1
|
Yu X, Li M, Wang C, Guan X. Glycoprotein non-metastatic melanoma protein B (GPNMB): An attractive target in atherosclerosis. Biochem Biophys Res Commun 2024; 732:150386. [PMID: 39024681 DOI: 10.1016/j.bbrc.2024.150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Atherosclerosis (AS), the leading cause of cardiovascular diseases, is heavily influenced by inflammation, lipid accumulation, autophagy, and aging. The expression of glycoprotein non-metastatic melanoma B (GPNMB) has been observed to correlate with lipid content, inflammation, and aging, progressively increasing as atherosclerosis advances through its various stages, from baseline to early and advanced phases. However, the interaction between GPNMB and AS is controversial. Knockout of GPNMB has been shown to increase atherosclerotic plaque burden in mice. Conversely, targeted elimination of GPNMB-positive cells reduced atherosclerotic burden. These seemingly contradictory findings underscore the complexity of the issue and highlight the need for further research to reconcile these discrepancies and to elucidate the precise role of GPNMB in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Min Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Chao Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
2
|
Kalia LV, Asis A, Arbour N, Bar-Or A, Bove R, Di Luca DG, Fon EA, Fox S, Gan-Or Z, Gommerman JL, Kang UJ, Klawiter EC, Koch M, Kolind S, Lang AE, Lee KK, Lincoln MR, MacDonald PA, McKeown MJ, Mestre TA, Miron VE, Ontaneda D, Rousseaux MWC, Schlossmacher MG, Schneider R, Stoessl AJ, Oh J. Disease-modifying therapies for Parkinson disease: lessons from multiple sclerosis. Nat Rev Neurol 2024:10.1038/s41582-024-01023-0. [PMID: 39375563 DOI: 10.1038/s41582-024-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The development of disease-modifying therapies (DMTs) for neurological disorders is an important goal in modern neurology, and the associated challenges are similar in many chronic neurological conditions. Major advances have been made in the multiple sclerosis (MS) field, with a range of DMTs being approved for relapsing MS and the introduction of the first DMTs for progressive MS. By contrast, people with Parkinson disease (PD) still lack such treatment options, relying instead on decades-old therapeutic approaches that provide only symptomatic relief. To address this unmet need, an in-person symposium was held in Toronto, Canada, in November 2022 for international researchers and experts in MS and PD to discuss strategies for advancing DMT development. In this Roadmap article, we highlight discussions from the symposium, which focused on therapeutic targets and preclinical models, disease spectra and subclassifications, and clinical trial design and outcome measures. From these discussions, we propose areas for novel or deeper exploration in PD using lessons learned from therapeutic development in MS. In addition, we identify challenges common to the PD and MS fields that need to be addressed to further advance the discovery and development of effective DMTs.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | - Nathalie Arbour
- Department of Neurosciences, Université de Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
| | - Amit Bar-Or
- Division of MS and Related Disorders, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Di Luca
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward A Fon
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Susan Fox
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jennifer L Gommerman
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Un Jung Kang
- Department of Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Parekh Center for Interdisciplinary Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Fresco Institute for Parkinson's and Movement Disorders, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcus Koch
- University of Calgary MS Clinic, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Shannon Kolind
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Matthew R Lincoln
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Penny A MacDonald
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Veronique E Miron
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- The United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Schlossmacher
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
James VK, van der Zon AAM, Escobar EE, Dunham SD, Gargano AFG, Brodbelt JS. Hydrophilic Interaction Chromatography Coupled to Ultraviolet Photodissociation Affords Identification, Localization, and Relative Quantitation of Glycans on Intact Glycoproteins. J Proteome Res 2024; 23:4684-4693. [PMID: 39312773 DOI: 10.1021/acs.jproteome.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein glycosylation is implicated in a wide array of diseases, yet glycoprotein analysis remains elusive owing to the extreme heterogeneity of glycans, including microheterogeneity of some of the glycosites (amino acid residues). Various mass spectrometry (MS) strategies have proven tremendously successful for localizing and identifying glycans, typically utilizing a bottom-up workflow in which glycoproteins are digested to create glycopeptides to facilitate analysis. An emerging alternative is top-down MS that aims to characterize intact glycoproteins to allow precise identification and localization of glycans. The most comprehensive characterization of intact glycoproteins requires integration of a suitable separation method and high performance tandem mass spectrometry to provide both protein sequence information and glycosite localization. Here, we couple ultraviolet photodissociation and hydrophilic interaction chromatography with high resolution mass spectrometry to advance the characterization of intact glycoproteins ranging from 15 to 34 kDa, offering site localization of glycans, providing sequence coverages up to 93%, and affording relative quantitation of individual glycoforms.
Collapse
Affiliation(s)
- Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Annika A M van der Zon
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrea F G Gargano
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Cheng W, Wang Y, Cheng C, Chen X, Zhang L, Huang W. Single-cell RNA Sequencing Identifies a Novel Subtype of Microglia with High Cd74 Expression that Facilitates White Matter Inflammation During Chronic Cerebral Hypoperfusion. Neurochem Res 2024; 49:2821-2841. [PMID: 39012534 DOI: 10.1007/s11064-024-04206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Vascular dementia (VaD) causes progressive cognitive decline in the elderly population, but there is short of available therapeutic measures. Microglia-mediated neuroinflammation is vigorously involved in the pathogenesis of VaD, but the traditional classification of microglial M1/M2 phenotypes remains restrictive and controversial. This study aims to investigate whether microglia transform into novel subtypes in VaD. Chronic cerebral hypoperfusion (CCH) rat model was constructed to mimic VaD. Microglia were isolated via magnetic-activated cell sorting and analyzed by single-cell RNA sequencing (scRNA-seq) and bioinformatics. The findings inferred from scRNA-seq and bioinformatics were further validated through in vivo experiments. In this study, microglia were divided into eight clusters. The proportion of MG5 cluster was significantly increased in the white matter of the CCH group compared with the Sham group and was named chronic ischemia-associated microglia (CIAM). Immunity- and inflammation-related genes, including RT1-Db1, RT1-Da, RT1-Ba, Cd74, Spp1, C3, and Cd68, were markedly upregulated in CIAM. Enrichment analysis illustrated that CIAM possessed the function of evoking neuroinflammation. Further studies unveiled that Cd74 is associated with the most abundant GO terms involved in inflammation as well as cell proliferation and differentiation. In addition, microglia-specific Cd74 knockdown mediated by adeno-associated virus decreased the abundance of CIAM in the white matter, thereby mitigating inflammatory cytokine levels, alleviating white matter lesions, and improving cognitive impairment for CCH rats. These findings indicate that Cd74 is the core molecule of CIAM to trigger neuroinflammation and induce microglial differentiation to CIAM, suggesting that Cd74 may be a potential therapeutic target for VaD.
Collapse
Affiliation(s)
- Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuhan Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuying Chen
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lan Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China.
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
Aubin RG, Montelongo J, Hu R, Gunther E, Nicodemus P, Camara PG. Clustering-independent estimation of cell abundances in bulk tissues using single-cell RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527318. [PMID: 36798206 PMCID: PMC9934539 DOI: 10.1101/2023.02.06.527318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Single-cell RNA-sequencing has transformed the study of biological tissues by enabling transcriptomic characterizations of their constituent cell states. Computational methods for gene expression deconvolution use this information to infer the cell composition of related tissues profiled at the bulk level. However, current deconvolution methods are restricted to discrete cell types and have limited power to make inferences about continuous cellular processes like cell differentiation or immune cell activation. We present ConDecon, a clustering-independent method for inferring the likelihood for each cell in a single-cell dataset to be present in a bulk tissue. ConDecon represents an improvement in phenotypic resolution and functionality with respect to regression-based methods. Using ConDecon, we discover the implication of neurodegenerative microglia inflammatory pathways in the mesenchymal transformation of pediatric ependymoma and characterize their spatial trajectories of activation. The generality of this approach enables the deconvolution of other data modalities such as bulk ATAC-seq data.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Robert Hu
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Elijah Gunther
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Patrick Nicodemus
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
6
|
Zou C, Cai R, Li Y, Xue Y, Zhang G, Alitongbieke G, Pan Y, Zhang S. β-chitosan attenuates hepatic macrophage-driven inflammation and reverses aging-related cognitive impairment. iScience 2024; 27:110766. [PMID: 39280626 PMCID: PMC11401205 DOI: 10.1016/j.isci.2024.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, increasing evidence has shown the association between liver abnormal inflammation and cognition impairment, yet their age-related pathogenesis remains obscure. Here, our study provides a potential mechanistic link between liver macrophage excessive activation and neuroinflammation in aging progression. In aged and LPS-injected C57BL/6J mice, systemic administration of β-chitosan ameliorates hepatic macrophage-driven inflammation and reduces peripheral accumulations of TNF-α and IL-1β. Downregulation of circulatory pro-inflammatory cytokines then decreases vascular VCAM1 expression and neuroinflammation in the hippocampus, leading to cognitive improvement in aged/LPS-stimulated mice. Interestingly, β-chitosan treatment also exhibits the beneficial effects on the behavioral recovery of aged/LPS-stimulated zebrafish and Caenorhabditis elegans. In our cell culture and molecular docking experiments, we found that β-chitosan prefers shielding the MD-2 pocket, thus blocking the activation of TLR4-MD-2 complex to suppress NF-κB signaling pathway activation. Together, our findings highlight the extensive therapeutic potential of β-chitosan in reversing aged-related/LPS-induced cognitive impairment via the liver-brain axis.
Collapse
Affiliation(s)
- Chenming Zou
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Ruihua Cai
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yunbing Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Guoguang Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Gulimiran Alitongbieke
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Sanguo Zhang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| |
Collapse
|
7
|
Guvenek A, Parikshak N, Zamolodchikov D, Gelfman S, Moscati A, Dobbyn L, Stahl E, Shuldiner A, Coppola G. Transcriptional profiling in microglia across physiological and pathological states identifies a transcriptional module associated with neurodegeneration. Commun Biol 2024; 7:1168. [PMID: 39294270 PMCID: PMC11411103 DOI: 10.1038/s42003-024-06684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/06/2024] [Indexed: 09/20/2024] Open
Abstract
Microglia are the resident immune cells of the central nervous system and are involved in brain development, homeostasis, and disease. New imaging and genomics technologies are revealing microglial complexity across developmental and functional states, brain regions, and diseases. We curated a set of publicly available gene expression datasets from human microglia spanning disease and health to identify sets of genes reflecting physiological and pathological microglial states. We also integrated multiple human microglial single-cell RNA-seq datasets in Alzheimer's disease (AD), multiple sclerosis (MS), and Parkinson's disease, and identified a distinct microglial transcriptional signature shared across diseases. Analysis of germ-line DNA identified genes with variants associated with AD and MS that are overrepresented in microglial gene sets, including the disease-associated transcriptional signature. This work points to genes that are dysregulated in disease states and provides a resource for the analysis of diseases in which microglia are implicated by genetic evidence.
Collapse
Affiliation(s)
- Aysegul Guvenek
- Regeneron Genetics Center, Tarrytown, NY, USA
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | | | | | | | - Lee Dobbyn
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | |
Collapse
|
8
|
Mills KA, Phillips O, Mahajan A. Hope vs. Hype I: Spreading alpha-synuclein explains cognitive deficits in Parkinson disease. Parkinsonism Relat Disord 2024; 126:106042. [PMID: 38365523 DOI: 10.1016/j.parkreldis.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
The Parkinson Study Group (PSG) gathered North American experts in Parkinson disease during the 9th Annual Symposium on "Shaping the Management of Parkinson Disease: Debating Current Controversies". Debaters were tasked with agree or disagree positions to a particular prompt. This is the first in three-part series of "Hype vs. Hope" debates involving current trends and advances in Parkinson disease. With the prompt of "Spreading alpha-synuclein explains cognitive deficits in Parkinson disease," Dr. Kelly Mills, MD, MHS was tasked with the "agree" stance and Dr. Abhimanyu Mahajan, MD, MHS was tasked with the "disagree" stance. The following point-of-view article is an adaptation of this debate.
Collapse
Affiliation(s)
- Kelly A Mills
- Johns Hopkins Department of Neurology, Baltimore, MD600 N. Wolfe Street, Meyer 6-181D, 21287, United States.
| | - Oliver Phillips
- Geisel School of Medicine at Dartmouth, Hanover, NH, 18 Old Etna Road, 03756, United States.
| | - Abhimanyu Mahajan
- The University of Cincinnati James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, OH, 260 Stetson St., Suite 2300, Cincinnati, 45219, United States.
| |
Collapse
|
9
|
Kardam S, Ambasta RK, Kumar P. Overview of pro-inflammatory and pro-survival components in neuroinflammatory signalling and neurodegeneration. Ageing Res Rev 2024; 100:102465. [PMID: 39187022 DOI: 10.1016/j.arr.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Neurodegenerative diseases (NDDs) are identified by the progressive deterioration of neurons and a subsequent decline in cognitive function, creating an enormous burden on the healthcare system globally. Neuroinflammation is an intricate procedure that initiates the immune response in the central nervous system (CNS) and significantly impacts the expansion of NDDs. This study scrutinizes the complicated interaction between neuronal degeneration and neuroinflammation, with an appropriate emphasis on their reciprocal impacts. It also describes how neuroinflammatory reactions in NDDs are controlled by activating certain pro-inflammatory transcription factors, including p38 MAPK, FAF1, Toll-like receptors (TLRs), and STAT3. Alternatively, it evaluates the impact of pro-survival transcription factors, such as the SOCS pathway, YY1, SIRT1, and MEF2, which provide neuroprotective protection against damage triggered by neuroinflammation. Moreover, we study the feasibility of accommodating drug repositioning as a therapeutic approach for treating neuroinflammatory disorders. This suggests the use of existing medications for novel utilization in the treatment of NDDs. Furthermore, the study intends to reveal novel biomarkers of neuroinflammation that contribute fundamental observation for the initial detection and diagnosis of these disorders. This study aims to strengthen therapy interference and augment patient outcomes by combining ongoing data and evaluating novel therapeutic and diagnostic approaches. The goal is to devote the growth of an effective strategy to reducing the impact of neuroinflammation on neuronal protection in NDDs.
Collapse
Affiliation(s)
- Shefali Kardam
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, India; Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
10
|
Meng J, Fang J, Bao Y, Chen H, Hu X, Wang Z, Li M, Cheng Q, Dong Y, Yang X, Zou Y, Zhao D, Tang J, Zhang W, Chen C. The biphasic role of Hspb1 on ferroptotic cell death in Parkinson's disease. Theranostics 2024; 14:4643-4666. [PMID: 39239519 PMCID: PMC11373631 DOI: 10.7150/thno.98457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/21/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Ferroptosis-driven loss of dopaminergic neurons plays a pivotal role in the pathogenesis of Parkinson's disease (PD). In PD patients, Hspb1 is commonly observed at abnormally high levels in the substantia nigra. The precise consequences of Hspb1 overexpression in PD, however, have yet to be fully elucidated. Methods: We used human iPSC-derived dopaminergic neurons and Coniferaldehyde (CFA)-an Nrf2 agonist known for its ability to cross the blood-brain barrier-to investigate the role of Hspb1 in PD. We examined the correlation between Hspb1 overexpression and Nrf2 activation and explored the transcriptional regulation of Hspb1 by Nrf2. Gene deletion techniques were employed to determine the necessity of Nrf2 and Hspb1 for CFA's neuroprotective effects. Results: Our research demonstrated that Nrf2 can upregulate the transcription of Hspb1 by directly binding to its promoter. Deletion of either Nrf2 or Hspb1 gene abolished the neuroprotective effects of CFA. The Nrf2-Hspb1 pathway, newly identified as a defense mechanism against ferroptosis, was shown to be essential for preventing neurodegeneration progression. Additionally, we discovered that prolonged overexpression of Hspb1 leads to neuronal death and that Hspb1 released from ruptured cells can trigger secondary cell death in neighboring cells, exacerbating neuroinflammatory responses. Conclusions: These findings highlight a biphasic role of Hspb1 in PD, where it initially provides neuroprotection through the Nrf2-Hspb1 pathway but ultimately contributes to neurodegeneration and inflammation when overexpressed. Understanding this dual role is crucial for developing therapeutic strategies targeting Hspb1 and Nrf2 in PD.
Collapse
Affiliation(s)
- Jieyi Meng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinyu Fang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutong Bao
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huizhu Chen
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xiaodan Hu
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ziyuan Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Quancheng Cheng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yaqiong Dong
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xiaoda Yang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yushu Zou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jiping Tang
- Physiology and Pharmacology Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92350, USA
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
11
|
Grotewold N, Albin RL. Update: Protective and risk factors for Parkinson disease. Parkinsonism Relat Disord 2024; 125:107026. [PMID: 38879999 DOI: 10.1016/j.parkreldis.2024.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
We review the epidemiologic literature on potential protective and risk factors in Parkinson's Disease (PD). Prior research identified numerous possible protective and risk factors. Potential protective factors include tobacco abuse, physical activity, urate levels, NSAID use, calcium channel blocker use, statin use, and use of some α1-adrenergic antagonists. Some potential protective factors could be products of reverse causation, including increased serum urate, tobacco abuse, and coffee-tea-caffeine consumption. Potential risk factors include traumatic brain injury, pesticide exposure, organic solvent exposure, lead exposure, air pollution, Type 2 Diabetes, some dairy products, cardiovascular disease, and some infections including Hepatitis C, H. pylori, and COVID-19. Potential non-environmental risk factors include bipolar disorder, essential tremor, bullous pemphigoid, and inflammatory bowel disease. There is an inverse relationship with PD and risk of most cancers. Though many potential protective and risk factors for PD were identified, research has not yet led to unique, rigorous prevention trials or successful disease-modifying interventions. While efforts to reduce exposure to some industrial toxicants are well justified, PD incidence might be most effectively reduced by mitigation of risks, such as Type 2 Diabetes, air pollution, traumatic brain injury, or physical inactivity, that are general public health intervention targets.
Collapse
Affiliation(s)
- Nikolas Grotewold
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger L Albin
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; GRECC & Neurology Service, VAAAHS, Ann Arbor, MI, 48105, USA; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI, 48109, USA; University of Michigan Parkinson's Foundation Research Center of Excellence, USA.
| |
Collapse
|
12
|
Wallings RL, Gillett DA, Staley HA, Mahn S, Mark J, Neighbarger N, Kordasiewicz H, Hirst WD, Tansey MG. ASO-mediated knockdown of GPNMB in mutant- GRN and Grn -deficient peripheral myeloid cells disrupts lysosomal function and immune responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604676. [PMID: 39211224 PMCID: PMC11361193 DOI: 10.1101/2024.07.22.604676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Increases in GPNMB are detectable in FTD- GRN cerebrospinal fluid (CSF) and post-mortem brain, and brains of aged Grn -deficient mice. Although no upregulation of GPNMB is observed in the brains of young Grn -deficient mice, peripheral immune cells of these mice do exhibit this increase in GPNMB. Importantly, the functional significance of GPNMB upregulation in progranulin-deficient states is currently unknown. Given that GPNMB has been discussed as a potential therapeutic target in GRN -mediated neurodegeneration, it is vital for the field to determine what the normal function of GPNMB is in the immune system, and whether targeting GPNMB will elicit beneficial or deleterious effects. Methods The effects of GPNMB knock-down via antisense oligonucleotide (ASO) were assessed in peripheral blood mononuclear cells (PBMCs) from 25 neurologically healthy controls (NHCs) and age- and sex-matched FTD- GRN patients, as well as peritoneal macrophages (pMacs) from progranulin-deficient ( Grn -/- ) and B6 mice. Lysosomal function, antigen presentation and MHC-II processing and recycling were assessed, as well as cytokine release and transcription. Results We demonstrate here that ASO-mediated knockdown of GPNMB increases lysosomal burden and cytokine secretion in FTD-GRN carrier and neurologically healthy controls (NHCs) monocytes. ASO-mediated knockdown of GPNMB in Grn -deficient macrophages decreased lysosomal pan-cathepsin activity and protein degradation. In addition, ASO-mediated knockdown of GPNMB increased MHC-II surface expression, which was driven by decreased MHC-II uptake and recycling, in macrophages from Grn -deficient females. Finally, ASO-mediated knockdown of GPNMB dysregulated IFNγ-stimulated cytokine transcription and secretion by mouse macrophages due to the absence of regulatory actions of the GPNMB extracellular fragment (ECF). Conclusions Our data herein reveals that GPNMB has a regulatory effect on multiple immune effector functions, including capping inflammation and immune responses in myeloid cells via secretion of its ECF. Therefore, in progranulin-deficient states, the drastic upregulation in GPNMB transcript and protein may represent a compensatory mechanism to preserve lysosomal function in myeloid cells. These novel findings indicate that targeted depletion in FTD- GRN would not be a rational therapeutic strategy because it is likely to dysregulate important immune cell effector functions.
Collapse
|
13
|
Chen YC, Liaw YC, Nfor ON, Hsiao CH, Zhong JH, Wu SL, Liaw YP. Epigenetic associations of GPNMB rs199347 variant with alcohol consumption in Parkinson's disease. Front Psychiatry 2024; 15:1377403. [PMID: 39091454 PMCID: PMC11293056 DOI: 10.3389/fpsyt.2024.1377403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Alcohol consumption can induce a neuroinflammatory response and contribute to the progression of neurodegeneration. However, its association with Parkinson's disease (PD), the second most common neurodegenerative disorder, remains undetermined. Recent studies suggest that the glycoprotein non-metastatic melanoma protein B (GPNMB) is a potential biomarker for PD. We evaluated the association of rs199347, a variant of the GPNMB gene, with alcohol consumption and methylation upstream of GPNMB. Methods We retrieved genetic and DNA methylation data obtained from participants enrolled in the Taiwan Biobank (TWB) between 2008 and 2016. After excluding individuals with incomplete or missing information about potential PD risk factors, we included 1,357 participants in our final analyses. We used multiple linear regression to assess the association of GPNMB rs199347 and chronic alcohol consumption (and other potential risk factors) with GPNMB cg17274742 methylation. Results There was no difference between the distribution of GPNMB rs199347 genotypes between chronic alcohol consumers and the other study participants. A significant interaction was observed between the GPNMB rs199347 variant and alcohol consumption (p = 0.0102) concerning cg17274742 methylation. Compared to non-chronic alcohol consumers with the AA genotype, alcohol drinkers with the rs199347 GG genotype had significantly lower levels (hypomethylation) of cg17274742 (p = 0.0187). Conclusion Alcohol consumption among individuals with the rs199347 GG genotype was associated with lower levels of cg17274742 methylation, which could increase expression of the GPNMB gene, an important neuroinflammatory-related risk gene for PD.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Chia Liaw
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Hsuan Hsiao
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ji-Han Zhong
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Kawahara K, Hasegawa T, Hasegawa N, Izumi T, Sato K, Sakamaki T, Ando M, Maeda T. Truncated GPNMB, a microglial transmembrane protein, serves as a scavenger receptor for oligomeric β-amyloid peptide 1-42 in primary type 1 microglia. J Neurochem 2024; 168:1317-1339. [PMID: 38361142 DOI: 10.1111/jnc.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is up-regulated in one subtype of microglia (MG) surrounding senile plaque depositions of amyloid-beta (Aβ) peptides. However, whether the microglial GPNMB can recognize the fibrous Aβ peptides as ligands remains unknown. In this study, we report that the truncated form of GPNMB, the antigen for 9F5, serves as a scavenger receptor for oligomeric Aβ1-42 (o-Aβ1-42) in rat primary type 1 MG. 125I-labeled o-Aβ1-42 exhibited specific and saturable endosomal/lysosomal degradation in primary-cultured type 1 MG from GPNMB-expressing wild-type mice, whereas the degradation activity was markedly reduced in cells from Gpnmb-knockout mice. The Gpnmb-siRNA significantly inhibits the degradation of 125I-o-Aβ1-42 by murine microglial MG5 cells. Therefore, GPNMB contributes to mouse MG's o-Aβ1-42 clearance. In rat primary type 1 MG, the cell surface expression of truncated GPNMB was confirmed by a flow cytometric analysis using a previously established 9F5 antibody. 125I-labeled o-Aβ1-42 underwent endosomal/lysosomal degradation by rat primary type 1 MG in a dose-dependent fashion, while the 9F5 antibody inhibited the degradation. The binding of 125I-o-Aβ1-42 to the rat primary type 1 MG was inhibited by 42% by excess unlabeled o-Aβ1-42, and by 52% by the 9F5 antibody. Interestingly, the 125I-o-Aβ1-42 degradations by MG-like cells from human-induced pluripotent stem cells was inhibited by the 9F5 antibody, suggesting that truncated GPNMB also serve as a scavenger receptor for o-Aβ1-42 in human MG. Our study demonstrates that the truncated GPNMB (the antigen for 9F5) binds to oligomeric form of Aβ1-42 and functions as a scavenger receptor on MG, and 9F5 antibody can act as a blocking antibody for the truncated GPNMB.
Collapse
Affiliation(s)
- Kohichi Kawahara
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
- Department of Bio-analytical Chemistry, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Takuya Hasegawa
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Noa Hasegawa
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Taisei Izumi
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Koji Sato
- Laboratory of Health Chemistry, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Toshiyuki Sakamaki
- Laboratory of Health Chemistry, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Masayuki Ando
- Education Center for Pharmacy, Faculty of Pharmacy, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Takehiko Maeda
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| |
Collapse
|
15
|
Ascsillán AA, Kemény LV. The Skin-Brain Axis: From UV and Pigmentation to Behaviour Modulation. Int J Mol Sci 2024; 25:6199. [PMID: 38892387 PMCID: PMC11172643 DOI: 10.3390/ijms25116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
The skin-brain axis has been suggested to play a role in several pathophysiological conditions, including opioid addiction, Parkinson's disease and many others. Recent evidence suggests that pathways regulating skin pigmentation may directly and indirectly regulate behaviour. Conversely, CNS-driven neural and hormonal responses have been demonstrated to regulate pigmentation, e.g., under stress. Additionally, due to the shared neuroectodermal origins of the melanocytes and neurons in the CNS, certain CNS diseases may be linked to pigmentation-related changes due to common regulators, e.g., MC1R variations. Furthermore, the HPA analogue of the skin connects skin pigmentation to the endocrine system, thereby allowing the skin to index possible hormonal abnormalities visibly. In this review, insight is provided into skin pigment production and neuromelanin synthesis in the brain and recent findings are summarised on how signalling pathways in the skin, with a particular focus on pigmentation, are interconnected with the central nervous system. Thus, this review may supply a better understanding of the mechanism of several skin-brain associations in health and disease.
Collapse
Affiliation(s)
- Anna A. Ascsillán
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Lajos V. Kemény
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
16
|
Matsui H, Takahashi R. Current trends in basic research on Parkinson's disease: from mitochondria, lysosome to α-synuclein. J Neural Transm (Vienna) 2024; 131:663-674. [PMID: 38613675 PMCID: PMC11192670 DOI: 10.1007/s00702-024-02774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra and other brain regions. A key pathological feature of PD is the abnormal accumulation of α-synuclein protein within affected neurons, manifesting as Lewy bodies and Lewy neurites. Despite extensive research efforts spanning several decades, the underlying mechanisms of PD and disease-modifying therapies remain elusive. This review provides an overview of current trends in basic research on PD. Initially, it discusses the involvement of mitochondrial dysfunction in the pathogenesis of PD, followed by insights into the role of lysosomal dysfunction and disruptions in the vesicular transport system. Additionally, it delves into the pathological and physiological roles of α-synuclein, a crucial protein associated with PD pathophysiology. Overall, the purpose of this review is to comprehend the current state of elucidating the intricate mechanisms underlying PD and to outline future directions in understanding this disease.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, 1-757, Asahimachidori, Chuoku, Niigata, 951-8585, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyoku, Kyoto, 606-8507, Japan.
| |
Collapse
|
17
|
Brody EM, Seo Y, Suh E, Amari N, Hartstone WG, Skrinak RT, Zhang H, Diaz-Ortiz ME, Weintraub D, Tropea TF, Van Deerlin VM, Chen-Plotkin AS. GPNMB Biomarker Levels in GBA1 Carriers with Lewy Body Disorders. Mov Disord 2024; 39:1065-1070. [PMID: 38610104 PMCID: PMC11209810 DOI: 10.1002/mds.29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Eliza M. Brody
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yunji Seo
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Noor Amari
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Whitney G. Hartstone
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - R. Tyler Skrinak
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hanwen Zhang
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maria E. Diaz-Ortiz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Weintraub
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas F. Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vivianna M. Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alice S. Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Bhore N, Bogacki EC, O'Callaghan B, Plun-Favreau H, Lewis PA, Herbst S. Common genetic risk for Parkinson's disease and dysfunction of the endo-lysosomal system. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220517. [PMID: 38368938 PMCID: PMC10874702 DOI: 10.1098/rstb.2022.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
Parkinson's disease is a progressive neurological disorder, characterized by prominent movement dysfunction. The past two decades have seen a rapid expansion of our understanding of the genetic basis of Parkinson's, initially through the identification of monogenic forms and, more recently, through genome-wide association studies identifying common risk variants. Intriguingly, a number of cellular pathways have emerged from these analysis as playing central roles in the aetiopathogenesis of Parkinson's. In this review, the impact of data deriving from genome-wide analyses for Parkinson's upon our functional understanding of the disease will be examined, with a particular focus on examples of endo-lysosomal and mitochondrial dysfunction. The challenges of moving from a genetic to a functional understanding of common risk variants for Parkinson's will be discussed, with a final consideration of the current state of the genetic architecture of the disorder. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Noopur Bhore
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
| | - Erin C. Bogacki
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Benjamin O'Callaghan
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Helene Plun-Favreau
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Susanne Herbst
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
19
|
Li K, Wang P, Li W, Yan JH, Ge YL, Zhang JR, Wang F, Mao CJ, Liu CF. The association between plasma GPNMB and Parkinson's disease and multiple system atrophy. Parkinsonism Relat Disord 2024; 120:106001. [PMID: 38217954 DOI: 10.1016/j.parkreldis.2024.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
AIMS Parkinson's disease (PD), as the second most common neurodegenerative disorder, often presents diagnostic challenges in differentiation from other forms of Parkinsonism. Recent studies have reported an association between plasma glycoprotein nonmetastatic melanoma protein B (pGPNMB) and PD. METHODS A retrospective study was conducted, comprising 401 PD patients, 111 multiple system atrophy (MSA) patients, 13 progressive supranuclear palsy (PSP) patients and 461 healthy controls from the Chinese Han population, with an assessment of pGPNMB levels. RESULTS The study revealed that pGPNMB concentrations were significantly lower in PD and MSA patients compared to controls (area under the receiver operating characteristics curve (AUC) 0.62 and 0.74, respectively, P < 0.0001 for both), but no difference was found in PSP patients compared to controls (P > 0.05). Interestingly, the level of pGPNMB was significantly higher in PD patients than in MSA patients (AUC = 0.63, P < 0.0001). Furthermore, the study explored the association between pGPNMB levels and disease severity in PD and MSA patients, revealing a positive correlation in PD patients but not in MSA patients with both disease severity and cognitive impairment. CONCLUSION This study successfully replicated prior findings, demonstrating an association between pGPNMB levels and disease severity, and also identified a correlation with cognitive impairment in PD patients of the Chinese Han population. Additionally, this study is the first to identify a significant difference in pGPNMB levels between MSA, PD, and normal controls. The data provide new evidence supporting the potential role of pGPNMB in the diagnosis and differential diagnosis of Parkinsonism.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Puzhi Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-Hui Yan
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Lun Ge
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Ru Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| |
Collapse
|
20
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
22
|
Shi JJ, Mao CY, Guo YZ, Fan Y, Hao XY, Li SJ, Tian J, Hu ZW, Li MJ, Li JD, Ma DR, Guo MN, Zuo CY, Liang YY, Xu YM, Yang J, Shi CH. Joint analysis of proteome, transcriptome, and multi-trait analysis to identify novel Parkinson's disease risk genes. Aging (Albany NY) 2024; 16:1555-1580. [PMID: 38240717 PMCID: PMC10866412 DOI: 10.18632/aging.205444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
Genome-wide association studies (GWAS) have identified multiple risk variants for Parkinson's disease (PD). Nevertheless, how the risk variants confer the risk of PD remains largely unknown. We conducted a proteome-wide association study (PWAS) and summary-data-based mendelian randomization (SMR) analysis by integrating PD GWAS with proteome and protein quantitative trait loci (pQTL) data from human brain, plasma and CSF. We also performed a large transcriptome-wide association study (TWAS) and Fine-mapping of causal gene sets (FOCUS), leveraging joint-tissue imputation (JTI) prediction models of 22 tissues to identify and prioritize putatively causal genes. We further conducted PWAS, SMR, TWAS, and FOCUS using a multi-trait analysis of GWAS (MTAG) to identify additional PD risk genes to boost statistical power. In this large-scale study, we identified 16 genes whose genetically regulated protein abundance levels were associated with Parkinson's disease risk. We undertook a large-scale analysis of PD and correlated traits, through TWAS and FOCUS studies, and discovered 26 casual genes related to PD that had not been reported in previous TWAS. 5 genes (CD38, GPNMB, RAB29, TMEM175, TTC19) showed significant associations with PD at both the proteome-wide and transcriptome-wide levels. Our study provides new insights into the etiology and underlying genetic architecture of PD.
Collapse
Affiliation(s)
- Jing-Jing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Cheng-Yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Ya-Zhou Guo
- School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xiao-Yan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Shuang-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jie Tian
- Zhengzhou Railway Vocational and Technical College, Zhengzhou 450000, Henan, China
| | - Zheng-Wei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Meng-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jia-Di Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Dong-Rui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Meng-Nan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chun-Yan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yuan-Yuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
23
|
Zheng Y, Zhu T, Li G, Xu L, Zhang Y. PCSK9 inhibitor protects against ischemic cerebral injury by attenuating inflammation via the GPNMB/CD44 pathway. Int Immunopharmacol 2024; 126:111195. [PMID: 38048667 DOI: 10.1016/j.intimp.2023.111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Ischemic stroke is the second leading cause of death worldwide, and neuroinflammation has been recognized as a critical player in its progression. Meanwhile, proprotein convertase subtilisin/kexin type 9 inhibitor (PCSK9i) has been demonstrated to inhibit inflammatory response. However, the effects of PCSK9i on ischemic stroke remain unclear and require further investigation. METHODS Temporary middle cerebral artery occlusion (tMCAO) was performed to establish animal models of ischemic stroke in C57BL/6 mice. The PCSK9i were administered subcutaneously after 2 h tMCAO. Neurological function and cerebral infarct volume were measured by mNSS and TTC staining, respectively. RNA-seq was performed to investigate the changes in mechanistic pathways. Western blotting and immunofluorescence were applied to detect expression of GPNMB, CD44, IL-6, and iNOS. RESULTS Treatment with PCSK9i significantly improved neurological deficits and reduced the volume of cerebral infarction. PCSK9i suppressed neuroinflammation by activating the GPNMB/CD44 signaling pathway, further exerting their protective effects. CONCLUSION Taken together, treatment with PCSK9i is an effective way to prevent ischemic stroke-induced brain injury.
Collapse
Affiliation(s)
- Yaling Zheng
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianrui Zhu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luran Xu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yue Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
24
|
Alvarado CX, Makarious MB, Weller CA, Vitale D, Koretsky MJ, Bandres-Ciga S, Iwaki H, Levine K, Singleton A, Faghri F, Nalls MA, Leonard HL. omicSynth: An open multi-omic community resource for identifying druggable targets across neurodegenerative diseases. Am J Hum Genet 2024; 111:150-164. [PMID: 38181731 PMCID: PMC10806756 DOI: 10.1016/j.ajhg.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.
Collapse
Affiliation(s)
- Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Cory A Weller
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Mathew J Koretsky
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kristin Levine
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Faraz Faghri
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
25
|
Nazish I, Mamais A, Mallach A, Bettencourt C, Kaganovich A, Warner T, Hardy J, Lewis PA, Pocock J, Cookson MR, Bandopadhyay R. Differential LRRK2 Signalling and Gene Expression in WT-LRRK2 and G2019S-LRRK2 Mouse Microglia Treated with Zymosan and MLi2. Cells 2023; 13:53. [PMID: 38201257 PMCID: PMC10778119 DOI: 10.3390/cells13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause autosomal dominant Parkinson's disease (PD), with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggests involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4, resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-sequencing analysis. We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate genome-wide association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated, respectively, with zymosan treatment, while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed that the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis.
Collapse
Affiliation(s)
- Iqra Nazish
- Reta Lila Weston Institute of Neurological Studies and Department of Movement neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK (T.W.)
| | - Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, FL 32610, USA;
| | - Anna Mallach
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; (A.M.); (J.P.)
| | - Conceicao Bettencourt
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (C.B.); (J.H.); (P.A.L.)
| | - Alice Kaganovich
- Cell Biology and Gene Expression Section, National Institute on Aging, Bethesda, MD 20892, USA; (A.K.); (M.R.C.)
| | - Thomas Warner
- Reta Lila Weston Institute of Neurological Studies and Department of Movement neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK (T.W.)
| | - John Hardy
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (C.B.); (J.H.); (P.A.L.)
| | - Patrick A. Lewis
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (C.B.); (J.H.); (P.A.L.)
- Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Jennifer Pocock
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; (A.M.); (J.P.)
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, Bethesda, MD 20892, USA; (A.K.); (M.R.C.)
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of Movement neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK (T.W.)
| |
Collapse
|
26
|
Li T, Zhang Y, Lu Q, Lei L, Du J, Lu X. GPNMB Ameliorates Neuroinflammation Via the Modulation of AMPK/NFκB Signaling Pathway After SAH in Mice. J Neuroimmune Pharmacol 2023; 18:628-639. [PMID: 37919457 PMCID: PMC10769934 DOI: 10.1007/s11481-023-10087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) got its name from the first discovery in a cell line of non-metastatic melanoma. Later studies found that GPNMB is widely expressed in various tissues and cells of the human body, most abundant in neural tissue, epithelial tissue, bone tissue, and monocyte-macrophage system. GPNMB has been shown to have anti-inflammatory effects in a variety of neurological diseases, however, it has not been reported in subarachnoid hemorrhage (SAH). Male CD-1 mice were used and intra-arterial puncture method was applied to establish the SAH model. Exogenous recombinant GPNMB (rGPNMB) was injected intracerebroventricularly 1 h after SAH. SAH grading, brain edema and blood-brain barrier (BBB) integrity were quantified, and neurobehavioral tests were performed to evaluate the effect of GPNMB on the outcome. Dorsomorphin, the selective inhibitor on AMPK was introduced to study the downstream signaling through which the GPNMB works. Furthermore, western blot, immunofluorescence staining and ELISA were utilized to confirm the signaling. After SAH, GPNMB expression increased significantly as a result of the inflammatory response. GPNMB was expressed extensively in mouse microglia, astrocytes and neurons. The administration of rGPNMB could alleviate brain edema, restore BBB integrity and improve the neurological outcome of mice with SAH. GPNMB treatment significantly magnified the expression of p-AMPK while p-NFκB, IL-1β, IL-6 and TNF-α were suppressed; in the meantime, the combined administration of GPNMB and AMPK inhibitor could decrease the intensity of p-AMPK and reverse the quantity of p-NFκB and the above inflammatory cytokines. GPNMB has the potential of ameliorating the brain edema and neuroinflammation, protecting the BBB and improving the neurological outcome, possibly via the AMPK/NFκB signaling pathway.
Collapse
Affiliation(s)
- Tao Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuansheng Zhang
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qixiong Lu
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Li Lei
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jingshu Du
- Department of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Xiaoyang Lu
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
27
|
Birol M, Muñoz IID, Rhoades E. The C-terminus of α-Synuclein Regulates its Dynamic Cellular Internalization by Neurexin 1β. Mol Biol Cell 2023; 34:br21. [PMID: 37729016 PMCID: PMC10848939 DOI: 10.1091/mbc.e22-11-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/17/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
The aggregation of the disordered neuronal protein, α-Synuclein (αS), is the primary pathological feature of Parkinson's disease. Current hypotheses favor cell-to-cell spread of αS species as underlying disease progression, driving interest in identifying the molecular species and cellular processes involved in cellular internalization of αS. Prior work from our lab identified the chemically specific interaction between αS and the presynaptic adhesion protein neurexin-1β (N1β) to be capable of driving cellular internalization of both monomer and aggregated forms of αS. Here we explore the physical basis of N1β-driven internalization of αS. Specifically, we show that spontaneous internalization of αS by SH-SY5Y and HEK293 cells expressing N1β requires essentially all of the membrane-binding domain of αS; αS constructs truncated beyond residue 90 bind to N1β in the plasma membrane of HEK cells, but are not internalized. Interestingly, before internalization, αS and N1β codiffuse rapidly in the plasma membrane. αS constructs that are not internalized show very slow mobility themselves, as well as slow N1β diffusion. Finally, we find that truncated αS is capable of blocking internalization of full-length αS. Our results draw attention to the potential therapeutic value of blocking αS-N1β interactions.
Collapse
Affiliation(s)
- Melissa Birol
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- Max Delbrück Institute for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin 10115, Germany
| | | | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Canniff NP, Graham JB, Guay KP, Lubicki DA, Eyles SJ, Rauch JN, Hebert DN. TTC17 is an endoplasmic reticulum resident TPR-containing adaptor protein. J Biol Chem 2023; 299:105450. [PMID: 37949225 PMCID: PMC10783571 DOI: 10.1016/j.jbc.2023.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
Protein folding, quality control, maturation, and trafficking are essential processes for proper cellular homeostasis. Around one-third of the human proteome is targeted to the endoplasmic reticulum (ER), the organelle that serves as entrance into the secretory pathway. Successful protein trafficking is paramount for proper cellular function and to that end there are many ER resident proteins that ensure efficient secretion. Here, biochemical and cell biological analysis was used to determine that TTC17 is a large, soluble, ER-localized protein that plays an important role in secretory trafficking. Transcriptional analysis identified the predominantly expressed protein isoform of TTC17 in various cell lines. Further, TTC17 localizes to the ER and interacts with a wide variety of chaperones and cochaperones normally associated with ER protein folding, quality control, and maturation processes. TTC17 was found to be significantly upregulated by ER stress and through the creation and use of TTC17-/- cell lines, quantitative mass spectrometry identified secretory pathway wide trafficking defects in the absence of TTC17. Notably, trafficking of insulin-like growth factor type 1 receptor, glycoprotein nonmetastatic melanoma protein B, clusterin, and UDP-glucose:glycoprotein glucosyltransferase 1 were significantly altered in H4 neuroglioma cells. This study defines a novel ER trafficking factor and provides insight into the protein-protein assisted trafficking in the early secretory pathway.
Collapse
Affiliation(s)
- Nathan P Canniff
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA
| | - Jill B Graham
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA
| | - Kevin P Guay
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA
| | - Daniel A Lubicki
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA
| | - Stephen J Eyles
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA; Institute for Applied Life Sciences, Mass Spectrometry Center, University of Massachusetts Amherst, USA
| | - Jennifer N Rauch
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA
| | - Daniel N Hebert
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA.
| |
Collapse
|
29
|
Gillett DA, Wallings RL, Uriarte Huarte O, Tansey MG. Progranulin and GPNMB: interactions in endo-lysosome function and inflammation in neurodegenerative disease. J Neuroinflammation 2023; 20:286. [PMID: 38037070 PMCID: PMC10688479 DOI: 10.1186/s12974-023-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.
Collapse
Affiliation(s)
- Drew A Gillett
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Tang L, Xu N, Huang M, Yi W, Sang X, Shao M, Li Y, Hao ZZ, Liu R, Shen Y, Yue F, Liu X, Xu C, Liu S. A primate nigrostriatal atlas of neuronal vulnerability and resilience in a model of Parkinson's disease. Nat Commun 2023; 14:7497. [PMID: 37980356 PMCID: PMC10657376 DOI: 10.1038/s41467-023-43213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
The degenerative process in Parkinson's disease (PD) causes a progressive loss of dopaminergic neurons (DaNs) in the nigrostriatal system. Resolving the differences in neuronal susceptibility warrants an amenable PD model that, in comparison to post-mortem human specimens, controls for environmental and genetic differences in PD pathogenesis. Here we generated high-quality profiles for 250,173 cells from the substantia nigra (SN) and putamen (PT) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian macaques and matched controls. Our primate model of parkinsonism recapitulates important pathologic features in nature PD and provides an unbiased view of the axis of neuronal vulnerability and resistance. We identified seven molecularly defined subtypes of nigral DaNs which manifested a gradient of vulnerability and were confirmed by fluorescence-activated nuclei sorting. Neuronal resilience was associated with a FOXP2-centered regulatory pathway shared between PD-resistant DaNs and glutamatergic excitatory neurons, as well as between humans and nonhuman primates. We also discovered activation of immune response common to glial cells of SN and PT, indicating concurrently activated pathways in the nigrostriatal system. Our study provides a unique resource to understand the mechanistic connections between neuronal susceptibility and PD pathophysiology, and to facilitate future biomarker discovery and targeted cell therapy.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingting Shao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ye Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Yue
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, 570228, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
31
|
Diaz-Ortiz ME, Jain N, Gallagher MD, Posavi M, Unger TL, Chen-Plotkin AS. Testing for Allele-specific Expression from Human Brain Samples. Bio Protoc 2023; 13:e4832. [PMID: 37817908 PMCID: PMC10560631 DOI: 10.21769/bioprotoc.4832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 10/12/2023] Open
Abstract
Many single nucleotide polymorphisms (SNPs) identified by genome-wide association studies exert their effects on disease risk as expression quantitative trait loci (eQTL) via allele-specific expression (ASE). While databases for probing eQTLs in tissues from normal individuals exist, one may wish to ascertain eQTLs or ASE in specific tissues or disease-states not characterized in these databases. Here, we present a protocol to assess ASE of two possible target genes (GPNMB and KLHL7) of a known genome-wide association study (GWAS) Parkinson's disease (PD) risk locus in postmortem human brain tissue from PD and neurologically normal individuals. This was done using a sequence of RNA isolation, cDNA library generation, enrichment for transcripts of interest using customizable cDNA capture probes, paired-end RNA sequencing, and subsequent analysis. This method provides increased sensitivity relative to traditional bulk RNAseq-based and a blueprint that can be extended to the study of other genes, tissues, and disease states. Key features • Analysis of GPNMB allele-specific expression (ASE) in brain lysates from cognitively normal controls (NC) and Parkinson's disease (PD) individuals. • Builds on the ASE protocol of Mayba et al. (2014) and extends application from cells to human tissue. • Increased sensitivity by enrichment for desired transcript via RNA CaptureSeq (Mercer et al., 2014). • Optimized for human brain lysates from cingulate gyrus, caudate nucleus, and cerebellum.
Collapse
Affiliation(s)
- Maria E Diaz-Ortiz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nimansha Jain
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO, USA
| | | | - Marijan Posavi
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Travis L Unger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Wan L, Fu Y, Chen Z, Long Z, Chen D, Yuan X, Zhu S, Peng L, Liu W, Qiu R, Tang B, Jiang H. No Correlation between Plasma GPNMB Levels and Multiple System Atrophy in Chinese Cohorts. Mov Disord 2023; 38:1956-1961. [PMID: 37497669 DOI: 10.1002/mds.29566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Glycoprotein nonmetastatic melanoma protein B (GPNMB) has been demonstrated to mediate pathogenicity in Parkinson's disease (PD) through interactions with α-synuclein, and plasma GPNMB tended to be a novel biomarker for PD. OBJECTIVE The goal of this study was to investigate whether plasma GPNMB could act as a potential biomarker for the clinical diagnosis and severity monitoring of multiple system atrophy (MSA), another typical synucleinopathy. METHODS Plasma GPNMB levels in patients with MSA, patients with PD, and healthy control subjects (HCs) were quantified using enzyme-linked immunosorbent assays. RESULTS A total of 204 patients with MSA, 65 patients with PD, and 207 HCs were enrolled. The plasma GPNMB levels in patients with MSA were similar to those in HCs (P = 0.251) but were significantly lower than those in patients with PD (P = 0.003). Moreover, there was no significant correlation detected between the plasma GPNMB levels and disease severity scores of patients with MSA. CONCLUSIONS No evidence was detected for the biomarker potential of plasma GPNMB in MSA. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - You Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daji Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinrong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wuping Liu
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
33
|
Nazish I, Mamais A, Mallach A, Bettencourt C, Kaganovich A, Warner T, Hardy J, Lewis PA, Pocock J, Cookson MR, Bandopadhyay R. Differential LRRK2 signalling and gene expression in WT-LRRK2 and G2019S-LRRK2 mouse microglia treated with zymosan and MLi2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557532. [PMID: 37745519 PMCID: PMC10515904 DOI: 10.1101/2023.09.14.557532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Introduction Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene cause autosomal dominant Parkinson's disease (PD) with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggest involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4 resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. Methods Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-Sequencing analysis. Results We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate Genome-Wide Association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated respectively with zymosan treatment while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. Discussion Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis.
Collapse
Affiliation(s)
- Iqra Nazish
- Reta Lila Weston Institute of Neurological Studies and Department of movement neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ
| | - Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Anna Mallach
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, WC1N 1PJ, UK
| | | | | | - Tom Warner
- Reta Lila Weston Institute of Neurological Studies and Department of movement neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ
| | - John Hardy
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology
| | - Patrick A. Lewis
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology
- Royal Veterinary College, University of London
| | - Jennifer Pocock
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, WC1N 1PJ, UK
| | - Mark R Cookson
- Cell Biology and Gene Expression section, NIA, Maryland, USA
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of movement neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ
| |
Collapse
|
34
|
Chen YC, Liaw YC, Nfor ON, Hsiao CH, Zhong JH, Wu SL, Liaw YP. Epigenetic regulation of Parkinson's disease risk variant GPNMB cg17274742 methylation by sex and exercise from Taiwan Biobank. Front Aging Neurosci 2023; 15:1235840. [PMID: 37744396 PMCID: PMC10513104 DOI: 10.3389/fnagi.2023.1235840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Parkinson's disease (PD) is a complex neurodegenerative disease with an elusive etiology that involves the interaction between genetic, behavioral, and environmental factors. Recently, epigenetic modifications, particularly DNA methylation, have been recognized to play an important role in the onset of PD. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane protein crucial for immune cell activation and maturation, has emerged as a potential biomarker for the risk of PD. This research aims to investigate the influence of exercise and gender on the regulation of methylation levels of GPNMB cg17274742 in individuals. Methods We analyze data from 2,474 participants in the Taiwan Biobank, collected from 2008 and 2016. Methylation levels at the GPNMB cg17274742 CpG site were measured using Illumina Infinium MethylationEPIC beads. After excluding individuals with incomplete data or missing information on possible risk factors, our final analysis included 1,442 participants. We used multiple linear regression models to assess the association between sex and exercise with adjusted levels of GPNMB cg17274742 for age, BMI, smoking, drinking, coffee consumption, serum uric acid levels, and hypertension. Results Our results demonstrated that exercise significantly influenced the methylation levels of GPNMB cg17274742 in males (β = -0.00242; p = 0.0026), but not in females (β = -0.00002362; p = 0.9785). Furthermore, male participants who exercised showed significantly lower levels of methylation compared to the reference groups of the female and non-exercising reference groups (β = -0.00357; p = 0.0079). The effect of the interaction between gender and exercise on the methylation of GPNMB cg17274742 was statistically significant (p = 0.0078). Conclusion This study suggests that gender and exercise can modulate GPNMB cg17274742, with hypomethylation observed in exercise men. More research is needed to understand the underlying mechanisms and implications of these epigenetic changes in the context of risk and prevention strategies.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Chia Liaw
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Hsuan Hsiao
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ji-Han Zhong
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, Changhua National University of Education, Changhua, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
Duran-Castells C, Prats A, Oriol-Tordera B, Llano A, Galvez C, Martinez-Picado J, Ballana E, Garcia-Vidal E, Clotet B, Muñoz-Moreno JA, Hanke T, Moltó J, Mothe B, Brander C, Ruiz-Riol M. Plasma proteomic profiling identifies CD33 as a marker of HIV control in natural infection and after therapeutic vaccination. EBioMedicine 2023; 95:104732. [PMID: 37506557 PMCID: PMC10410179 DOI: 10.1016/j.ebiom.2023.104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Biomarkers predicting the outcome of HIV-1 virus control in natural infection and after therapeutic interventions in HIV-1 cure trials remain poorly defined. The BCN02 trial (NCT02616874), combined a T-cell vaccine with romidepsin (RMD), a cancer-drug that was used to promote HIV-1 latency reversal and which has also been shown to have beneficial effects on neurofunction. We conducted longitudinal plasma proteomics analyses in trial participants to define biomarkers associated with virus control during monitored antiretroviral pause (MAP) and to identify novel therapeutic targets that can improve future cure strategies. METHODS BCN02 was a phase I, open-label, single-arm clinical trial in early-treated, HIV infected individuals. Longitudinal plasma proteomes were analyzed in 11 BCN02 participants, including 8 participants that showed a rapid HIV-1 plasma rebound during a monitored antiretroviral pause (MAP-NC, 'non-controllers') and 3 that remained off ART with sustained plasma viremia <2000 copies/ml (MAP-C, 'controllers'). Inflammatory and neurological proteomes in plasma were evaluated and integration data analysis (viral and neurocognitive parameters) was performed. Validation studies were conducted in a cohort of untreated HIV-1+ individuals (n = 96) and in vitro viral replication assays using an anti-CD33 antibody were used for functional validation. FINDINGS Inflammatory plasma proteomes in BCN02 participants showed marked longitudinal alterations. Strong proteome differences were also observed between MAP-C and MAP-NC, including in baseline timepoints. CD33/Siglec-3 was the unique plasma marker with the ability to discriminate between MAPC-C and MAP-NC at all study timepoints and showed positive correlations with viral parameters. Analyses in an untreated cohort of PLWH confirmed the positive correlation between viral parameters and CD33 plasma levels, as well as PBMC gene expression. Finally, adding an anti-CD33 antibody to in vitro virus cultures significantly reduced HIV-1 replication and proviral levels in T cells and macrophages. INTERPRETATION This study indicates that CD33/Siglec-3 may serve as a predictor of HIV-1 control and as potential therapeutic tool to improve future cure strategies. FUNDING Spanish Science and Innovation Ministry (SAF2017-89726-R and PID2020-119710RB-I00), NIH (P01-AI131568), European Commission (GA101057548) and a Grifols research agreement.
Collapse
Affiliation(s)
- Clara Duran-Castells
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Universitat Autònoma de Barcelona, Spain
| | - Anna Prats
- Fight Infections Foundation and Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Bruna Oriol-Tordera
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Universitat Autònoma de Barcelona, Spain
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Cristina Galvez
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; Catalan Institution for Research Advanced Studies (ICREA), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Edurne Garcia-Vidal
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Fight Infections Foundation and Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Jose A Muñoz-Moreno
- Fight Infections Foundation and Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Faculty of Psychology and Education Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Thomas Hanke
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - José Moltó
- Fight Infections Foundation and Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Fight Infections Foundation and Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Universitat Autònoma de Barcelona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; Catalan Institution for Research Advanced Studies (ICREA), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| |
Collapse
|
36
|
Duffy MF, Ding J, Langston RG, Shah SI, Nalls MA, Scholz SW, Whitaker DT, Auluck PK, Marenco S, Gibbs JR, Cookson MR. Divergent patterns of healthy aging across human brain regions at single-cell resolution reveal links to neurodegenerative disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551097. [PMID: 37577533 PMCID: PMC10418086 DOI: 10.1101/2023.07.31.551097] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell. In this study, we leveraged single nucleus RNA-sequencing (snRNAseq) to examine changes in cell proportions and transcriptomes in four different brain regions, each from 12 donors aged 20-30 years (young) or 60-85 years (old). We sampled 155,192 nuclei from two cortical regions (entorhinal cortex and middle temporal gyrus) and two subcortical regions (putamen and subventricular zone) relevant to neurodegenerative diseases or the proliferative niche. We found no changes in cellular composition of different brain regions with healthy aging. Surprisingly, we did find that each brain region has a distinct aging signature, with only minor overlap in differentially associated genes across regions. Moreover, each cell type shows distinct age-associated expression changes, including loss of protein synthesis genes in cortical inhibitory neurons, axonogenesis genes in excitatory neurons and oligodendrocyte precursor cells, enhanced gliosis markers in astrocytes and disease-associated markers in microglia, and genes critical for neuron-glia communication. Importantly, we find cell type-specific enrichments of age associations with genes nominated by Alzheimer's disease and Parkinson's disease genome-wide association studies (GWAS), such as apolipoprotein E (APOE), and leucine-rich repeat kinase 2 (LRRK2) in microglia that are independent of overall expression levels across cell types. We present this data as a new resource which highlights, first, region- and cell type-specific transcriptomic changes in healthy aging that may contribute to selective vulnerability and, second, provide context for testing GWAS-nominated disease risk genes in relevant subtypes and developing more targeted therapeutic strategies. The data is readily accessible without requirement for extensive computational support in a public website, https://brainexp-hykyffa56a-uc.a.run.app/.
Collapse
Affiliation(s)
- Megan F. Duffy
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Rebekah G. Langston
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Syed I. Shah
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Mike A. Nalls
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - D. Thad Whitaker
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Pavan K. Auluck
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Stefano Marenco
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| |
Collapse
|
37
|
Gorecki AM, Spencer H, Meloni BP, Anderton RS. The Poly-Arginine Peptide R18D Interferes with the Internalisation of α-Synuclein Pre-Formed Fibrils in STC-1 Enteroendocrine Cells. Biomedicines 2023; 11:2089. [PMID: 37626586 PMCID: PMC10452853 DOI: 10.3390/biomedicines11082089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
In Parkinson's disease (PD), gut inflammation is hypothesised to contribute to α-synuclein aggregation, but gastrointestinal α-synuclein expression is poorly characterised. Cationic arginine-rich peptides (CARPs) are an emerging therapeutic option that exerts various neuroprotective effects and may target the transmission of protein aggregates. This study aimed to investigate endogenous α-synuclein expression in enteroendocrine STC-1 cells and the potential of the CARP, R18D (18-mer of D-arginine), to prevent internalisation of pre-formed α-synuclein fibrils (PFFs) in enteroendocrine cells in vitro. Through confocal microscopy, the immunoreactivity of full-length α-synuclein and the serine-129 phosphorylated form (pS129) was investigated in STC-1 (mouse enteroendocrine) cells. Thereafter, STC-1 cells were exposed to PFFs tagged with Alexa-Fluor 488 (PFF-488) for 2 and 24 h and R18D-FITC for 10 min. After confirming the uptake of both PFFs and R18D-FITC through fluorescent microscopy, STC-1 cells were pre-treated with R18D (5 or 10 μM) for 10 min prior to 2 h of PFF-488 exposure. Immunoreactivity for endogenous α-synuclein and pS129 was evident in STC-1 cells, with prominent pS129 staining along cytoplasmic processes and in perinuclear areas. STC-1 cells internalised PFFs, confirmed through co-localisation of PFF-488 and human-specific α-synuclein immunoreactivity. R18D-FITC entered STC-1 cells within 10 min and pre-treatment of STC-1 cells with R18D interfered with PFF uptake. The endogenous presence of α-synuclein in enteroendocrine cells, coupled with their rapid uptake of PFFs, demonstrates a potential for pathogenic spread of α-synuclein aggregates in the gut. R18D is a novel therapeutic approach to reduce the intercellular transmission of α-synuclein pathology.
Collapse
Affiliation(s)
- Anastazja M. Gorecki
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia; (H.S.)
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Holly Spencer
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia; (H.S.)
| | - Bruno P. Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, First Floor, G-Block, QEII Medical Centre, Nedlands, WA 6008, Australia
| | - Ryan S. Anderton
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia; (H.S.)
| |
Collapse
|
38
|
Wang L, Zhou C, Zhang W, Zhang M, Cheng W, Feng J. Association of Cortical and Subcortical Microstructure With Clinical Progression and Fluid Biomarkers in Patients With Parkinson Disease. Neurology 2023; 101:e300-e310. [PMID: 37202161 PMCID: PMC10382272 DOI: 10.1212/wnl.0000000000207408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/28/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Mean diffusivity (MD) of diffusion MRI (dMRI) has been used to measure cortical and subcortical microstructural properties. This study investigated relationships of cortical and subcortical MD, clinical progression, and fluid biomarkers in Parkinson disease (PD). METHODS This longitudinal study using data from the Parkinson's Progression Markers Initiative was collected from April 2011 to July 2022. Clinical symptoms were assessed with Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (UPDRS) and Montreal Cognitive Assessment (MoCA) scores. Clinical assessments were followed up to 5 years. Linear mixed-effects (LME) models were performed to examine associations of MD and the annual rate of changes in clinical scores. Partial correlation analysis was conducted to examine the associations of MD and fluid biomarker levels. RESULTS A total of 174 patients with PD (age 61.9 ± 9.7 years, 63% male) with baseline dMRI and at least 2 years of clinical follow-up were included. Results of LME models revealed a significant association between MD values, predominantly in subcortical regions, temporal lobe, occipital lobe, and frontal lobe, and annual rate of changes in clinical scores (UPDRS-Part-I, standardized β > 2.35; UPDRS-Part-II, standardized β > 2.34; postural instability and gait disorder score, standardized β > 2.47; MoCA, standardized β < -2.42; all p < 0.05, false discovery rate [FDR] corrected). In addition, MD was associated with the levels of neurofilament light chain in serum (r > 0.22) and α-synuclein (right putamen r = 0.31), β-amyloid 1-42 (left hippocampus r = -0.30), phosphorylated tau at 181 threonine position (r > 0.26), and total tau (r > 0.23) in CSF at baseline (all p < 0.05, FDR corrected). Furthermore, the β coefficients derived from MD and annual rate of changes in the clinical score recapitulated the spatial distribution of dopamine (DAT, D1, and D2), glutamate (mGluR5 and NMDA), serotonin (5-HT1a and 5-HT2a), cannabinoid (CB1), and γ-amino butyric acid A receptor neurotransmitter receptors/transporters (p < 0.05, FDR corrected) derived from PET scans in the brain of healthy volunteers. DISCUSSION In this cohort study, cortical and subcortical MD values at baseline were associated with clinical progression and baseline fluid biomarkers, suggesting that microstructural properties could be useful for stratification of patients with fast clinical progression.
Collapse
Affiliation(s)
- Linbo Wang
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Cheng Zhou
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Wei Zhang
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Minming Zhang
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Wei Cheng
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Jianfeng Feng
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
39
|
Alvarado CX, Makarious MB, Weller CA, Vitale D, Koretsky MJ, Bandres-Ciga S, Iwaki H, Levine K, Singleton A, Faghri F, Nalls MA, Leonard HL. omicSynth: an Open Multi-omic Community Resource for Identifying Druggable Targets across Neurodegenerative Diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.06.23288266. [PMID: 37090611 PMCID: PMC10120805 DOI: 10.1101/2023.04.06.23288266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Treatments for neurodegenerative disorders remain rare, although recent FDA approvals, such as Lecanemab and Aducanumab for Alzheimer's Disease, highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use Summary-data-based Mendelian Randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer's disease, 3 amyotrophic lateral sclerosis, 5 Lewy body dementia, 46 Parkinson's disease, and 9 Progressive supranuclear palsy target genes passing multiple test corrections (pSMR_multi < 2.95×10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics - classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these 69.8% are expressed in the disease relevant cell type from single nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as Riluzole in AD. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community [https://nih-card-ndd-smr-home-syboky.streamlit.app/].
Collapse
Affiliation(s)
- Chelsea X. Alvarado
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK, WC1N 3BG
- UCL Movement Disorders Centre, University College London, London, UK, WC1N 3BG
| | - Cory A. Weller
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Dan Vitale
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Kristin Levine
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Faraz Faghri
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
40
|
Androvic P, Schifferer M, Perez Anderson K, Cantuti-Castelvetri L, Jiang H, Ji H, Liu L, Gouna G, Berghoff SA, Besson-Girard S, Knoferle J, Simons M, Gokce O. Spatial Transcriptomics-correlated Electron Microscopy maps transcriptional and ultrastructural responses to brain injury. Nat Commun 2023; 14:4115. [PMID: 37433806 DOI: 10.1038/s41467-023-39447-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Understanding the complexity of cellular function within a tissue necessitates the combination of multiple phenotypic readouts. Here, we developed a method that links spatially-resolved gene expression of single cells with their ultrastructural morphology by integrating multiplexed error-robust fluorescence in situ hybridization (MERFISH) and large area volume electron microscopy (EM) on adjacent tissue sections. Using this method, we characterized in situ ultrastructural and transcriptional responses of glial cells and infiltrating T-cells after demyelinating brain injury in male mice. We identified a population of lipid-loaded "foamy" microglia located in the center of remyelinating lesion, as well as rare interferon-responsive microglia, oligodendrocytes, and astrocytes that co-localized with T-cells. We validated our findings using immunocytochemistry and lipid staining-coupled single-cell RNA sequencing. Finally, by integrating these datasets, we detected correlations between full-transcriptome gene expression and ultrastructural features of microglia. Our results offer an integrative view of the spatial, ultrastructural, and transcriptional reorganization of single cells after demyelinating brain injury.
Collapse
Affiliation(s)
- Peter Androvic
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Katrin Perez Anderson
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ludovico Cantuti-Castelvetri
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Hanyi Jiang
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Hao Ji
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lu Liu
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Garyfallia Gouna
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Stefan A Berghoff
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Johanna Knoferle
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Mikael Simons
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
41
|
Phillips B, Western D, Wang L, Timsina J, Sun Y, Gorijala P, Yang C, Do A, Nykänen NP, Alvarez I, Aguilar M, Pastor P, Morris JC, Schindler SE, Fagan AM, Puerta R, García-González P, de Rojas I, Marquié M, Boada M, Ruiz A, Perlmutter JS, Ibanez L, Perrin RJ, Sung YJ, Cruchaga C. Proteome wide association studies of LRRK2 variants identify novel causal and druggable proteins for Parkinson's disease. NPJ Parkinsons Dis 2023; 9:107. [PMID: 37422510 PMCID: PMC10329646 DOI: 10.1038/s41531-023-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Common and rare variants in the LRRK2 locus are associated with Parkinson's disease (PD) risk, but the downstream effects of these variants on protein levels remain unknown. We performed comprehensive proteogenomic analyses using the largest aptamer-based CSF proteomics study to date (7006 aptamers (6138 unique proteins) in 3107 individuals). The dataset comprised six different and independent cohorts (five using the SomaScan7K (ADNI, DIAN, MAP, Barcelona-1 (Pau), and Fundació ACE (Ruiz)) and the PPMI cohort using the SomaScan5K panel). We identified eleven independent SNPs in the LRRK2 locus associated with the levels of 25 proteins as well as PD risk. Of these, only eleven proteins have been previously associated with PD risk (e.g., GRN or GPNMB). Proteome-wide association study (PWAS) analyses suggested that the levels of ten of those proteins were genetically correlated with PD risk, and seven were validated in the PPMI cohort. Mendelian randomization analyses identified GPNMB, LCT, and CD68 causal for PD and nominate one more (ITGB2). These 25 proteins were enriched for microglia-specific proteins and trafficking pathways (both lysosome and intracellular). This study not only demonstrates that protein phenome-wide association studies (PheWAS) and trans-protein quantitative trail loci (pQTL) analyses are powerful for identifying novel protein interactions in an unbiased manner, but also that LRRK2 is linked with the regulation of PD-associated proteins that are enriched in microglial cells and specific lysosomal pathways.
Collapse
Affiliation(s)
- Bridget Phillips
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yichen Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anh Do
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - Niko-Petteri Nykänen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - John C Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anne M Fagan
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustin Ruiz
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Joel S Perlmutter
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Richard J Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
42
|
Qu J, Liu N, Gao L, Hu J, Sun M, Yu D. Development of CRISPR Cas9, spin-off technologies and their application in model construction and potential therapeutic methods of Parkinson's disease. Front Neurosci 2023; 17:1223747. [PMID: 37483347 PMCID: PMC10359996 DOI: 10.3389/fnins.2023.1223747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common degenerative diseases. It is most typically characterized by neuronal death following the accumulation of Lewis inclusions in dopaminergic neurons in the substantia nigra region, with clinical symptoms such as motor retardation, autonomic dysfunction, and dystonia spasms. The exact molecular mechanism of its pathogenesis has not been revealed up to now. And there is a lack of effective treatments for PD, which places a burden on patients, families, and society. CRISPR Cas9 is a powerful technology to modify target genomic sequence with rapid development. More and more scientists utilized this technique to perform research associated neurodegenerative disease including PD. However, the complexity involved makes it urgent to organize and summarize the existing findings to facilitate a clearer understanding. In this review, we described the development of CRISPR Cas9 technology and the latest spin-off gene editing systems. Then we focused on the application of CRISPR Cas9 technology in PD research, summarizing the construction of the novel PD-related medical models including cellular models, small animal models, large mammal models. We also discussed new directions and target molecules related to the use of CRISPR Cas9 for PD treatment from the above models. Finally, we proposed the view about the directions for the development and optimization of the CRISPR Cas9 technology system, and its application to PD and gene therapy in the future. All these results provided a valuable reference and enhanced in understanding for studying PD.
Collapse
Affiliation(s)
- Jiangbo Qu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Na Liu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Lu Gao
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Jia Hu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
43
|
Mi X, Chen L, Xie J, Song N. Linking Genetic Risks to Pathological α-Synuclein Transmission in Parkinson's Disease. Neurosci Bull 2023; 39:1186-1188. [PMID: 36737591 PMCID: PMC10313604 DOI: 10.1007/s12264-023-01031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/19/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiaoqing Mi
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Ning Song
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
44
|
Hu WT, Nayyar A, Kaluzova M. Charting the Next Road Map for CSF Biomarkers in Alzheimer's Disease and Related Dementias. Neurotherapeutics 2023; 20:955-974. [PMID: 37378862 PMCID: PMC10457281 DOI: 10.1007/s13311-023-01370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical prediction of underlying pathologic substrates in people with Alzheimer's disease (AD) dementia or related dementia syndromes (ADRD) has limited accuracy. Etiologic biomarkers - including cerebrospinal fluid (CSF) levels of AD proteins and cerebral amyloid PET imaging - have greatly modernized disease-modifying clinical trials in AD, but their integration into medical practice has been slow. Beyond core CSF AD biomarkers (including beta-amyloid 1-42, total tau, and tau phosphorylated at threonine 181), novel biomarkers have been interrogated in single- and multi-centered studies with uneven rigor. Here, we review early expectations for ideal AD/ADRD biomarkers, assess these goals' future applicability, and propose study designs and performance thresholds for meeting these ideals with a focus on CSF biomarkers. We further propose three new characteristics: equity (oversampling of diverse populations in the design and testing of biomarkers), access (reasonable availability to 80% of people at risk for disease, along with pre- and post-biomarker processes), and reliability (thorough evaluation of pre-analytical and analytical factors influencing measurements and performance). Finally, we urge biomarker scientists to balance the desire and evidence for a biomarker to reflect its namesake function, indulge data- as well as theory-driven associations, re-visit the subset of rigorously measured CSF biomarkers in large datasets (such as Alzheimer's disease neuroimaging initiative), and resist the temptation to favor ease over fail-safe in the development phase. This shift from discovery to application, and from suspended disbelief to cogent ingenuity, should allow the AD/ADRD biomarker field to live up to its billing during the next phase of neurodegenerative disease research.
Collapse
Affiliation(s)
- William T Hu
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA.
- Center for Innovation in Health and Aging Research, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Ashima Nayyar
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA
| | - Milota Kaluzova
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA
| |
Collapse
|
45
|
Schonhoff AM, Figge DA, Williams GP, Jurkuvenaite A, Gallups NJ, Childers GM, Webster JM, Standaert DG, Goldman JE, Harms AS. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease. Nat Commun 2023; 14:3754. [PMID: 37365181 PMCID: PMC10293214 DOI: 10.1038/s41467-023-39060-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Dopaminergic cell loss due to the accumulation of α-syn is a core feature of the pathogenesis of Parkinson disease. Neuroinflammation specifically induced by α-synuclein has been shown to exacerbate neurodegeneration, yet the role of central nervous system (CNS) resident macrophages in this process remains unclear. We found that a specific subset of CNS resident macrophages, border-associated macrophages (BAMs), play an essential role in mediating α-synuclein related neuroinflammation due to their unique role as the antigen presenting cells necessary to initiate a CD4 T cell response whereas the loss of MHCII antigen presentation on microglia had no effect on neuroinflammation. Furthermore, α-synuclein expression led to an expansion in border-associated macrophage numbers and a unique damage-associated activation state. Through a combinatorial approach of single-cell RNA sequencing and depletion experiments, we found that border-associated macrophages played an essential role in immune cell recruitment, infiltration, and antigen presentation. Furthermore, border-associated macrophages were identified in post-mortem PD brain in close proximity to T cells. These results point to a role for border-associated macrophages in mediating the pathogenesis of Parkinson disease through their role in the orchestration of the α-synuclein-mediated neuroinflammatory response.
Collapse
Affiliation(s)
- A M Schonhoff
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D A Figge
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - G P Williams
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A Jurkuvenaite
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - N J Gallups
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - G M Childers
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J M Webster
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D G Standaert
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J E Goldman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - A S Harms
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
46
|
Carceles-Cordon M, Weintraub D, Chen-Plotkin AS. Cognitive heterogeneity in Parkinson's disease: A mechanistic view. Neuron 2023; 111:1531-1546. [PMID: 37028431 PMCID: PMC10198897 DOI: 10.1016/j.neuron.2023.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023]
Abstract
Cognitive impairment occurs in most individuals with Parkinson's disease (PD), exacting a high toll on patients, their caregivers, and the healthcare system. In this review, we begin by summarizing the current clinical landscape surrounding cognition in PD. We then discuss how cognitive impairment and dementia may develop in PD based on the spread of the pathological protein alpha-synuclein (aSyn) from neurons in brainstem regions to those in the cortical regions of the brain responsible for higher cognitive functions, as first proposed in the Braak hypothesis. We appraise the Braak hypothesis from molecular (conformations of aSyn), cell biological (cell-to-cell spread of pathological aSyn), and organ-level (region-to-region spread of aSyn pathology at the whole brain level) viewpoints. Finally, we argue that individual host factors may be the most poorly understood aspect of this pathological process, accounting for substantial heterogeneity in the pattern and pace of cognitive decline in PD.
Collapse
Affiliation(s)
- Marc Carceles-Cordon
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
García-Marín LM, Reyes-Pérez P, Diaz-Torres S, Medina-Rivera A, Martin NG, Mitchell BL, Rentería ME. Shared molecular genetic factors influence subcortical brain morphometry and Parkinson's disease risk. NPJ Parkinsons Dis 2023; 9:73. [PMID: 37164954 PMCID: PMC10172359 DOI: 10.1038/s41531-023-00515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
Parkinson's disease (PD) is a late-onset and genetically complex neurodegenerative disorder. Here we sought to identify genes and molecular pathways underlying the associations between PD and the volume of ten brain structures measured through magnetic resonance imaging (MRI) scans. We leveraged genome-wide genetic data from several cohorts, including the International Parkinson's Disease Genomics Consortium (IPDG), the UK Biobank, the Adolescent Brain Cognitive Development (ABCD) study, the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), the Enhancing Neuroimaging Genetics through Meta-Analyses (ENIGMA), and 23andMe. We observed significant positive genetic correlations between PD and intracranial and subcortical brain volumes. Genome-wide association studies (GWAS) - pairwise analyses identified 210 genomic segments with shared aetiology between PD and at least one of these brain structures. Pathway enrichment results highlight potential links with chronic inflammation, the hypothalamic-pituitary-adrenal pathway, mitophagy, disrupted vesicle-trafficking, calcium-dependent, and autophagic pathways. Investigations for putative causal genetic effects suggest that a larger putamen volume could influence PD risk, independently of the potential causal genetic effects of intracranial volume (ICV) on PD. Our findings suggest that genetic variants influencing larger intracranial and subcortical brain volumes, possibly during earlier stages of life, influence the risk of developing PD later in life.
Collapse
Affiliation(s)
- Luis M García-Marín
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Laboratorio Internacional de Investigación del Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México.
| | - Paula Reyes-Pérez
- Laboratorio Internacional de Investigación del Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Santiago Diaz-Torres
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación del Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Nicholas G Martin
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Brittany L Mitchell
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Ge YJ, Ou YN, Deng YT, Wu BS, Yang L, Zhang YR, Chen SD, Huang YY, Dong Q, Tan L, Yu JT. Prioritization of Drug Targets for Neurodegenerative Diseases by Integrating Genetic and Proteomic Data From Brain and Blood. Biol Psychiatry 2023; 93:770-779. [PMID: 36759259 DOI: 10.1016/j.biopsych.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neurodegenerative diseases are among the most prevalent and devastating neurological disorders, with few effective prevention and treatment strategies. We aimed to integrate genetic and proteomic data to prioritize drug targets for neurodegenerative diseases. METHODS We screened human proteomes through Mendelian randomization to identify causal mediators of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, frontotemporal dementia, and Lewy body dementia. For instruments, we used brain and blood protein quantitative trait loci identified from one genome-wide association study with 376 participants and another with 3301 participants, respectively. Causal associations were subsequently validated by sensitivity analyses and colocalization. The safety and druggability of identified targets were also evaluated. RESULTS Our analyses showed targeting BIN1, GRN, and RET levels in blood as well as ACE, ICA1L, MAP1S, SLC20A2, and TOM1L2 levels in brain might reduce Alzheimer's disease risk, while ICA1L, SLC20A2, and TOM1L2 were not recommended as prioritized drugs due to the identified potential side effects. Brain CD38, DGKQ, GPNMB, and SEC23IP were candidate targets for Parkinson's disease. Among them, GPNMB was the most promising target for Parkinson's disease with their causal relationship evidenced by studies on both brain and blood tissues. Interventions targeting FCRL3, LMAN2, and MAPK3 in blood and DHRS11, FAM120B, SHMT1, and TSFM in brain might affect multiple sclerosis risk. The risk of amyotrophic lateral sclerosis might be reduced by medications targeting DHRS11, PSMB3, SARM1, and SCFD1 in brain. CONCLUSIONS Our study prioritized 22 proteins as targets for neurodegenerative diseases and provided preliminary evidence for drug development. Further studies are warranted to validate these targets.
Collapse
Affiliation(s)
- Yi-Jun Ge
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yue-Ting Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Emerson NE, Swarup V. Proteomic Data Advance Targeted Drug Development for Neurogenerative Diseases. Biol Psychiatry 2023; 93:754-755. [PMID: 37045511 PMCID: PMC10309651 DOI: 10.1016/j.biopsych.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Nora E Emerson
- Department of Neurobiology and Behavior and the Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, California
| | - Vivek Swarup
- Department of Neurobiology and Behavior and the Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, California.
| |
Collapse
|
50
|
Khrunin AV, Khvorykh GV, Arapova AS, Kulinskaya AE, Koltsova EA, Petrova EA, Kimelfeld EI, Limborska SA. The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. Int J Mol Sci 2023; 24:ijms24076831. [PMID: 37047799 PMCID: PMC10095190 DOI: 10.3390/ijms24076831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
To date, there has been great progress in understanding the genetic basis of ischemic stroke (IS); however, several aspects of the condition remain underexplored, including the influence of genetic factors on post-stroke outcomes and the identification of causative loci. We proposed that an analysis of the results obtained from animal models of brain ischemia could be helpful. To this end, we developed a bioinformatic approach for exploring single-nucleotide polymorphisms (SNPs) in human orthologs of rat genes expressed differentially after induced brain ischemia. Using this approach, we identified and analyzed 11 SNPs from 6 genes in 553 Russian individuals (331 patients with IS and 222 controls). We assessed the association of SNPs with the risk of IS and IS outcomes. We found that the SNPs rs858239 (GPNMB), rs907611 (LSP1), and rs494356 (TAGLN) were associated with different parameters of IS functional outcomes. In addition, the SNP rs1261025 (PDPN) was associated significantly with IS itself (p = 0.0188, recessive model). All these associations were demonstrated for the first time. Analysis of the literature suggests that they should be characterized as being inflammation related. This supports the pivotal role of inflammation in both the incidence of stroke and post-stroke outcomes. We believe the findings reported here will help with stroke prognosis in the future.
Collapse
Affiliation(s)
- Andrey V. Khrunin
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Gennady V. Khvorykh
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Anna S. Arapova
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Anna E. Kulinskaya
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Evgeniya A. Koltsova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Elizaveta A. Petrova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ekaterina I. Kimelfeld
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Svetlana A. Limborska
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|