon skipping in a common subset of genes. Functionally, we demonstrate that SETD3 and hnRNPK are required for retention of exon 7 skipping in the FNIP1 gene. This promotes FNIP1-mediated nuclear translocation of the transcription factor TFEB and the subsequent induction of lysosomal and mitochondrial biogenesis. Overall, this study uncovers a novel function of SETD3 in modulating mRNA exon splicing.
Collapse
Affiliation(s)
- Yue-Yu Kong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Wen-Jie Shu
- School of Basic Medical Sciences, Xi'an JiaoTong University, Xi'an, 710049, China
| | - Shuang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Zhao-Hong Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Hongguo Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Ke Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Alesi N, Asrani K, Lotan TL, Henske EP. The Spectrum of Renal "TFEopathies": Flipping the mTOR Switch in Renal Tumorigenesis. Physiology (Bethesda) 2024; 39:0. [PMID: 39012319 DOI: 10.1152/physiol.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
The mammalian target of Rapamycin complex 1 (mTORC1) is a serine/threonine kinase that couples nutrient and growth factor signaling to the cellular control of metabolism and plays a fundamental role in aberrant proliferation in cancer. mTORC1 has previously been considered an "on/off" switch, capable of phosphorylating the entire pool of its substrates when activated. However, recent studies have indicated that mTORC1 may be active toward its canonical substrates, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and S6 kinase (S6K), involved in mRNA translation and protein synthesis, and inactive toward TFEB and TFE3, transcription factors involved in the regulation of lysosome biogenesis, in several pathological contexts. Among these conditions are Birt-Hogg-Dubé syndrome (BHD) and, recently, tuberous sclerosis complex (TSC). Furthermore, increased TFEB and TFE3 nuclear localization in these syndromes, and in translocation renal cell carcinomas (tRCC), drives mTORC1 activity toward the canonical substrates, through the transcriptional activation of the Rag GTPases, thereby positioning TFEB and TFE3 upstream of mTORC1 activity toward 4EBP1 and S6K. The expanding importance of TFEB and TFE3 in the pathogenesis of these renal diseases warrants a novel clinical grouping that we term "TFEopathies." Currently, there are no therapeutic options directly targeting TFEB and TFE3, which represents a challenging and critically required avenue for cancer research.
Collapse
Affiliation(s)
- Nicola Alesi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Kaushal Asrani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth P Henske
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Zhong J, Yu X, Zhong Y, Tan L, Yang F, Xu J, Wu J, Lin Z. GSK-3β inhibitor amplifies autophagy-lysosomal pathways by regulating TFEB in Parkinson's disease models. Exp Neurol 2024; 383:115033. [PMID: 39490621 DOI: 10.1016/j.expneurol.2024.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder characterized by degeneration of the substantia nigra and a marked increase in Lewy bodies in the brain, primarily manifests as motor dysfunction. Glycogen synthase kinase-3 beta (GSK-3β) is known to play a critical role in various pathological processes of neurodegenerative diseases. However, the impact of GSK-3β inhibitors on PD progression and the underlying molecular mechanisms responsible for the effects have not been fully elucidated. Using in vitro and mouse models of 1-methyl-4-phenylpyridine (MPP+)-or methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, we found that inhibition of GSK-3β activity alleviated mitochondrial damage, cell apoptosis, and neuronal cell loss by promoting the nuclear translocation of transcription factor EB (TFEB), thereby amplifying the autophagy-lysosomal pathway (ALP). Importantly, siRNA silencing of the TFEB gene impaired the GSK-3β inhibitor-mediated activation of the ALP pathway, thus negating the metabolic support required for neuronal functional improvement. Short-term treatment with the GSK-3β inhibitor significantly ameliorated motor dysfunction and improved motor coordination in model mice with MPTP-induced PD. GSK-3β inhibition increased the ALP and TFEB activities in the mice, thereby reducing α-synuclein aggregation and neuronal damage. In conclusion, our study demonstrates that inhibition of GSK-3β activity can delay the pathological processes of PD via promotion of the TFEB-ALP pathway, potentially providing a novel therapeutic target for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jiahong Zhong
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Xihui Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Yunming Zhong
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Liya Tan
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Fayou Yang
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Jialan Xu
- Department of Pharmacy, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Jianlin Wu
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Zhuomiao Lin
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| |
Collapse
|
4
|
Hu H, Hu J, Chen Z, Yang K, Zhu Z, Hao Y, Zhang Z, Li W, Peng Z, Cao Y, Sun X, Zhang F, Chi Q, Ding G, Liang W. RBBP6-Mediated ERRα Degradation Contributes to Mitochondrial Injury in Renal Tubular Cells in Diabetic Kidney Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405153. [PMID: 39441040 DOI: 10.1002/advs.202405153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Diabetic Kidney Disease (DKD), a major precursor to end-stage renal disease, involves mitochondrial dysfunction in proximal renal tubular cells (PTCs), contributing to its pathogenesis. Estrogen-related receptor α (ERRα) is essential for mitochondrial integrity in PTCs, yet its regulation in DKD is poorly understood. This study investigates ERRα expression and its regulatory mechanisms in DKD, assessing its therapeutic potential. Using genetic, biochemical, and cellular approaches, ERRα expression Was examined in human DKD specimens and DKD mouse models. We identified the E3 ubiquitin ligase retinoblastoma binding protein 6 (RBBP6) as a regulator of ERRα, promoting its degradation through K48-linked polyubiquitination at the K100 residue. This degradation pathway significantly contributed to mitochondrial injury in PTCs of DKD models. Notably, conditional ERRα overexpression or RBBP6 inhibition markedly reduced mitochondrial damage in diabetic mice, highlighting ERRα's protective role in maintaining mitochondrial integrity. The interaction between RBBP6 and ERRα opens new therapeutic avenues, suggesting that modulating RBBP6-ERRα interactions could be a strategy for preserving mitochondrial function and slowing DKD progression.
Collapse
Affiliation(s)
- Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Keju Yang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Weiwei Li
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Zhuan Peng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Yun Cao
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College), Haikou, 100053, China
| | - Xiaoling Sun
- Ultrastructural Pathology Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fangcheng Zhang
- Ultrastructural Pathology Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, 430070, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| |
Collapse
|
5
|
Zhang L, Ding F, Ren Z, Cheng W, Dai H, Liang Q, Kong F, Xu W, Wang M, Zhang Y, Tao Q. Mechanisms of pathogenicity in the hypertrophic cardiomyopathy-associated TNNI3 c.235C > T variant. Int J Cardiol 2024; 419:132627. [PMID: 39426416 DOI: 10.1016/j.ijcard.2024.132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is typically manifested as a hereditary disorder, with 30 %-60 % of cases linked to cardiac sarcomere gene mutations. Despite numerous identified TNNI3 mutations associated with HCM, their severity, prevalence, and disease progression vary. The link between TNNI3 variants and phenotypes remains largely unexplored. This study aims to elucidate the impact of the TNNI3 c.235C > T mutation on HCM through clinical research and cell experiments and to explore its mechanism in HCM development. METHODS We screened an HCM family for pathogenic gene mutations using gene sequencing. The proband and family members were assessed through electrocardiography, echocardiography, and cardiac MRI, and a pedigree map was created for disease prediction analysis. Mutant plasmids were constructed with the TNNI3 c.235C > T mutation and transfected into the AC16 human cardiomyocyte cell line to investigate the mutation's effects. RESULTS The TNNI3 c.235C > T mutation was identified as the disease-causing variant in the family. This mutation led to the upregulation of hypertrophy-associated genes ANP, BNP, and MYH7, increased cardiomyocyte size, and activation of the ERK signaling pathway. Further investigations revealed that the TNNI3 c.235C > T mutation impaired mitochondrial function, disrupted cardiomyocyte metabolism, and increased cellular autophagy and apoptosis. CONCLUSIONS The TNNI3 c.235C > T gene mutation may be a pathogenic factor for HCM, showing heterogeneous features and clinical phenotypes. This mutation induces myocardial hypertrophy, activates the ERK signaling pathway, and exacerbates mitochondrial dysfunction, apoptosis, and autophagy in cardiomyocytes. These findings provide insights into the mechanism of HCM caused by gene mutations and may inform HCM treatment strategies.
Collapse
Affiliation(s)
- Lai Zhang
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Fengzhi Ding
- Department of Physiology, Wannan Medical College, Wuhu, Anhui, 241000, China
| | - Zhongyuan Ren
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Weili Cheng
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - He Dai
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Qing Liang
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Fanling Kong
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Wenjing Xu
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Minghui Wang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yuqing Zhang
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
| | - Qin Tao
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
6
|
Wessendorf-Rodriguez K, Ruchhoeft ML, Ashley EL, Galvez HM, Murray CW, McGregor G, Kambhampati S, Shaw RJ, Metallo CM. Modeling compound lipid homeostasis using stable isotope tracing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618599. [PMID: 39463985 PMCID: PMC11507872 DOI: 10.1101/2024.10.16.618599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Lipids represent the most diverse pool of metabolites found in cells, facilitating compartmentation, signaling, and other functions. Dysregulation of lipid metabolism is linked to disease states such as cancer and neurodegeneration. However, limited tools are available for quantifying metabolic fluxes across the lipidome. To directly measure reaction fluxes encompassing compound lipid homeostasis, we applied stable isotope tracing, high-resolution mass spectrometry, and network-based isotopologue modeling to non-small cell lung cancer (NSCLC) models. Compound lipid metabolic flux analysis (CL-MFA) enables the concurrent quantitation of fatty acid synthesis, elongation, headgroup assembly, and salvage reactions within virtually any biological system. Here, we resolve liver kinase B1 (LKB1)-mediated regulation of sphingolipid recycling in NSCLC cells and precision-cut lung slice cultures. We also demonstrate that widely used tissue culture conditions drive cells to upregulate fatty acid synthase flux to supraphysiological levels. Finally, we identify previously uncharacterized isozyme specificity of ceramide synthase inhibitors, highlighting the molecular detail revealed by CL-MFA.
Collapse
|
7
|
Li K, Xia X, Tong Y. Multiple roles of mitochondrial autophagy receptor FUNDC1 in mitochondrial events and kidney disease. Front Cell Dev Biol 2024; 12:1453365. [PMID: 39445333 PMCID: PMC11496291 DOI: 10.3389/fcell.2024.1453365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
This article reviews the latest research progress on the role of mitochondrial autophagy receptor FUN14 domain containing 1 (FUNDC1) in mitochondrial events and kidney disease. FUNDC1 is a protein located in the outer membrane of mitochondria, which maintains the function and quality of mitochondria by regulating mitochondrial autophagy, that is, the selective degradation process of mitochondria. The structural characteristics of FUNDC1 enable it to respond to intracellular signal changes and regulate the activity of mitochondrial autophagy through phosphorylation and dephosphorylation. During phosphorylation, unc-51-like kinase 1 (ULK1) promotes the activation of mitophagy by phosphorylating Ser17 of FUNDC1. In contrast, Src and CK2 kinases inhibit the interaction between FUNDC1 and LC3 by phosphorylating Tyr18 and Ser13, thereby inhibiting mitophagy. During dephosphorylation, PGAM5 phosphatase enhances the interaction between FUNDC1 and LC3 by dephosphorylating Ser13, thereby activating mitophagy. BCL2L1 inhibits the activity of PGAM5 by interacting with PGAM5, thereby preventing the dephosphorylation of FUNDC1 and inhibiting mitophagy. FUNDC1 plays an important role in mitochondrial events, participating in mitochondrial fission, maintaining the homeostasis of iron and proteins in mitochondrial matrix, and mediating crosstalk between mitochondria, endoplasmic reticulum and lysosomes, which have important effects on cell energy metabolism and programmed death. In the aspect of kidney disease, the abnormal function of FUNDC1 is closely related to the occurrence and development of many diseases. In acute kidney injury (AKI), cardiorenal syndrome (CRS), diabetic nephropathy (DN), chronic kidney disease (CKD) ,renal fibrosis (RF) and renal anemia, FUNDC1-mediated imbalance of mitophagy may be one of the key factors in disease progression. Therefore, in-depth study of the regulatory mechanism and function of FUNDC1 is of great significance for understanding the pathogenesis of renal disease and developing new treatment strategies.
Collapse
Affiliation(s)
- Kaiqing Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Xia
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Tong
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Chen YX, Zhao AR, Wei TW, Wang H, Wang LS. Progress of Mitochondrial Function Regulation in Cardiac Regeneration. J Cardiovasc Transl Res 2024; 17:1097-1105. [PMID: 38647881 DOI: 10.1007/s12265-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.
Collapse
Affiliation(s)
- Yi-Xi Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - An-Ran Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
10
|
Duan Y, Liu S, Wang J, Yang K, Xu J, Wang Q, Liu J, Hao J, Cui X, Tan Y, Wang H, Li L. Overexpression of RBM4 promotes acute myeloid leukemia cell differentiation by regulating alternative splicing of TFEB. J Biol Chem 2024; 300:107729. [PMID: 39214303 PMCID: PMC11467665 DOI: 10.1016/j.jbc.2024.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Alternative splicing is an efficient and ubiquitous transcriptional regulatory mechanism that expands the coding capacity of the genome and is associated with the occurrence and progression of cancer. The differentiation-promoting regimen is a potential therapeutic approach in cancer treatment. In this study, we screened NPMc-positive and NPMc-negative acute myeloid leukemia (AML) samples from the Cancer Genome Atlas, focusing on the splicing factor RNA-binding motif protein 4 (RBM4) and its splicing mechanism on the target gene transcription factor EB (TFEB), which are most relevant to the prognosis of AML. We also investigated the impact of the TFEB-dominant spliceosome on autophagy and differentiation of THP-1 and K562 cells. The results showed that RBM4 recognized the CU-rich sequence in intron 8 of TFEB, increasing the production of the TFEB-L spliceosome, which promoted autophagy. Overexpression of RBM4 increased autophagy and promoted cell differentiation. The combination of TFEB-L with the therapeutic drug rapamycin further promoted the differentiation of leukemia cell lines and primary leukemia cells in AML patients. This study suggested that overexpression of RBM4 could promote cell differentiation by promoting the production of the TFEB-dominant spliceosome, demonstrating the potential of the TFEB-dominant spliceosome combined with chemotherapy drugs to promote leukemia cell differentiation and improve patient prognosis.
Collapse
Affiliation(s)
- Yu Duan
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Sijin Liu
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Jinjuan Wang
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Kai Yang
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Jing Xu
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Qirong Wang
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Jianbing Liu
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Jianqing Hao
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Xiaohua Cui
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Yanhong Tan
- Department of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Li Li
- Department of Cell Biology and Medical Genetics, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.
| |
Collapse
|
11
|
Tasić D, Dimitrijević Z. The Role of Oxidative Stress as a Mechanism in the Pathogenesis of Acute Heart Failure in Acute Kidney Injury. Diagnostics (Basel) 2024; 14:2094. [PMID: 39335773 PMCID: PMC11431490 DOI: 10.3390/diagnostics14182094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Despite a large amount of research on synchronous and mutually induced kidney and heart damage, the basis of the disease is still not fully clarified. Healthy mitochondria are essential for normal kidney and heart function. Mitochondrial dysfunction occurs when the clearance or process of generation and fragmentation of mitochondria is disturbed. The kidney is the second organ after the heart in terms of the number of mitochondria. Kidney tubules are rich in mitochondria due to the high energy requirements for absorption of large amounts of ultrafiltrate and dissolved substances. The place of action of oxidative stress is the influence on the balance in the production and breakdown of the mitochondrial reactive oxygen species. A more precise determination of the place and role of key factors that play a role in the onset of the disease is necessary for understanding the nature of the onset of the disease and the creation of therapy in the future. This underscores the urgent need for further research. The narrative review integrates results found in previously performed studies that have evaluated oxidative stress participation in cardiorenal syndrome type 3.
Collapse
Affiliation(s)
- Danijela Tasić
- Clinic of Nephrology Prof Dr Spira Strahinjić, University Clinical Center Niš, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | | |
Collapse
|
12
|
Xing Y, Huang B, Cui Z, Zhang Q, Ma H. Dioscin improves fatty liver hemorrhagic syndrome by promoting ERα-AMPK mediated mitophagy in laying hens. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156056. [PMID: 39342780 DOI: 10.1016/j.phymed.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Mitochondria play a crucial role in upholding metabolic homeostasis. Mitochondrial damage closely associated with the pathogenesis of fatty liver hemorrhagic syndrome (FLHS), while mitophagy being among the most effective methods for eliminating the damaged mitochondria. Dioscin, a natural extract, can activate autophagy; however, its effects on FLHS regarding mitophagy regulation remain unelucidated. PURPOSE We explored the impact of dioscin on FLHS induced by a high-energy and low-protein (HELP) diet in laying hens, mainly focused the protective effects of dioscin on mitochondrial injury. METHOD To investigate the impact of dioscin on fatty liver syndrome in laying hens, we first induced the condition by feeding them a high-energy and low-protein diet. Then, we assessed lipid metabolism-related markers using oil red staining and a commercial detection kit. In addition, the role of dioscin on fatty liver syndrome in laying hens was confirmed by assessing the activation of hepatocyte fat deposition and hepatocyte apoptosis; and the mechanism of dioscin in FLHS was investigated through LMH cell experiment in vitro. Furthermore, CETSA and molecular docking were conducted for additional confirmation. RESULT The results showed that dioscin alleviated mitochondrial damage, relieved the excessive deposition of hepatic lipid droplets and oxidative stress induced by HELP diet in laying hens. Furthermore, dioscin regulated the mitophagy by activating the estrogen receptor α (ERα)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway, thus mitigating mitochondria injury and apoptosis in hepatocytes. In addition, we found that dioscin promoted the translocation of nuclear transcription factor into nucleus by activating ERα-AMPK signaling, facilitating autophagic flux in the liver of laying hens and LMH cells. Furthermore, cells pretreated with the lysosomal acidification inhibitor bafilomycin A1 blocked the inhibitory effect of dioscin on the apoptosis induced by palmitic acid (PA)-stimulation in LMH cells, suggesting that dioscin reduces PA-induced apoptosis by activating mitophagy. Moreover, dioscin-induced lysosomal acidification and mitochondrial biogenesis were reversed in PA-induced LMH cells pretreated with ERα-specific inhibitor methylpiperidino pyrazole. CONCLUSION This study firstly demonstrated that dioscin alleviates fatty liver syndrome induced by HELP diet in laying hens. The findings from this study illustrated that dioscin plays a significant role in reducing mitochondrial damage and apoptosis, and these beneficial effects mainly achieve through promotion of ERα-AMPK signaling, which mediates autophagy within the liver of laying hens fed a HELP-diets. These findings provide a theoretical basis for considering dioscin as a possible treatment option for mitigating FLHS in egg-laying hens.
Collapse
Affiliation(s)
- Yuxiao Xing
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Benzeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Lin J, Huang C, Zhao J, Li L, Wu Z, Zhang T, Li Y, Li W, Guo B, Liu Z, Diao A. The novel TFEB agonist desloratadine ameliorates hepatic steatosis by activating the autophagy-lysosome pathway. Front Pharmacol 2024; 15:1449178. [PMID: 39359254 PMCID: PMC11445182 DOI: 10.3389/fphar.2024.1449178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
The autophagy-lysosome pathway plays an essential role in promoting lipid catabolism and preventing hepatic steatosis in non-alcoholic fatty liver disease (NAFLD). Transcription factor EB (TFEB) enhances the autophagy-lysosome pathway by regulating the expression of genes related to autophagy and lysosome biogenesis. Therefore, targeting TFEB provides a novel strategy for the treatment of lipid metabolic diseases. In this study, the antiallergic drug desloratadine was screened and identified as a novel TFEB agonist. Desloratadine effectively induced translocation of TFEB to the nucleus and promoted autophagy and lysosome biogenesis. Desloratadine-induced TFEB activation was dependent on AMPK rather than mTORC1. Moreover, desloratadine treatment enhanced clearance of lipid droplets in cells induced by fatty acids oleate and palmitate. Furthermore, high-fat diet (HFD) induced obesity mouse model experiments indicated treatment with desloratadine markedly reduced the body weight of HFD-fed mice, as well as the levels of hepatic triglycerides and total cholesterol, serum glutamic pyruvic transaminase and glutamic-oxaloacetic transaminase. Oil red O staining showed the liver fat was significantly reduced after desloratadine treatment, and H&E staining analysis demonstrated hepatocellular ballooning was improved. In addition, autophagy and lysosomal biogenesis was stimulated in the liver of desloratadine treated mice. Altogether, these findings demonstrate desloratadine ameliorates hepatic steatosis through activating the TFEB-mediated autophagy-lysosome pathway, thus desloratadine has an exciting potential to be used to treat fatty liver disease.
Collapse
Affiliation(s)
- Jieru Lin
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chunhuan Huang
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jingye Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Li
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenwei Wu
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tingyu Zhang
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wei Li
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Baoqiang Guo
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Zhenxing Liu
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Aipo Diao
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
14
|
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X, Xu H, Cheng B, Xu Y, Xie X. Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci 2024; 353:122918. [PMID: 39034027 DOI: 10.1016/j.lfs.2024.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined. METHODS We explored the effects of NC on mTORC1 signaling by immunoblotting and fluorescence microscopy in wild-type and gene knockout cell lines generated by the CRISPR/Cas9 gene editing technique. We identified IGF2R as a direct target of NC via the drug affinity-responsive target stability (DARTS) method. We investigated the antitumor effects of NC using a mouse melanoma B16 tumor xenograft model. KEY FINDINGS NC inhibits mTORC1 activity by targeting amino acid-sensing signaling through activating transcription factor 4 (ATF4)-mediated Sestrin2 induction. NC directly binds to IGF2R and promotes its lysosomal degradation. Moreover, NC displayed potent cytotoxicity against various cancer cells and inhibited B16 tumor xenografts. SIGNIFICANCE NC inhibits mTORC1 signaling through nutrient sensing and directly targets IGF2R for lysosomal degradation, providing mechanistic insights into the MOA of NC.
Collapse
Affiliation(s)
- Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fan Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Baicheng Cheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yumin Xu
- Department of Infectious Diseases & Department of Hospital Infection Management, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
15
|
Zhao M, Li J, Li Z, Yang D, Wang D, Sun Z, Wen P, Gou F, Dai Y, Ji Y, Li W, Zhao D, Yang L. SIRT1 Regulates Mitochondrial Damage in N2a Cells Treated with the Prion Protein Fragment 106-126 via PGC-1α-TFAM-Mediated Mitochondrial Biogenesis. Int J Mol Sci 2024; 25:9707. [PMID: 39273653 PMCID: PMC11395710 DOI: 10.3390/ijms25179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondrial damage is an early and key marker of neuronal damage in prion diseases. As a process involved in mitochondrial quality control, mitochondrial biogenesis regulates mitochondrial homeostasis in neurons and promotes neuron health by increasing the number of effective mitochondria in the cytoplasm. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that regulates neuronal mitochondrial biogenesis and quality control in neurodegenerative diseases via deacetylation of a variety of substrates. In a cellular model of prion diseases, we found that both SIRT1 protein levels and deacetylase activity decreased, and SIRT1 overexpression and activation significantly ameliorated mitochondrial morphological damage and dysfunction caused by the neurotoxic peptide PrP106-126. Moreover, we found that mitochondrial biogenesis was impaired, and SIRT1 overexpression and activation alleviated PrP106-126-induced impairment of mitochondrial biogenesis in N2a cells. Further studies in PrP106-126-treated N2a cells revealed that SIRT1 regulates mitochondrial biogenesis through the PGC-1α-TFAM pathway. Finally, we showed that resveratrol resolved PrP106-126-induced mitochondrial dysfunction and cell apoptosis by promoting mitochondrial biogenesis through activation of the SIRT1-dependent PGC-1α/TFAM signaling pathway in N2a cells. Taken together, our findings further describe SIRT1 regulation of mitochondrial biogenesis and improve our understanding of mitochondria-related pathogenesis in prion diseases. Our findings support further investigation of SIRT1 as a potential target for therapeutic intervention of prion diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.)
| |
Collapse
|
16
|
Gao AYL, Montagna DR, Hirst WD, Temkin PA. RIT2 regulates autophagy lysosomal pathway induction and protects against α-synuclein pathology in a cellular model of Parkinson's disease. Neurobiol Dis 2024; 199:106568. [PMID: 38885848 DOI: 10.1016/j.nbd.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Substantial work has been devoted to better understand the contribution of the myriad of genes that may underly the development of Parkinson's disease (PD) and their role in disease etiology. The small GTPase Ras-like without CAAX2 (RIT2) is one such genetic risk factor, with one single nucleotide polymorphism in the RIT2 locus, rs12456492, having been associated with PD risk in multiple populations. While RIT2 has previously been shown to influence signaling pathways, dopamine transporter trafficking, and LRRK2 activity, its cellular function remains unclear. In the current study, we have situated RIT2 to be upstream of various diverse processes associated with PD. In cellular models, we have shown that RIT2 is necessary for activity-dependent changes in the expression of genes related to the autophagy-lysosomal pathway (ALP) by regulating the nuclear translocation of MiT/TFE3-family transcription factors. RIT2 is also associated with lysosomes and can regulate autophagic flux and clearance by regulating lysosomal hydrolase expression and activity. Interestingly, upregulation of RIT2 can augment ALP flux and protect against α-synuclein aggregation in cortical neurons. Taken together, the present study suggests that RIT2 can regulates gene expression upstream of ALP function and that enhancing RIT2 activity may provide therapeutic benefit in PD.
Collapse
Affiliation(s)
- Andy Y L Gao
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA; Biogen Postdoctoral Scientist Program, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Daniel R Montagna
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Warren D Hirst
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Paul A Temkin
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Kazyken D, Dame SG, Wang C, Wadley M, Fingar DC. Unexpected roles for AMPK in the suppression of autophagy and the reactivation of MTORC1 signaling during prolonged amino acid deprivation. Autophagy 2024; 20:2017-2040. [PMID: 38744665 PMCID: PMC11346535 DOI: 10.1080/15548627.2024.2355074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting MTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired macroautophagy/autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and MAP1LC3B/LC3B lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological MTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls MTORC1 signaling. Paradoxically, we observed impaired reactivation of MTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits MTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of MTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and MTORC1 affect health and disease.
Collapse
Affiliation(s)
- Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sydney G. Dame
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maxwell Wadley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Diane C. Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Liu B, Liang BB, Cao WD, Su XX, Cao Q, Mao ZW. Platinum-Metformin Conjugates Acting as Promising PD-L1 Inhibitors through the AMP-Activated Protein Kinase Mediated Lysosomal Degradation Pathway. Angew Chem Int Ed Engl 2024:e202410586. [PMID: 39206686 DOI: 10.1002/anie.202410586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
With the development of metalloimmunology, the potential of platinum drugs in cancer immunotherapy has attracted extensive attention. Although immunochemotherapy combining PD-1/PD-L1 antibodies with platinum drugs has achieved great success in the clinic, combination therapy commonly brings new problems. Herein, we have developed a platinum-metformin conjugate as a promising alternative to antibody-based PD-L1 inhibitors, not only disrupting PD-1/PD-L1 axis on cell surface but also down-regulating the total PD-L1 levels in non-small cell lung cancer (NSCLC) cells comprehensively, thus achieving highly efficient immunochemotherapy by a single small molecule. Mechanism studies demonstrate that Pt-metformin conjugate can selectively accumulate in lysosomes, promote lysosomal-dependent PD-L1 degradation via the AMPK-TFEB pathway, and modulate the upstream regulatory proteins related to PD-L1 expression (e.g. HIF-1α and NF-κB), eventually decreasing the total abundance of PD-L1 in NSCLC, overcoming tumor hypoxia, and activating anti-tumor immunity in vivo. This work suggests an AMPK-mediated lysosomal degradation pathway of PD-L1 for the first time and provides a unique design perspective for the development of novel platinum drugs for immunochemotherapy.
Collapse
Affiliation(s)
- Bin Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bing-Bing Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wan-Di Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xu-Xian Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
19
|
Pollard AE. New concepts in the roles of AMPK in adipocyte stem cell biology. Essays Biochem 2024:EBC20240008. [PMID: 39175418 DOI: 10.1042/ebc20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Obesity is a major risk factor for many life-threatening diseases. Adipose tissue dysfunction is emerging as a driving factor in the transition from excess adiposity to comorbidities such as metabolic-associated fatty liver disease, cardiovascular disease, Type 2 diabetes and cancer. However, the transition from healthy adipose expansion to the development of these conditions is poorly understood. Adipose stem cells, residing in the vasculature and stromal regions of subcutaneous and visceral depots, are responsible for the expansion and maintenance of organ function, and are now recognised as key mediators of pathological transformation. Impaired tissue expansion drives inflammation, dysregulation of endocrine function and the deposition of lipids in the liver, muscle and around vital organs, where it is toxic. Contrary to previous hypotheses, it is the promotion of healthy adipose tissue expansion and function, not inhibition of adipogenesis, that presents the most attractive therapeutic strategy in the treatment of metabolic disease. AMP-activated protein kinase, a master regulator of energy homeostasis, has been regarded as one such target, due to its central role in adipose tissue lipid metabolism, and its apparent inhibition of adipogenesis. However, recent studies utilising AMP-activated protein kinase (AMPK)-specific compounds highlight a more subtle, time-dependent role for AMPK in the process of adipogenesis, and in a previously unexplored repression of leptin, independent of adipocyte maturity. In this article, I discuss historic evidence for AMPK-mediated adipogenesis inhibition and the multi-faceted roles for AMPK in adipose tissue.
Collapse
Affiliation(s)
- Alice E Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
20
|
Luo Z, Wei W, Qiu D, Su Z, Liu L, Zhou H, Cui H, Yang L. Rejuvenation of BMSCs senescence by pharmacological enhancement of TFEB-mediated autophagy alleviates aged-related bone loss and extends lifespan in middle aged mice. Bone Res 2024; 12:45. [PMID: 39164234 PMCID: PMC11336217 DOI: 10.1038/s41413-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
Bone marrow stromal/stem cells (BMSCs) are generally considered as common progenitors for both osteoblasts and adipocytes in the bone marrow, but show preferential differentiation into adipocytes rather than osteoblasts under aging, thus leading to senile osteoporosis. Accumulated evidences indicate that rejuvenation of BMSCs by autophagic enhancement delays bone aging. Here we synthetized and demonstrated a novel autophagy activator, CXM102 that could induce autophagy in aged BMSCs, resulting in rejuvenation and preferential differentiation into osteoblasts of BMSCs. Furthermore, CXM102 significantly stimulated bone anabolism, reduced marrow adipocytes, and delayed bone loss in middle-age male mice. Mechanistically, CXM102 promoted transcription factor EB (TFEB) nuclear translocation and favored osteoblasts formation both in vitro and in vivo. Moreover, CXM102 decreased serum levels of inflammation and reduced organ fibrosis, leading to a prolonger lifespan in male mice. Our results indicated that CXM102 could be used as an autophagy inducer to rejuvenate BMSCs and shed new lights on strategies for senile osteoporosis and healthyspan improvement.
Collapse
Affiliation(s)
- Ziwei Luo
- College of Orthopedics, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
| | - Wanyi Wei
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Dawei Qiu
- Department of Physical Education, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Liangpu Liu
- College of Orthopedics, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Honghai Zhou
- College of Orthopedics, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Hao Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
21
|
Zhao JF, Shpiro N, Sathe G, Brewer A, Macartney TJ, Wood NT, Negoita F, Sakamoto K, Sapkota GP. Targeted dephosphorylation of TFEB promotes its nuclear translocation. iScience 2024; 27:110432. [PMID: 39081292 PMCID: PMC11284556 DOI: 10.1016/j.isci.2024.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/07/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Reversible phosphorylation of the transcription factor EB (TFEB) coordinates cellular responses to metabolic and other stresses. During nutrient replete and stressor-free conditions, phosphorylated TFEB is primarily localized to the cytoplasm. Stressor-mediated reduction of TFEB phosphorylation promotes its nuclear translocation and context-dependent transcriptional activity. In this study, we explored targeted dephosphorylation of TFEB as an approach to activate TFEB in the absence of nutrient deprivation or other cellular stress. Through an induction of proximity between TFEB and several phosphatases using the AdPhosphatase system, we demonstrate targeted dephosphorylation of TFEB in cells. Furthermore, by developing a heterobifunctional molecule BDPIC (bromoTAG-dTAG proximity-inducing chimera), we demonstrate targeted dephosphorylation of TFEB-dTAG through induced proximity to bromoTAG-PPP2CA. Targeted dephosphorylation of TFEB-dTAG by bromoTAG-PPP2CA with BDPIC at the endogenous levels is sufficient to induce nuclear translocation and some transcriptional activity of TFEB.
Collapse
Affiliation(s)
- Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Natalia Shpiro
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T. Wood
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Florentina Negoita
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
22
|
Zeng F, Cao J, Li W, Zhou Y, Yuan X. FNIP1: A key regulator of mitochondrial function. Biomed Pharmacother 2024; 177:117146. [PMID: 39013219 DOI: 10.1016/j.biopha.2024.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Folliculin interacting protein 1 (FNIP1), a novel folliculin interacting protein 1, is a key regulatory factor for mitochondrial function. FNIP1 mainly responds to energy signal transduction through physical interactions with 5'-AMP activated protein kinase (AMPK). Simultaneously, it affects the transcription of mitochondria-associated genes by regulating the lysosomal localization of mechanistic target of rapamycin kinase (mTORC1). This article takes FNIP1 as the core and first introduces its involvement in the development of B cells and invariant natural killer T (iNKT) cells, muscle fiber type conversion, and the thermogenic remodeling of adipocytes by regulating mitochondrial function. In addition we discuss the detailed impact of upstream regulatory factors of FNIP1 on its function. Finally, the impact of FNIP1 on the prognosis and treatment of clinically related metabolic diseases is summarized, aiming to provide a new theoretical basis and treatment plans for the diagnosis and treatment of such diseases.
Collapse
Affiliation(s)
- Feng Zeng
- Gastroenterology and Urology Department Ⅱ, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| | - Xia Yuan
- Gastroenterology and Urology Department Ⅱ, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| |
Collapse
|
23
|
Xing H, Han R, Wang Q, Sun Z, Li H. The spatio-temporal expression analysis of parathyroid hormone like hormone gene provides a new insight for bone growth of the antler tip tissue in sika deer. Anim Biosci 2024; 37:1367-1376. [PMID: 38419534 PMCID: PMC11222856 DOI: 10.5713/ab.23.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Parathyroid hormone like hormone (PTHLH), as an essential factor for bone growth, is involved in a variety of physiological processes. The aim of this study was to explore the role of PTHLH gene in the growth of antlers. METHODS The coding sequence (CDS) of PTHLH gene cDNA was obtained by cloning in sika deer (Cervus nippon), and the bioinformatics was analyzed. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the differences expression of PTHLH mRNA in different tissues of the antler tip at different growth periods (early period, EP; middle period, MP; late period, LP). RESULTS The CDS of PTHLH gene was 534 bp in length and encoded 177 amino acids. Predictive analysis results revealed that the PTHLH protein was a hydrophilic protein without transmembrane structure, with its secondary structure consisting mainly of random coil. The PTHLH protein of sika deer had the identity of 98.31%, 96.82%, 96.05%, and 94.92% with Cervus canadensis, Bos mutus, Oryx dammah and Budorcas taxicolor, which were highly conserved among the artiodactyls. The qRT-PCR results showed that PTHLH mRNA had a unique spatio-temporal expression pattern in antlers. In the dermis, precartilage, and cartilage tissues, the expression of PTHLH mRNA was extremely significantly higher in MP than in EP, LP (p<0.01). In the mesenchyme tissue, the expression of PTHLH mRNA in MP was significantly higher than that of EP (p<0.05), but extremely significantly lower than that of LP (p<0.01). The expression of PTHLH mRNA in antler tip tissues at all growth periods had approximately the same trend, that is, from distal to basal, it was first downregulated from the dermis to the mesenchyme and then continuously up-regulated to the cartilage tissue. CONCLUSION PTHLH gene may promote the rapid growth of antler mainly through its extensive regulatory effect on the antler tip tissue.
Collapse
Affiliation(s)
- Haihua Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Qianghui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Zihui Sun
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| |
Collapse
|
24
|
Ashraf N, Van Nostrand JL. Fine-tuning AMPK in physiology and disease using point-mutant mouse models. Dis Model Mech 2024; 17:dmm050798. [PMID: 39136185 PMCID: PMC11340815 DOI: 10.1242/dmm.050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that monitors the cellular energy status to adapt it to the fluctuating nutritional and environmental conditions in an organism. AMPK plays an integral part in a wide array of physiological processes, such as cell growth, autophagy and mitochondrial function, and is implicated in diverse diseases, including cancer, metabolic disorders, cardiovascular diseases and neurodegenerative diseases. AMPK orchestrates many different physiological outcomes by phosphorylating a broad range of downstream substrates. However, the importance of AMPK-mediated regulation of these substrates in vivo remains an ongoing area of investigation to better understand its precise role in cellular and metabolic homeostasis. Here, we provide a comprehensive overview of our understanding of the kinase function of AMPK in vivo, as uncovered from mouse models that harbor phosphorylation mutations in AMPK substrates. We discuss some of the inherent limitations of these mouse models, highlight the broader implications of these studies for understanding human health and disease, and explore the valuable insights gained that could inform future therapeutic strategies for the treatment of metabolic and non-metabolic disorders.
Collapse
Affiliation(s)
- Naghmana Ashraf
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Ma R, Fan Y, Yang X, Liu C, Wan J, Xu C, Wang R, Feng J, Jiao Z. Detoxification of DON-induced hepatotoxicity in mice by cold atmospheric plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116547. [PMID: 38843744 DOI: 10.1016/j.ecoenv.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.
Collapse
Affiliation(s)
- Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Yongqin Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Liu
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Cui Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
Smiles WJ, Ovens AJ, Kemp BE, Galic S, Petersen J, Oakhill JS. New developments in AMPK and mTORC1 cross-talk. Essays Biochem 2024:EBC20240007. [PMID: 38994736 DOI: 10.1042/ebc20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Metabolic homeostasis and the ability to link energy supply to demand are essential requirements for all living cells to grow and proliferate. Key to metabolic homeostasis in all eukaryotes are AMPK and mTORC1, two kinases that sense nutrient levels and function as counteracting regulators of catabolism (AMPK) and anabolism (mTORC1) to control cell survival, growth and proliferation. Discoveries beginning in the early 2000s revealed that AMPK and mTORC1 communicate, or cross-talk, through direct and indirect phosphorylation events to regulate the activities of each other and their shared protein substrate ULK1, the master initiator of autophagy, thereby allowing cellular metabolism to rapidly adapt to energy and nutritional state. More recent reports describe divergent mechanisms of AMPK/mTORC1 cross-talk and the elaborate means by which AMPK and mTORC1 are activated at the lysosome. Here, we provide a comprehensive overview of current understanding in this exciting area and comment on new evidence showing mTORC1 feedback extends to the level of the AMPK isoform, which is particularly pertinent for some cancers where specific AMPK isoforms are implicated in disease pathogenesis.
Collapse
Affiliation(s)
- William J Smiles
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Fitzroy, Vic 3065, Vic. Australia
| | - Sandra Galic
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Metabolic Physiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
27
|
Choi EJ, Oh HT, Lee SH, Zhang CS, Li M, Kim SY, Park S, Chang TS, Lee BH, Lin SC, Jeon SM. Metabolic stress induces a double-positive feedback loop between AMPK and SQSTM1/p62 conferring dual activation of AMPK and NFE2L2/NRF2 to synergize antioxidant defense. Autophagy 2024:1-21. [PMID: 38953310 DOI: 10.1080/15548627.2024.2374692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Co-occurring mutations in KEAP1 in STK11/LKB1-mutant NSCLC activate NFE2L2/NRF2 to compensate for the loss of STK11-AMPK activity during metabolic adaptation. Characterizing the regulatory crosstalk between the STK11-AMPK and KEAP1-NFE2L2 pathways during metabolic stress is crucial for understanding the implications of co-occurring mutations. Here, we found that metabolic stress increased the expression and phosphorylation of SQSTM1/p62, which is essential for the activation of NFE2L2 and AMPK, synergizing antioxidant defense and tumor growth. The SQSTM1-driven dual activation of NFE2L2 and AMPK was achieved by inducing macroautophagic/autophagic degradation of KEAP1 and facilitating the AXIN-STK11-AMPK complex formation on the lysosomal membrane, respectively. In contrast, the STK11-AMPK activity was also required for metabolic stress-induced expression and phosphorylation of SQSTM1, suggesting a double-positive feedback loop between AMPK and SQSTM1. Mechanistically, SQSTM1 expression was increased by the PPP2/PP2A-dependent dephosphorylation of TFEB and TFE3, which was induced by the lysosomal deacidification caused by low glucose metabolism and AMPK-dependent proton reduction. Furthermore, SQSTM1 phosphorylation was increased by MAP3K7/TAK1, which was activated by ROS and pH-dependent secretion of lysosomal Ca2+. Importantly, phosphorylation of SQSTM1 at S24 and S226 was critical for the activation of AMPK and NFE2L2. Notably, the effects caused by metabolic stress were abrogated by the protons provided by lactic acid. Collectively, our data reveal a novel double-positive feedback loop between AMPK and SQSTM1 leading to the dual activation of AMPK and NFE2L2, potentially explaining why co-occurring mutations in STK11 and KEAP1 happen and providing promising therapeutic strategies for lung cancer.Abbreviations: AMPK: AMP-activated protein kinase; BAF1: bafilomycin A1; ConA: concanamycin A; DOX: doxycycline; IP: immunoprecipitation; KEAP1: kelch like ECH associated protein 1; LN: low nutrient; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NSCLC: non-small cell lung cancer; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; PPP2/PP2A: protein phosphatase 2; ROS: reactive oxygen species; PPP3/calcineurin: protein phosphatase 3; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TCL: total cell lysate; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Eun-Ji Choi
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Korea
| | - Hyun-Taek Oh
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, Suwon, Gyeonggi-do, Korea
| | - Seon-Hyeong Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Sunghyouk Park
- Natural Products Research Institute and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Tong-Shin Chang
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Byung-Hoon Lee
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Sang-Min Jeon
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, Suwon, Gyeonggi-do, Korea
| |
Collapse
|
28
|
Rezvan A, Romain G, Fathi M, Heeke D, Martinez-Paniagua M, An X, Bandey IN, Montalvo MJ, Adolacion JRT, Saeedi A, Sadeghi F, Fousek K, Puebla-Osorio N, Cooper LJN, Bernatchez C, Singh H, Ahmed N, Mattie M, Bot A, Neelapu S, Varadarajan N. Identification of a clinically efficacious CAR T cell subset in diffuse large B cell lymphoma by dynamic multidimensional single-cell profiling. NATURE CANCER 2024; 5:1010-1023. [PMID: 38750245 DOI: 10.1038/s43018-024-00768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
Chimeric antigen receptor (CAR) T cells used for the treatment of B cell malignancies can identify T cell subsets with superior clinical activity. Here, using infusion products of individuals with large B cell lymphoma, we integrated functional profiling using timelapse imaging microscopy in nanowell grids with subcellular profiling and single-cell RNA sequencing to identify a signature of multifunctional CD8+ T cells (CD8-fit T cells). CD8-fit T cells are capable of migration and serial killing and harbor balanced mitochondrial and lysosomal volumes. Using independent datasets, we validate that CD8-fit T cells (1) are present premanufacture and are associated with clinical responses in individuals treated with axicabtagene ciloleucel, (2) longitudinally persist in individuals after treatment with CAR T cells and (3) are tumor migrating cytolytic cells capable of intratumoral expansion in solid tumors. Our results demonstrate the power of multimodal integration of single-cell functional assessments for the discovery and application of CD8-fit T cells as a T cell subset with optimal fitness in cell therapy.
Collapse
Affiliation(s)
- Ali Rezvan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Gabrielle Romain
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | | | | | | | - Xingyue An
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Irfan N Bandey
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa J Montalvo
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Jay R T Adolacion
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Arash Saeedi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Fatemeh Sadeghi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Kristen Fousek
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Chantale Bernatchez
- Department of Biologics Development, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harjeet Singh
- Divsion of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nabil Ahmed
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Mike Mattie
- Kite, a Gilead Company, Santa Monica, CA, USA
| | - Adrian Bot
- Kite, a Gilead Company, Santa Monica, CA, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
29
|
Dong H, Ma YP, Cui MM, Qiu ZH, He MT, Zhang BG. Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 2024; 30:128. [PMID: 38785160 PMCID: PMC11134507 DOI: 10.3892/mmr.2024.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis‑associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.
Collapse
Affiliation(s)
- Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mei-Mei Cui
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Zheng-Hao Qiu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| |
Collapse
|
30
|
Tudorica DA, Basak B, Puerta Cordova AS, Khuu G, Rose K, Lazarou M, Holzbaur EL, Hurley JH. A RAB7A phosphoswitch coordinates Rubicon Homology protein regulation of Parkin-dependent mitophagy. J Cell Biol 2024; 223:e202309015. [PMID: 38728007 PMCID: PMC11090050 DOI: 10.1083/jcb.202309015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 04/05/2024] [Indexed: 05/15/2024] Open
Abstract
Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.
Collapse
Affiliation(s)
- Dan A. Tudorica
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Bishal Basak
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexia S. Puerta Cordova
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Grace Khuu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Kevin Rose
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Lazarou
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Erika L.F. Holzbaur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James H. Hurley
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
31
|
Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol 2024:S0962-8924(24)00095-3. [PMID: 38866684 DOI: 10.1016/j.tcb.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
32
|
Mao Y, Jin Z, Yang J, Xu D, Zhao L, Kiram A, Yin Y, Zhou D, Sun Z, Xiao L, Zhou Z, Yang L, Fu T, Xu Z, Jia Y, Chen X, Niu FN, Li X, Zhu Z, Gan Z. Muscle-bone cross-talk through the FNIP1-TFEB-IGF2 axis is associated with bone metabolism in human and mouse. Sci Transl Med 2024; 16:eadk9811. [PMID: 38838134 DOI: 10.1126/scitranslmed.adk9811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.
Collapse
Affiliation(s)
- Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Zhen Jin
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Jing Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Dengqiu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Lei Zhao
- Department of Neurology, Children,s Hospital of Fudan University, Shanghai 201102, China
| | - Abdukahar Kiram
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Zhisheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Xinyi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Feng-Nan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xihua Li
- Department of Neurology, Children,s Hospital of Fudan University, Shanghai 201102, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| |
Collapse
|
33
|
Liu S, Li K, He Y, Chen S, Yang W, Chen X, Feng S, Xiong L, Peng Y, Shao Z. PGC1α-Inducing Senomorphic Nanotherapeutics Functionalized with NKG2D-Overexpressing Cell Membranes for Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400749. [PMID: 38554394 PMCID: PMC11165536 DOI: 10.1002/advs.202400749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Cellular senescence is a significant contributor to intervertebral disc aging and degeneration. However, the application of senotherapies, such as senomorphics targeting senescence markers and the senescence-associated secretory phenotype (SASP), remains limited due to challenges in precise delivery. Given that the natural killer group 2D (NKG2D) ligands are increased on the surface of senescent nucleus pulposus (NP) cells, the NKG2D-overexpressing NP cell membranes (NNPm) are constructed, which is expected to achieve a dual targeting effect toward senescent NP cells based on homologous membrane fusion and the NKG2D-mediated immunosurveillance mechanism. Then, mesoporous silica nanoparticles carrying a peroxisome proliferator-activated receptor-ɣ coactivator 1α (PGC1α)inducer (SP) are coated with NNPm (SP@NNPm) and it is found that SP@NNPm selectively targets senescent NP cells, and the SP cores exhibit pH-responsive drug release. Moreover, SP@NNPm effectively induces PGC1α-mediated mitochondrial biogenesis and mitigates senescence-associated markers induced by oxidative stress and the SASP, thereby alleviating puncture-induced senescence and disc degeneration. This dual-targeting nanotherapeutic system represents a novel approach to delivery senomorphics for disc degeneration treatment.
Collapse
Affiliation(s)
- Sheng Liu
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kanglu Li
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuxin He
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Sheng Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wenbo Yang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xuanzuo Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shiqing Feng
- The Second Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250033China
- Department of OrthopedicsQilu Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250012China
- Department of OrthopedicsTianjin Medical University General HospitalTianjin Medical UniversityTianjin300052China
| | - Liming Xiong
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yizhong Peng
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zengwu Shao
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
34
|
Kou L, Wang Y, Li J, Zou W, Jin Z, Yin S, Chi X, Sun Y, Wu J, Wang T, Xia Y. Mitochondria-lysosome-extracellular vesicles axis and nanotheranostics in neurodegenerative diseases. Exp Neurol 2024; 376:114757. [PMID: 38508481 DOI: 10.1016/j.expneurol.2024.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The intricate functional interactions between mitochondria and lysosomes play a pivotal role in maintaining cellular homeostasis and proper cellular functions. This dynamic interplay involves the exchange of molecules and signaling, impacting cellular metabolism, mitophagy, organellar dynamics, and cellular responses to stress. Dysregulation of these processes has been implicated in various neurodegenerative diseases. Additionally, mitochondrial-lysosomal crosstalk regulates the exosome release in neurons and glial cells. Under stress conditions, neurons and glial cells exhibit mitochondrial dysfunction and a fragmented network, which further leads to lysosomal dysfunction, thereby inhibiting autophagic flux and enhancing exosome release. This comprehensive review synthesizes current knowledge on mitochondrial regulation of cell death, organelle dynamics, and vesicle trafficking, emphasizing their significant contributions to neurodegenerative diseases. Furthermore, we explore the emerging field of nanomedicine in the management of neurodegenerative diseases. The review provides readers with an insightful overview of nano strategies that are currently advancing the mitochondrial-lysosome-extracellular vesicle axis as a therapeutic approach for mitigating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
35
|
Anastasio C, Donisi I, Del Vecchio V, Colloca A, Mele L, Sardu C, Marfella R, Balestrieri ML, D'Onofrio N. SGLT2 inhibitor promotes mitochondrial dysfunction and ER-phagy in colorectal cancer cells. Cell Mol Biol Lett 2024; 29:80. [PMID: 38811901 PMCID: PMC11134909 DOI: 10.1186/s11658-024-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Sodium-glucose transporter 2 (SGLT2) inhibitors (iSGLT2) are approved medications for type 2 diabetes. Recent studies indicate that iSGLT2 inhibit the growth of some cancer cells. However, the mechanism(s) remains to be fully elucidated. METHODS The SGLT2 levels were determined in normal colon CCD 841 CoN and, HCT 116, HT-29, SW480 and LoVo colorectal cancer (CRC) cell lines by quantitative real-time PCR and western blot. The effect of iSGLT2 canagliflozin on cell proliferation was examined using CCK-8, as its role on CRC cells metabolism and tumorigenesis has been evaluated by XF HS Seahorse Bioanalyzer and flow cytometric analyses. Transient gene silencing experiments and analysis of protein-protein interaction network were conducted to evaluate the SGLT2 molecular targets in CRC cells. RESULTS Data showed that the treatment with iSGLT2 (50 µM) for 72 h induced cell cycle arrest (p < 0.001), impaired glucose and energetic metabolism (p < 0.001), promoted apoptotic cell death and ER stress flowing into autophagy (p < 0.001) in HCT 116 and HT-29 cells. These cellular events were accompanied by sirtuin 3 (SIRT3) upregulation (p < 0.01), as also supported by SIRT3 transient silencing experiments resulting in the attenuation of the effects of iSGLT2 on the cellular metabolic/energetic alterations and the induction of programmed cell death. The identification and validation of dipeptidyl peptidase 4 (DPP4) as potential common target of SGLT2 and SIRT3 were also assessed. CONCLUSIONS These results deepened knowledge on the iSGLT2 contribution in limiting CRC tumorigenesis unveiling the SGLT2/SIRT3 axis in the cytotoxic mechanisms.
Collapse
Affiliation(s)
- Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Isabella Donisi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy.
| |
Collapse
|
36
|
Xiao J, Wang S, Chen L, Ding X, Dang Y, Han M, Zheng Y, Shen H, Wu S, Wang M, Yang D, Li N, Dong C, Hu M, Su C, Li W, Hui L, Ye Y, Tang H, Wei B, Wang H. 25-Hydroxycholesterol regulates lysosome AMP kinase activation and metabolic reprogramming to educate immunosuppressive macrophages. Immunity 2024; 57:1087-1104.e7. [PMID: 38640930 DOI: 10.1016/j.immuni.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/22/2023] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuang Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Longlong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinyu Ding
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanhao Dang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mingshun Han
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxiao Zheng
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Shen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sifan Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingchang Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Na Li
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Dong
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Weiyun Li
- Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Lijian Hui
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China; Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Hongyan Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
37
|
Guo Y, Che R, Wang P, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2024; 326:F768-F779. [PMID: 38450435 DOI: 10.1152/ajprenal.00189.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Mitochondria are essential organelles in the human body, serving as the metabolic factory of the whole organism. When mitochondria are dysfunctional, it can affect all organs of the body. The kidney is rich in mitochondria, and its function is closely related to the development of kidney diseases. Studying the relationship between mitochondria and kidney disease progression is of great interest. In the past decade, scientists have made inspiring progress in investigating the role of mitochondria in the pathophysiology of renal diseases. This article discusses various mechanisms for maintaining mitochondrial quality, including mitochondrial energetics, mitochondrial biogenesis, mitochondrial dynamics, mitochondrial DNA repair, mitochondrial proteolysis and the unfolded protein response, mitochondrial autophagy, mitochondria-derived vesicles, and mitocytosis. The article also highlights the cross talk between mitochondria and other organelles, with a focus on kidney diseases. Finally, the article concludes with an overview of mitochondria-related clinical research.
Collapse
Affiliation(s)
- Yuxian Guo
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ruochen Che
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Peipei Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
38
|
Saukko-Paavola AJ, Klemm RW. Remodelling of mitochondrial function by import of specific lipids at multiple membrane-contact sites. FEBS Lett 2024; 598:1274-1291. [PMID: 38311340 DOI: 10.1002/1873-3468.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Organelles form physical and functional contact between each other to exchange information, metabolic intermediates, and signaling molecules. Tethering factors and contact site complexes bring partnering organelles into close spatial proximity to establish membrane contact sites (MCSs), which specialize in unique functions like lipid transport or Ca2+ signaling. Here, we discuss how MCSs form dynamic platforms that are important for lipid metabolism. We provide a perspective on how import of specific lipids from the ER and other organelles may contribute to remodeling of mitochondria during nutrient starvation. We speculate that mitochondrial adaptation is achieved by connecting several compartments into a highly dynamic organelle network. The lipid droplet appears to be a central hub in coordinating the function of these organelle neighborhoods.
Collapse
Affiliation(s)
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
39
|
Reisman EG, Hawley JA, Hoffman NJ. Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle. Sports Med 2024; 54:1097-1119. [PMID: 38528308 PMCID: PMC11127882 DOI: 10.1007/s40279-024-02007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
Exercise perturbs energy homeostasis in skeletal muscle and engages integrated cellular signalling networks to help meet the contraction-induced increases in skeletal muscle energy and oxygen demand. Investigating exercise-associated perturbations in skeletal muscle signalling networks has uncovered novel mechanisms by which exercise stimulates skeletal muscle mitochondrial biogenesis and promotes whole-body health and fitness. While acute exercise regulates a complex network of protein post-translational modifications (e.g. phosphorylation) in skeletal muscle, previous investigations of exercise signalling in human and rodent skeletal muscle have primarily focused on a select group of exercise-regulated protein kinases [i.e. 5' adenosine monophosphate-activated protein kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase (CaMK) and mitogen-activated protein kinase (MAPK)] and only a small subset of their respective protein substrates. Recently, global mass spectrometry-based phosphoproteomic approaches have helped unravel the extensive complexity and interconnection of exercise signalling pathways and kinases beyond this select group and phosphorylation and/or translocation of exercise-regulated mitochondrial and nuclear protein substrates. This review provides an overview of recent advances in our understanding of the molecular events associated with acute endurance exercise-regulated signalling pathways and kinases in skeletal muscle with a focus on phosphorylation. We critically appraise recent evidence highlighting the involvement of mitochondrial and nuclear protein phosphorylation and/or translocation in skeletal muscle adaptive responses to an acute bout of endurance exercise that ultimately stimulate mitochondrial biogenesis and contribute to exercise's wider health and fitness benefits.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
40
|
Hu LL, Liao MH, Liu YX, Xing CH, Nong LL, Yang FL, Sun SC. Loss of AMPK activity induces organelle dysfunction and oxidative stress during oocyte aging. Biol Direct 2024; 19:29. [PMID: 38654312 PMCID: PMC11036640 DOI: 10.1186/s13062-024-00471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Oocyte quality is critical for the mammalian reproduction due to its necessity on fertilization and early development. During aging, the declined oocytes showing with organelle dysfunction and oxidative stress lead to infertility. AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase which is important for energy homeostasis for metabolism. Little is known about the potential relationship between AMPK with oocyte aging. RESULTS In present study we reported that AMPK was related with low quality of oocytes under post ovulatory aging and the potential mechanism. We showed the altered AMPK level during aging and inhibition of AMPK activity induced mouse oocyte maturation defect. Further analysis indicated that similar with its upstream regulator PKD1, AMPK could reduce ROS level to avoid oxidative stress in oocytes, and this might be due to its regulation on mitochondria function, since loss of AMPK activity induced abnormal distribution, reduced ATP production and mtDNA copy number of mitochondria. Besides, we also found that the ER and Golgi apparatus distribution was aberrant after AMPK inhibition, and enhanced lysosome function was also observed. CONCLUSIONS Taken together, these data indicated that AMPK is important for the organelle function to reduce oxidative stress during oocyte meiotic maturation.
Collapse
Affiliation(s)
- Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Mei-Hua Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ya-Xi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lan-Lan Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Feng-Lian Yang
- Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, 533000, Baise, Guangxi, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
- Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, 533000, Baise, Guangxi, China.
| |
Collapse
|
41
|
Wu Z, Zhang C, Sha J, Jing Z, He J, Bai Y, Wu J, Zhang S, Shi P. Ultrabright Xanthene Fluorescence Probe for Mitochondrial Super-Resolution Imaging. Anal Chem 2024; 96:5134-5142. [PMID: 38507805 DOI: 10.1021/acs.analchem.3c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Mitochondria are important organelles that provide energy for cellular physiological activities. Changes in their structures may indicate the occurrence of diseases, and the super-resolution imaging of mitochondria is of great significance. However, developing fluorescent probes for mitochondrial super-resolution visualization still remains challenging due to insufficient fluorescence brightness and poor stability. Herein, we rationally synthesized an ultrabright xanthene fluorescence probe Me-hNR for mitochondria-specific super-resolution imaging using structured illumination microscopy (SIM). The rigid structure of Me-hNR provided its ultrahigh fluorescence quantum yield of up to 0.92 and ultrahigh brightness of up to 16,000. Occupying the para-position of the O atom in the xanthene skeleton by utilizing the smallest methyl group ensured its excellent stability. The study of the photophysical process indicated that Me-hNR mainly emitted fluorescence via radiative decay, and nonradiative decay and inter-system crossing were rare due to the slow nonradiative decay rate and large energy gap (ΔEst = 0.55 eV). Owing to these excellent merits, Me-hNR can specifically light up mitochondria at ultralow concentrations down to 5 nM. The unprecedented spatial resolution for mitochondria with an fwhm of 174 nm was also achieved. Therefore, this ultrabright xanthene fluorescence probe has great potential in visualizing the structural changes of mitochondria and revealing the pathogenesis of related diseases using SIM.
Collapse
Affiliation(s)
- Ziyong Wu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Chuangli Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Ziyang Jing
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Jing He
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Yang Bai
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
42
|
Zhao Z, Yan J, Huang L, Yang X. Phytochemicals targeting Alzheimer's disease via the AMP-activated protein kinase pathway, effects, and mechanisms of action. Biomed Pharmacother 2024; 173:116373. [PMID: 38442672 DOI: 10.1016/j.biopha.2024.116373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive dysfunction and other behavioral abnormalities, is a progressive neurodegenerative disease that occurs due to aging. Currently, effective drugs to mitigate or treat AD remain unavailable. AD is associated with several abnormalities in neuronal energy metabolism, such as decreased glucose uptake, mitochondrial dysfunction, and defects in cholesterol metabolism. Amp-activated protein kinase (AMPK) is an important serine/threonine protein kinase that regulates the energy status of cells. AMPK is widely present in eukaryotic cells and can sense and regulate energy metabolism to maintain energy supply and demand balance, making it a promising target for energy metabolism-based AD therapy. Therefore, this review aimed to discuss the molecular mechanism of AMPK in the pathogenesis of AD to provide a theoretical basis for the development of new anti-AD drugs. To review the mechanisms of phytochemicals in the treatment of AD via AMPK pathway regulation, we searched PubMed, Google Scholar, Web of Science, and Embase databases using specific keywords related to AD and phytochemicals in September 2023. Phytochemicals can activate AMPK or regulate the AMPK pathway to exert therapeutic effects in AD. The anti-AD mechanisms of these phytochemicals include inhibiting Aβ aggregation, preventing Tau hyperphosphorylation, inhibiting inflammatory response and glial activation, promoting autophagy, and suppressing anti-oxidative stress. Additionally, several AMPK-related pathways are involved in the anti-AD mechanism, including the AMPK/CaMKKβ/mTOR, AMPK/SIRT1/PGC-1α, AMPK/NF-κB/NLRP3, AMPK/mTOR, and PERK/eIF2α pathways. Notably, urolithin A, artemisinin, justicidin A, berberine, stigmasterol, arctigenin, and rutaecarpine are promising AMPK agonists with anti-AD effects. Several phytochemicals are effective AMPK agonists and may have potential applications in AD treatment. Overall, phytochemical-based drugs may overcome the barriers to the effective treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning, PR China
| | - Lei Huang
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
43
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
44
|
Kazyken D, Dame SG, Wang C, Wadley M, Fingar DC. Unexpected roles for AMPK in the suppression of autophagy and the reactivation of mTORC1 signaling during prolonged amino acid deprivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572593. [PMID: 38187762 PMCID: PMC10769220 DOI: 10.1101/2023.12.20.572593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting mTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and LC3b lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological mTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls mTORC1 signaling. Paradoxically, we observed impaired reactivation of mTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits mTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of mTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and mTORC1 impact health and disease.
Collapse
|
45
|
Bustraan S, Bennett J, Whilding C, Pennycook BR, Smith D, Barr AR, Read J, Carling D, Pollard A. AMP-activated protein kinase activation suppresses leptin expression independently of adipogenesis in primary murine adipocytes. Biochem J 2024; 481:345-362. [PMID: 38314646 PMCID: PMC11088909 DOI: 10.1042/bcj20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/06/2024]
Abstract
Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.
Collapse
Affiliation(s)
- Sophia Bustraan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Jane Bennett
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Chad Whilding
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | | | - David Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Jon Read
- Mechanistic and Structural Biology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, U.K
| | - David Carling
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Alice Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
46
|
Wang Y, Engel T, Teng X. Post-translational regulation of the mTORC1 pathway: A switch that regulates metabolism-related gene expression. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195005. [PMID: 38242428 DOI: 10.1016/j.bbagrm.2024.195005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Yitao Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
47
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Shariq M, Khan MF, Raj R, Ahsan N, Kumar P. PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy. J Mol Med (Berl) 2024; 102:287-311. [PMID: 38183492 DOI: 10.1007/s00109-023-02411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Lysosomes function as critical signaling hubs that govern essential enzyme complexes. LGALS proteins (LGALS3, LGALS8, and LGALS9) are integral to the endomembrane damage response. If ESCRT fails to rectify damage, LGALS-mediated ubiquitination occurs, recruiting autophagy receptors (CALCOCO2, TRIM16, and SQSTM1) and VCP/p97 complex containing UBXN6, PLAA, and YOD1, initiating selective autophagy. Lysosome replenishment through biogenesis is regulated by TFEB. LGALS3 interacts with TFRC and TRIM16, aiding ESCRT-mediated repair and autophagy-mediated removal of damaged lysosomes. LGALS8 inhibits MTOR and activates TFEB for ATG and lysosomal gene transcription. LGALS9 inhibits USP9X, activates PRKAA2, MAP3K7, ubiquitination, and autophagy. Conjugation of ATG8 to single membranes (CASM) initiates damage repair mediated by ATP6V1A, ATG16L1, ATG12, ATG5, ATG3, and TECPR1. ATG8ylation or CASM activates the MERIT system (ESCRT-mediated repair, autophagy-mediated clearance, MCOLN1 activation, Ca2+ release, RRAG-GTPase regulation, MTOR modulation, TFEB activation, and activation of GTPase IRGM). Annexins ANAX1 and ANAX2 aid damage repair. Stress granules stabilize damaged membranes, recruiting FLCN-FNIP1/2, G3BP1, and NUFIP1 to inhibit MTOR and activate TFEB. Lysosomes coordinate the synergistic response to endomembrane damage and are vital for innate and adaptive immunity. Future research should unveil the collaborative actions of ATG proteins, LGALSs, TRIMs, autophagy receptors, and lysosomal proteins in lysosomal damage response.
Collapse
Affiliation(s)
- Mohd Shariq
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohammad Firoz Khan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Reshmi Raj
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Nuzhat Ahsan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Pramod Kumar
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
49
|
Xiao L, Yin Y, Sun Z, Liu J, Jia Y, Yang L, Mao Y, Peng S, Xie Z, Fang L, Li J, Xie X, Gan Z. AMPK phosphorylation of FNIP1 (S220) controls mitochondrial function and muscle fuel utilization during exercise. SCIENCE ADVANCES 2024; 10:eadj2752. [PMID: 38324677 PMCID: PMC10849678 DOI: 10.1126/sciadv.adj2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Exercise-induced activation of adenosine monophosphate-activated protein kinase (AMPK) and substrate phosphorylation modulate the metabolic capacity of mitochondria in skeletal muscle. However, the key effector(s) of AMPK and the regulatory mechanisms remain unclear. Here, we showed that AMPK phosphorylation of the folliculin interacting protein 1 (FNIP1) serine-220 (S220) controls mitochondrial function and muscle fuel utilization during exercise. Loss of FNIP1 in skeletal muscle resulted in increased mitochondrial content and augmented metabolic capacity, leading to enhanced exercise endurance in mice. Using skeletal muscle-specific nonphosphorylatable FNIP1 (S220A) and phosphomimic (S220D) transgenic mouse models as well as biochemical analysis in primary skeletal muscle cells, we demonstrated that exercise-induced FNIP1 (S220) phosphorylation by AMPK in muscle regulates mitochondrial electron transfer chain complex assembly, fuel utilization, and exercise performance without affecting mechanistic target of rapamycin complex 1-transcription factor EB signaling. Therefore, FNIP1 is a multifunctional AMPK effector for mitochondrial adaptation to exercise, implicating a mechanism for exercise tolerance in health and disease.
Collapse
Affiliation(s)
- Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhifu Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Jingya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| |
Collapse
|
50
|
Zhang L, Liu L, Li D, Wu J, Gao S, Song F, Zhou Y, Liu D, Mei W. Heat Shock Protein 22 Attenuates Nerve Injury-induced Neuropathic Pain Via Improving Mitochondrial Biogenesis and Reducing Oxidative Stress Mediated By Spinal AMPK/PGC-1α Pathway in Male Rats. J Neuroimmune Pharmacol 2024; 19:5. [PMID: 38319409 DOI: 10.1007/s11481-024-10100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/14/2023] [Indexed: 02/07/2024]
Abstract
Heat shock protein 22 (hsp22) plays a significant role in mitochondrial biogenesis and redox balance. Moreover, it's well accepted that the impairment of mitochondrial biogenesis and redox imbalance contributes to the progress of neuropathic pain. However, there is no available evidence indicating that hsp22 can ameliorate mechanical allodynia and thermal hyperalgesia, sustain mitochondrial biogenesis and redox balance in rats with neuropathic pain. In this study, pain behavioral test, western blotting, immunofluorescence staining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Dihydroethidium staining are applied to confirm the role of hsp22 in a male rat model of spared nerve injury (SNI). Our results indicate that hsp22 was significantly decreased in spinal neurons post SNI. Moreover, it was found that intrathecal injection (i.t.) with recombinant heat shock protein 22 protein (rhsp22) ameliorated mechanical allodynia and thermal hyperalgesia, facilitated nuclear respiratory factor 1 (NRF1)/ mitochondrial transcription factor A (TFAM)-dependent mitochondrial biogenesis, decreased the level of reactive oxygen species (ROS), and suppressed oxidative stress via activation of spinal adenosine 5'monophosphate-activated protein kinase (AMPK)/ peroxisome proliferative activated receptor γ coactivator 1α (PGC-1α) pathway in male rats with SNI. Furthermore, it was also demonstrated that AMPK antagonist (compound C, CC) or PGC-1α siRNA reversed the improved mechanical allodynia and thermal hyperalgesia, mitochondrial biogenesis, oxidative stress, and the decreased ROS induced by rhsp22 in male rats with SNI. These results revealed that hsp22 alleviated mechanical allodynia and thermal hyperalgesia, improved the impairment of NRF1/TFAM-dependent mitochondrial biogenesis, down-regulated the level of ROS, and mitigated oxidative stress through stimulating the spinal AMPK/PGC-1α pathway in male rats with SNI.
Collapse
Affiliation(s)
- Longqing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiayi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shaojie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fanhe Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daiqiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|