1
|
Ma J, Shah R, Bell AC, McDermott N, Pei X, Selenica P, Haseltine J, Delsite R, Khan AJ, Lok BH, Ellis MJ, Aft RF, Setton J, Reis-Filho JS, Riaz N, Powell SN. Increased Synthetic Cytotoxicity of Combinatorial Chemoradiation Therapy in Homologous Recombination Deficient Tumors. Int J Radiat Oncol Biol Phys 2025; 121:768-779. [PMID: 38997095 PMCID: PMC11717987 DOI: 10.1016/j.ijrobp.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Homologous recombination deficient (HRD) tumors are exquisitely sensitive to platinum-based chemotherapy and when combined with radiation therapy (RT), leads to improved overall survival in multiple cancer types. Whether a subset of tumors with distinct molecular characteristics demonstrate increased benefit from cisplatin and RT (c-RT) is unclear. We hypothesized that HRD tumors, whether associated with BRCA mutations or genomic scars of HRD, exhibit exquisite sensitivity to c-RT, and that HRD may be a significant driver of c-RT benefit. METHODS AND MATERIALS Sensitivity to c-RT was examined using isogenic and sporadic breast cancer cell lines. HRD was assessed using 4 assays: RT-induced Rad51 foci, a DR-GFP reporter assay, a genomic scar score (large-scale state transitions [LST]), and clonogenic survival assays. Whole-genome sequencing of 4 breast tumors from a phase 2 clinical trial of neoadjuvant c-RT in triple-negative breast cancer was performed and HRD was defined using HRDetect. RESULTS BRCA1/2 deficient cell lines displayed functional HRD based on the Rad51 functional assay, with c-RT to RT or cisplatin interaction ratios (IR) of 1.11 and 26.84 for the BRCA1 isogenic pair at 2 μM cisplatin and 6 Gy, respectively. The highest LST lines demonstrated HRD and synthetic cytotoxicity to c-RT with IR at 2 Gy and cisplatin 20 μM of 7.50, and the lowest LST line with IR of 0.65. Of 4 evaluable patients in the phase 2 trial, one achieved a pathologic complete response with corresponding HRD based on multiple genomic scar scores including HRDetect and LST scores, compared with patients without a pathologic complete response. CONCLUSIONS HRD breast cancers, whether identified by BRCA1/2 mutation status, functional tests, or mutational signatures, appear to be significantly more sensitive to c-RT compared with isogenic controls or tumors without HRD mutational signatures. HRD tumors may be exquisitely sensitive to c-RT which warrants further clinical investigation to guide a precision oncology approach.
Collapse
Affiliation(s)
- Jennifer Ma
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachna Shah
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew C Bell
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Niamh McDermott
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xin Pei
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Haseltine
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Delsite
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif J Khan
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin H Lok
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Departments of Radiation Oncology; Medical Biophysics; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Ellis
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca F Aft
- Department of General Surgery, Washington University, St Louis, Missouri
| | - Jeremy Setton
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nadeem Riaz
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Simon N Powell
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
2
|
Iliushchenko D, Efimenko B, Mikhailova AG, Shamanskiy V, Saparbaev MK, Matkarimov BT, Mazunin I, Voronka A, Knorre D, Kunz WS, Kapranov P, Denisov S, Fellay J, Khrapko K, Gunbin K, Popadin K. Deciphering the Foundations of Mitochondrial Mutational Spectra: Replication-Driven and Damage-Induced Signatures Across Chordate Classes. Mol Biol Evol 2025; 42:msae261. [PMID: 39903101 PMCID: PMC11792237 DOI: 10.1093/molbev/msae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial DNA (mtDNA) mutagenesis remains poorly understood despite its crucial role in disease, aging, and evolutionary tracing. In this study, we reconstructed a comprehensive 192-component mtDNA mutational spectrum for chordates by analyzing 118,397 synonymous mutations in the CytB gene across 1,697 species and five classes. This analysis revealed three primary forces shaping mtDNA mutagenesis: (i) symmetrical, replication-driven errors by mitochondrial polymerase (POLG), resulting in C > T and A > G mutations that are highly conserved across classes; (ii) asymmetrical, damage-driven C > T mutations on the single-stranded heavy strand with clock-like dynamics; and (iii) asymmetrical A > G mutations on the heavy strand, with dynamics suggesting sensitivity to oxidative damage. The third component, sensitive to oxidative damage, positions mtDNA mutagenesis as a promising marker for metabolic and physiological processes across various classes, species, organisms, tissues, and cells. The deconvolution of the mutational spectra into mutational signatures uncovered deficiencies in both base excision repair (BER) and mismatch repair (MMR) pathways. Further analysis of mutation hotspots, abasic sites, and mutational asymmetries underscores the critical role of single-stranded DNA damage (components ii and iii), which, uncorrected due to BER and MMR deficiencies, contributes roughly as many mutations as POLG-induced errors (component i).
Collapse
Affiliation(s)
- Dmitrii Iliushchenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Bogdan Efimenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Victor Shamanskiy
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Murat K Saparbaev
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Bakhyt T Matkarimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russian Federation
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexandr Voronka
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Dmitry Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Wolfram S Kunz
- Department of Epileptology and Institute of Experimental Epileptology and Cognition Research, University Bonn Medical Center, Bonn, Germany
| | | | - Stepan Denisov
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
DeMarini DM, Gwinn W, Watkins E, Reisfeld B, Chiu WA, Zeise L, Barupal D, Bhatti P, Cross K, Dogliotti E, Fritz JM, Germolec D, Andersen MHG, Guyton KZ, Jinot J, Phillips DH, Reddel RR, Rothman N, van den Berg M, Vermeulen RC, Vineis P, Wang A, Whelan M, Ghantous A, Korenjak M, Zavadil J, Herceg Z, Perdomo S, Dossus L, Chittiboyina S, Cuomo D, Kaldor J, Pasqual E, Rigutto G, Wedekind R, Facchin C, El Ghissassi F, de Conti A, Schubauer-Berigan MK, Madia F. IARC Workshop on the Key Characteristics of Carcinogens: Assessment of End Points for Evaluating Mechanistic Evidence of Carcinogenic Hazards. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:25001. [PMID: 39899356 PMCID: PMC11790013 DOI: 10.1289/ehp15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/10/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The 10 key characteristics (KCs) of carcinogens form the basis of a framework to identify, organize, and evaluate mechanistic evidence relevant to carcinogenic hazard identification. The 10 KCs are related to mechanisms by which carcinogens cause cancer. The International Agency for Research on Cancer (IARC) Monographs programme has successfully applied the KCs framework for the mechanistic evaluation of different types of exposures, including chemicals, metals, and complex exposures, such as environmental, occupational, or dietary exposures. The use of this framework has significantly enhanced the identification and organization of relevant mechanistic data, minimized bias in evaluations, and enriched the knowledge base regarding the mechanisms of known and suspected carcinogens. OBJECTIVES We sought to report the main outcomes of an IARC Scientific Workshop convened by the IARC to establish appropriate, transparent, and uniform application of the KCs in future IARC Monographs evaluations. METHODS A group of experts from different disciplines reviewed the IARC Monographs experience with the KCs of carcinogens, discussing three main themes: a) the interpretation of end points forming the evidence base for the KCs, b) the incorporation of data from novel assays on the KCs, and c) the integration of the mechanistic evidence as part of cancer hazard identification. The workshop participants assessed the relevance and the informativeness of multiple KCs-associated end points for the evaluation of mechanistic evidence in studies of exposed humans and experimental systems. DISCUSSION Consensus was reached on how to enhance the use of in silico, molecular, and cellular high-output and high-throughput data. In addition, approaches to integrate evidence across the KCs and opportunities to improve methodologies of mechanistic evaluation of cancer hazards were explored. The findings described herein and in a forthcoming IARC technical report will support future working groups of experts in reporting and interpreting results under the KCs framework within the IARC Monographs or in other contexts. https://doi.org/10.1289/EHP15389.
Collapse
Affiliation(s)
- David M. DeMarini
- US Environmental Protection Agency (EPA; Retired), Research Triangle Park, North Carolina, USA
| | - William Gwinn
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Emily Watkins
- Department of Life Sciences, University of Roehampton, London, UK
| | - Brad Reisfeld
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Weihsueh A. Chiu
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California EPA, Sacramento, California, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Parveen Bhatti
- BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Dori Germolec
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Kathryn Z. Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, District of Columbia, USA
| | | | - David H. Phillips
- Department of Analytical, Environmental & Forensic Sciences, King’s College London, London, UK
| | - Roger R. Reddel
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA
| | - Martin van den Berg
- Department of Population Health, Utrecht University, Utrecht, the Netherlands
| | - Roel C.H. Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paolo Vineis
- School of Public Health, Imperial College, London, UK
| | - Amy Wang
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Maurice Whelan
- European Commission, Joint Research Centre, Ispra, Italy
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Laure Dossus
- Nutrition and Metabolism Branch, IARC, Lyon, France
| | | | | | - John Kaldor
- IARC Monographs Programme, IARC, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Espejo Valle-Inclan J, De Noon S, Trevers K, Elrick H, van Belzen IAEM, Zumalave S, Sauer CM, Tanguy M, Butters T, Muyas F, Rust AG, Amary F, Tirabosco R, Giess A, Sosinsky A, Elgar G, Flanagan AM, Cortés-Ciriano I. Ongoing chromothripsis underpins osteosarcoma genome complexity and clonal evolution. Cell 2025; 188:352-370.e22. [PMID: 39814020 DOI: 10.1016/j.cell.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/05/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025]
Abstract
Osteosarcoma is the most common primary cancer of the bone, with a peak incidence in children and young adults. Using multi-region whole-genome sequencing, we find that chromothripsis is an ongoing mutational process, occurring subclonally in 74% of osteosarcomas. Chromothripsis generates highly unstable derivative chromosomes, the ongoing evolution of which drives the acquisition of oncogenic mutations, clonal diversification, and intra-tumor heterogeneity across diverse sarcomas and carcinomas. In addition, we characterize a new mechanism, termed loss-translocation-amplification (LTA) chromothripsis, which mediates punctuated evolution in about half of pediatric and adult high-grade osteosarcomas. LTA chromothripsis occurs when a single double-strand break triggers concomitant TP53 inactivation and oncogene amplification through breakage-fusion-bridge cycles. It is particularly prevalent in osteosarcoma and is not detected in other cancers driven by TP53 mutation. Finally, we identify the level of genome-wide loss of heterozygosity as a strong prognostic indicator for high-grade osteosarcoma.
Collapse
Affiliation(s)
| | - Solange De Noon
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Katherine Trevers
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Hillary Elrick
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Ianthe A E M van Belzen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Sonia Zumalave
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Mélanie Tanguy
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | - Thomas Butters
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Alistair G Rust
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Fernanda Amary
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Roberto Tirabosco
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Adam Giess
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | | | - Greg Elgar
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | - Adrienne M Flanagan
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK.
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
5
|
Floudas CS, Sarkizova S, Ceccarelli M, Zheng W. Leveraging mRNA technology for antigen based immuno-oncology therapies. J Immunother Cancer 2025; 13:e010569. [PMID: 39848687 PMCID: PMC11784169 DOI: 10.1136/jitc-2024-010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response. Tumor neoantigens are de novo epitopes derived from somatic mutations, avoiding T-cell central tolerance of self-epitopes and inducing immune responses to tumors. The identification and prioritization of patient-specific tumor neoantigens are based on advanced computational algorithms taking advantage of the profiling with next-generation sequencing considering factors involved in human leukocyte antigen (HLA)-peptide-T-cell receptor (TCR) complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. This review discusses the development and clinical application of mRNA vaccines in oncology, with a particular focus on recent clinical trials and the computational workflows and methodologies for identifying both shared and individual antigens. While this review centers on therapeutic mRNA vaccines targeting existing tumors, it does not cover preventative vaccines. Preclinical experimental validations are crucial in cancer vaccine development, but we emphasize the computational approaches that facilitate neoantigen selection and design, highlighting their role in advancing mRNA vaccine development. The versatility and rapid development potential of mRNA make it an ideal platform for personalized neoantigen immunotherapy. We explore various strategies for antigen target identification, including tumor-associated and tumor-specific antigens and the computational tools used to predict epitopes capable of eliciting strong immune responses. We address key design considerations for enhancing the immunogenicity and stability of mRNA vaccines, as well as emerging trends and challenges in the field. This comprehensive overview highlights the therapeutic potential of mRNA-based cancer vaccines and underscores ongoing research efforts aimed at optimizing these therapies for improved clinical outcomes.
Collapse
Affiliation(s)
- Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wei Zheng
- Moderna, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Spencer Chapman M, Mitchell E, Yoshida K, Williams N, Fabre MA, Ranzoni AM, Robinson PS, Kregar LD, Wilk M, Boettcher S, Mahbubani K, Saeb Parsy K, Gowers KHC, Janes SM, Ng SWK, Hoare M, Green AR, Vassiliou GS, Cvejic A, Manz MG, Laurenti E, Martincorena I, Stratton MR, Nangalia J, Coorens THH, Campbell PJ. Prolonged persistence of mutagenic DNA lesions in somatic cells. Nature 2025:10.1038/s41586-024-08423-8. [PMID: 39814886 DOI: 10.1038/s41586-024-08423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
DNA is subject to continual damage, leaving each cell with thousands of individual DNA lesions at any given moment1-3. The efficiency of DNA repair means that most known classes of lesion have a half-life of minutes to hours3,4, but the extent to which DNA damage can persist for longer durations remains unknown. Here, using high-resolution phylogenetic trees from 89 donors, we identified mutations arising from 818 DNA lesions that persisted across multiple cell cycles in normal human stem cells from blood, liver and bronchial epithelium5-12. Persistent DNA lesions occurred at increased rates, with distinctive mutational signatures, in donors exposed to tobacco or chemotherapy, suggesting that they can arise from exogenous mutagens. In haematopoietic stem cells, persistent DNA lesions, probably from endogenous sources, generated the characteristic mutational signature SBS1913; occurred steadily throughout life, including in utero; and endured for 2.2 years on average, with 15-25% of lesions lasting at least 3 years. We estimate that on average, a haematopoietic stem cell has approximately eight such lesions at any moment in time, half of which will generate a mutation with each cell cycle. Overall, 16% of mutations in blood cells are attributable to SBS19, and similar proportions of driver mutations in blood cancers exhibit this signature. These data indicate the existence of a family of DNA lesions that arise from endogenous and exogenous mutagens, are present in low numbers per genome, persist for months to years, and can generate a substantial fraction of the mutation burden of somatic cells.
Collapse
Affiliation(s)
- Michael Spencer Chapman
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haemato-oncology, Barts Cancer Institute, London, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Margarete A Fabre
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Matthias Wilk
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Kate H C Gowers
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Matt Hoare
- Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Ana Cvejic
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elisa Laurenti
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Tim H H Coorens
- Wellcome Sanger Institute, Hinxton, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Subramanian DN, Zethoven M, Pishas KI, Marinović ER, McInerny S, Rowley SM, Allan PE, Devereux L, Cheasley D, James PA, Campbell IG. Assessment of candidate high-grade serous ovarian carcinoma predisposition genes through integrated germline and tumour sequencing. NPJ Genom Med 2025; 10:1. [PMID: 39794353 PMCID: PMC11724014 DOI: 10.1038/s41525-024-00447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/07/2024] [Indexed: 01/13/2025] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) has a significant hereditary component, only half of which is explained. Previously, we performed germline exome sequencing on BRCA1 and BRCA2-negative HGSOC patients, revealing three proposed and 43 novel candidate genes enriched with rare loss-of-function variants. For validation, we undertook case-control analyses using genomic data from disease-free controls. This confirms enrichment for nearly all previously identified genes. Additionally, one-hundred-and-eleven HGSOC tumours from variant carriers were sequenced alongside other complementary studies, seeking evidence of biallelic inactivation as supportive evidence. PALB2 and ATM validate as HGSOC predisposition genes, with 6/8 germline carrier tumours exhibiting biallelic inactivation accompanied by characteristic mutational signatures. Among candidate genes, only LLGL2 consistently shows biallelic inactivation and protein expression loss, supporting it as a novel HGSOC susceptibility gene. The remaining candidate genes fail to validate. Integrating case-control analyses with tumour sequencing is thus crucial for accurate gene discovery in familial cancer studies.
Collapse
Affiliation(s)
- Deepak N Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Maia Zethoven
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kathleen I Pishas
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Evanny R Marinović
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Prue E Allan
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Lifepool Cohort, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dane Cheasley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Boysen G, Alexandrov L, Rahbari R, Nookaew I, Ussery D, Chao MR, Hu CW, Cooke M. Investigating the origins of the mutational signatures in cancer. Nucleic Acids Res 2025; 53:gkae1303. [PMID: 39778866 PMCID: PMC11707540 DOI: 10.1093/nar/gkae1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.e. the DNA adductome) and their diverse positions within the genome. Thus far, this limitation has prevented researchers from precisely linking exposures to DNA adducts and DNA adducts to subsequent mutational outcomes. Indeed, many common mutations observed in human cancers appear to originate from error-prone endogenous processes. Consequently, it remains unclear whether these mutations result from exposure-induced DNA adducts, or arise indirectly from endogenous processes or are a combination of both. In this review, we summarize approaches that aim to bridge our understanding of the mechanism by which exposure leads to DNA damage and then to mutation and highlight some of the remaining challenges and shortcomings to fully supporting this paradigm. We emphasize the need to integrate cellular DNA adductomics, long read-based mapping, single-molecule duplex sequencing of native DNA molecules and advanced computational analysis. This proposed holistic approach aims to unveil the causal connections between key DNA modifications and the mutational landscape, whether they originate from external exposures, internal processes or a combination of both, thereby addressing key questions in cancer biology.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Health Science, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Intawat Nookaew
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Dave Ussery
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 4202 E. Fowler Avenue, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Chen J, Cheng S, Gu L, Huang Z, Zhang C, Sun C, Chen S. Establishment and characterization of a sigmoid colon cancer organoid with spinal metastasis. Front Cell Dev Biol 2025; 12:1510264. [PMID: 39830210 PMCID: PMC11739105 DOI: 10.3389/fcell.2024.1510264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Background Sigmoid colon cancer with spinal metastases is rare in distant metastasis. In addition, the prognosis of colon cancer patients with spinal metastases is extremely poor. In order to find effective therapeutic agents, we need to know the biological characteristics of such patients from related models. Methods We collected sigmoid colon cancer tissue from a young female subject who was diagnosed with sigmoid colon cancer with multiple spinal metastases. We successfully established a sigmoid colon cancer organoid using this tissue and investigated drug screening in the patient. HE staining, immunohistochemistry, and DNA sequencing were utilized to compare the biological characteristics between the original tumor and the organoid. Furthermore, we investigated the drug screening of the sigmoid colon cancer organoid in vitro. Results A colon cancer organoid from sigmoid colon cancer with spinal metastases was successfully established. The organoid culture maintained the morphological features, histological features, and genomic landscape of the corresponding sigmoid colon cancer cells. Moreover, we performed drug screening tests to evaluate the effects of chemotherapeutic drugs and targeted drugs. Conclusion The sigmoid colon cancer organoid with spinal metastases was a favorable preclinical model to explore the clinicopathologic characteristics of colon cancer patients with spinal metastases.
Collapse
Affiliation(s)
- Jingyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shumin Cheng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Liang Gu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhangsen Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chunhui Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
10
|
Wang J, Guo C, Wang J, Zhang X, Qi J, Huang X, Hu Z, Wang H, Hong B. Tumor Mutation Signature Reveals the Risk Factors of Lung Adenocarcinoma with EGFR or KRAS Mutation. Cancer Control 2025; 32:10732748241307363. [PMID: 39760242 DOI: 10.1177/10732748241307363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION EGFR and KRAS mutations are frequently detected in lung adenocarcinoma (LUAD). Tumor mutational signature (TMS) determination is an approach to identify somatic mutational patterns associated with pathogenic factors. In this study, through the analysis of TMS, the underlying pathogenic factors of LUAD with EGFR and KRAS mutations were traced. METHODS This was a retrospective study. TMS of LUAD with KRAS and EGFR mutations from the TCGA, OncoSG, and MSK datasets was determined by two bioinformatics tools, namely the "MutationalPatterns" and "FitMS" packages. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) of LUAD clinical specimens was analyzed using capillary electrophoresis. RESULTS In LUAD with KRAS mutations, TMS analysis indicated that the smoking-related SBS4 signature was enriched. For LUAD with EGFR L858R mutation, the smoking-related SBS4 signature was enriched in the Western population from the TCGA database; however, the smoking-related SBS4 signature was not obvious in Asian LUAD patients. LUAD with EGFR exon19 deletion (19Del) exhibited stronger SBS15 signature, which was related to defective DNA mismatch repair. Capillary electrophoresis analysis showed that an EMAST locus was frequently instable in LUAD with EGFR 19Del. Different from the Western population, Asian LUAD patients with EGFR mutations exhibited the enrichment of SBS1, SBS2, and SBS13 signatures, which were associated with the endogenous mutation process of cytidine deamination. CONCLUSIONS TMS analysis reveals that smoking is associated with LUAD with KRAS mutations. Defective DNA mismatch repair and endogenous cytidine deamination are associated with LUAD with EGFR mutations, especially for the EGFR 19Del. The endogenous mutational process is stronger in Asian LUAD patients than Western LUAD patients.
Collapse
Affiliation(s)
- Jialiang Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Chang Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Jiexiao Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Xiaopeng Zhang
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Jian Qi
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Xiang Huang
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Zongtao Hu
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Hongzhi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Bo Hong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| |
Collapse
|
11
|
Al Assaad M, Hadi K, Tu J, Levine MF, Patel M, Deshpande A, Manohar J, Sigouros M, Sboner A, Chapman-Davis E, Elemento O, Holcomb K, Boyraz B, Mosquera JM. Enhancing the detection of clinically relevant biomarkers in advanced uterine and tubo-ovarian carcinomas through genome-wide analysis. Pathol Res Pract 2024; 266:155773. [PMID: 39673888 DOI: 10.1016/j.prp.2024.155773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Advanced-stage tube-ovarian cancers (TOC) and uterine cancers (UC) significantly contribute to cancer mortality. While surgery achieves clinical remission in most cases, recurrence often necessitates systemic therapy. Recent molecular phenotype studies have advanced targeted therapies. We employed whole genome sequencing (WGS) to investigate biomarkers in gynecologic malignancies. DESIGN Ninety-one tumor samples (45 TOC, 46 UC) were analyzed for germline mutations, somatic driver mutations, rearrangements, genome-wide signatures, and molecular phenotypes. A WGS-based high-confidence classifier for homologous recombination deficiency (HRD) was applied. Genomic profiles were correlated with clinical outcomes. RESULTS The HRD phenotype was identified in serous carcinoma components, with 50 % of HRD cases showing BRCA1/2 wildtype (33 %) or variants of unknown significance (17 %). HRD correlated with better overall survival in tubo-ovarian serous carcinoma and was linked to responses to platinum therapy and PARP inhibitors. Endometrioid carcinomas showed no HRD phenotype despite BRCA1/2 variants. CDK12-type genomic instability (10 %) occurred in cases with CDK12 rearrangements, and CCNE1 gain (8 %) was observed in CCNE1-amplified cases, independent of copy number. In endometrioid carcinoma, mismatch repair (MMR) deficiency single base substitution signatures, particularly SBS44, contributed to high tumor mutation burden (TMB). Ultra-high TMB was found in two cases with pathogenic POLE and POLQ mutations, exhibiting multiple SBS signatures, including MMR deficiency. CONCLUSION Comprehensive genomic profiling of advanced-stage TOC and UC via WGS reveals key biomarkers and therapeutic targets, enhancing diagnostic accuracy and advancing personalized medicine in gynecological cancers.
Collapse
Affiliation(s)
- Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Jiangling Tu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eloise Chapman-Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Holcomb
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Baris Boyraz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024; 25:846-863. [PMID: 38918545 PMCID: PMC11563917 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
13
|
Ma W, Tang W, Kwok JS, Tong AH, Lo CW, Chu AT, Chung BH. A review on trends in development and translation of omics signatures in cancer. Comput Struct Biotechnol J 2024; 23:954-971. [PMID: 38385061 PMCID: PMC10879706 DOI: 10.1016/j.csbj.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
The field of cancer genomics and transcriptomics has evolved from targeted profiling to swift sequencing of individual tumor genome and transcriptome. The steady growth in genome, epigenome, and transcriptome datasets on a genome-wide scale has significantly increased our capability in capturing signatures that represent both the intrinsic and extrinsic biological features of tumors. These biological differences can help in precise molecular subtyping of cancer, predicting tumor progression, metastatic potential, and resistance to therapeutic agents. In this review, we summarized the current development of genomic, methylomic, transcriptomic, proteomic and metabolic signatures in the field of cancer research and highlighted their potentials in clinical applications to improve diagnosis, prognosis, and treatment decision in cancer patients.
Collapse
Affiliation(s)
- Wei Ma
- Hong Kong Genome Institute, Hong Kong, China
| | - Wenshu Tang
- Hong Kong Genome Institute, Hong Kong, China
| | | | | | | | | | - Brian H.Y. Chung
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Kong Genome Project
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Goossens S, Tepeli YI, Seale C, Gonçalves JP. SNMF: Integrated Learning of Mutational Signatures and Prediction of DNA Repair Deficiencies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.624656. [PMID: 39651280 PMCID: PMC11623639 DOI: 10.1101/2024.11.27.624656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Motivation Many tumours show deficiencies in DNA damage response (DDR), which influence tumorigenesis and progression, but also expose vulnerabilities with therapeutic potential. Assessing which patients might benefit from DDR-targeting therapy requires knowledge of tumour DDR deficiency status, with mutational signatures reportedly better predictors than loss of function mutations in select genes. However, signatures are identified independently using unsupervised learning, and therefore not optimised to distinguish between different pathway or gene deficiencies. Results We propose SNMF, a supervised non-negative matrix factorisation that jointly optimises the learning of signatures: (1) shared across samples, and (2) predictive of DDR deficiency. We applied SNMF to mutation profiles of human induced pluripotent cell lines carrying gene knockouts linked to three DDR pathways. The SNMF model achieved high accuracy (0.971) and learned more complete signatures of the DDR status of a sample, further discerning distinct mechanisms within a pathway. Cell line SNMF signatures recapitulated tumour-derived COSMIC signatures and predicted DDR pathway deficiency of TCGA tumours with high recall, suggesting that SNMF-like models can leverage libraries of induced DDR deficiencies to decipher intricate DDR signatures underlying patient tumours. Availability https://github.com/joanagoncalveslab/SNMF .
Collapse
|
15
|
Thomas CE, Peters U. Genomic landscape of cancer in racially and ethnically diverse populations. Nat Rev Genet 2024:10.1038/s41576-024-00796-w. [PMID: 39609636 DOI: 10.1038/s41576-024-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/30/2024]
Abstract
Cancer incidence and mortality rates can vary widely among different racial and ethnic groups, attributed to a complex interplay of genetic, environmental and social factors. Recently, substantial progress has been made in investigating hereditary genetic risk factors and in characterizing tumour genomes. However, most research has been conducted in individuals of European ancestries and, increasingly, in individuals of Asian ancestries. The study of germline and somatic genetics in cancer across racial and ethnic groups using omics technologies offers opportunities to identify similarities and differences in both heritable traits and the molecular features of cancer genomes. An improved understanding of population-specific cancer genomics, as well as translation of those findings across populations, will help reduce cancer disparities and ensure that personalized medicine and public health approaches are equitable across racial and ethnic groups.
Collapse
Affiliation(s)
- Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Jiang N, Wu Y, Rozen SG. Benchmarking 13 tools for mutational signature attribution, including a new and improved algorithm. Brief Bioinform 2024; 26:bbaf042. [PMID: 39910776 PMCID: PMC11798676 DOI: 10.1093/bib/bbaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/01/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Mutational signatures are characteristic patterns of mutations caused by endogenous mutational processes or by exogenous mutational exposures. There has been little benchmarking of approaches for determining which signatures are present in a sample and estimating the number of mutations due to each signature. This problem is referred to as "signature attribution." We show that there are often many combinations of signatures that can reconstruct the patterns of mutations in a sample reasonably well, even after encouraging sparse solutions. We benchmarked 13 approaches to signature attribution, including a new approach called Presence Attribute Signature Activity (PASA), on large synthetic data sets (2700 synthetic samples in total). These data sets recapitulated the single-base, insertion-deletion, and doublet-base mutational signature repertoires of nine cancer types. For single-base substitution mutations, PASA and MuSiCal outperformed other approaches on all the cancer types combined. However, the ranking of approaches varied by cancer type. For doublet-base substitutions and small insertions and deletions, while PASA outperformed the other approaches in most of the nine cancer types, the ranking of approaches again varied by cancer type. We believe that this variation reflects inherent difficulties in signature attribution. These difficulties stem from the fact that there are often many attributions that can reasonably explain the pattern of mutations in a sample and from the combinatorial search space due to the need to impose sparsity. Tables herein can provide guidance on the selection of mutational signature attribution approaches that are best suited to particular cancer types and study objectives.
Collapse
Affiliation(s)
- Nanhai Jiang
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Wu
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, 2424 Erwin Road, Durham, NC 27710, United States
| |
Collapse
|
17
|
Diamond B, Chahar D, Jain MD, Poos AM, Durante M, Ziccheddu B, Kaddoura M, Papadimitriou M, Maclachlan K, Jelinek T, Davies F, Figura NB, Morgan G, Mai E, Weisel KC, Fenk R, Raab MS, Usmani S, Landgren O, Locke FL, Goldschmidt H, Schatz JH, Weinhold N, Maura F. Mutagenic impact and evolutionary influence of radiotherapy in hematologic malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623836. [PMID: 39605649 PMCID: PMC11601314 DOI: 10.1101/2024.11.15.623836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ionizing radiotherapy (RT) is a widely used palliative and curative treatment strategy for malignancies. In solid tumors, RT-induced double strand breaks lead to the accumulation of indels, and their repair by non-homologous end-joining has been linked to the ID8 mutational signature in resistant cells. However, the extent of RT-induced DNA damage in hematologic malignancies and its impact on their evolution and interplay with commonly used chemotherapies has not yet been explored. Here, we interrogated 580 whole genome sequencing (WGS) from patients with large B-cell lymphoma, multiple myeloma, and myeloid neoplasms and identified ID8 only in relapsed disease. Yet, it was detected after exposure to both RT and mutagenic chemotherapy (i.e., platinum). Using WGS of single-cell colonies derived from treated lymphoma cells, we revealed a dose-response relationship between RT and platinum and ID8. Finally, using ID8 as a genomic barcode we demonstrate that a single RT-resistant cell may seed systemic relapse.
Collapse
|
18
|
Silveira AB, Houy A, Ganier O, Özemek B, Vanhuele S, Vincent-Salomon A, Cassoux N, Mariani P, Pierron G, Leyvraz S, Rieke D, Picca A, Bielle F, Yaspo ML, Rodrigues M, Stern MH. Base-excision repair pathway shapes 5-methylcytosine deamination signatures in pan-cancer genomes. Nat Commun 2024; 15:9864. [PMID: 39543136 PMCID: PMC11564873 DOI: 10.1038/s41467-024-54223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Transition of cytosine to thymine in CpG dinucleotides is the most frequent type of mutation in cancer. This increased mutability is commonly attributed to the spontaneous deamination of 5-methylcytosine (5mC), which is normally repaired by the base-excision repair (BER) pathway. However, the contribution of 5mC deamination in the increasing diversity of cancer mutational signatures remains poorly explored. We integrate mutational signatures analysis in a large series of tumor whole genomes with lineage-specific epigenomic data to draw a detailed view of 5mC deamination in cancer. We uncover tumor type-specific patterns of 5mC deamination signatures in CpG and non-CpG contexts. We demonstrate that the BER glycosylase MBD4 preferentially binds to active chromatin and early replicating DNA, which correlates with lower mutational burden in these domains. We validate our findings by modeling BER deficiencies in isogenic cell models. Here, we establish MBD4 as the main actor responsible for 5mC deamination repair in humans.
Collapse
Affiliation(s)
- André Bortolini Silveira
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Alexandre Houy
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Olivier Ganier
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Begüm Özemek
- Otto Warburg Laboratory "Gene Regulation and Systems Biology of Cancer", Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sandra Vanhuele
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, PSL Research University, Paris, France
| | | | - Pascale Mariani
- Department of Surgical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Gaelle Pierron
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Serge Leyvraz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Rieke
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alberto Picca
- Service de Neuro-oncologie, Institut de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Franck Bielle
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Service de Neuropathologie, Laboratoire Escourolle, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory "Gene Regulation and Systems Biology of Cancer", Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Manuel Rodrigues
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France.
- Department of Genetics, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
19
|
Medo M, Ng CKY, Medová M. A comprehensive comparison of tools for fitting mutational signatures. Nat Commun 2024; 15:9467. [PMID: 39487150 PMCID: PMC11530434 DOI: 10.1038/s41467-024-53711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
Mutational signatures connect characteristic mutational patterns in the genome with biological or chemical processes that take place in cancers. Analysis of mutational signatures can help elucidate tumor evolution, prognosis, and therapeutic strategies. Although tools for extracting mutational signatures de novo have been extensively benchmarked, a similar effort is lacking for tools that fit known mutational signatures to a given catalog of mutations. We fill this gap by comprehensively evaluating twelve signature fitting tools on synthetic mutational catalogs with empirically driven signature weights corresponding to eight cancer types. On average, SigProfilerSingleSample and SigProfilerAssignment/MuSiCal perform best for small and large numbers of mutations per sample, respectively. We further show that ad hoc constraining the list of reference signatures is likely to produce inferior results. Evaluation of real mutational catalogs suggests that the activity of signatures that are absent in the reference catalog poses considerable problems to all evaluated tools.
Collapse
Affiliation(s)
- Matúš Medo
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Charlotte K Y Ng
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Bailey C, Pich O, Thol K, Watkins TBK, Luebeck J, Rowan A, Stavrou G, Weiser NE, Dameracharla B, Bentham R, Lu WT, Kittel J, Yang SYC, Howitt BE, Sharma N, Litovchenko M, Salgado R, Hung KL, Cornish AJ, Moore DA, Houlston RS, Bafna V, Chang HY, Nik-Zainal S, Kanu N, McGranahan N, Flanagan AM, Mischel PS, Jamal-Hanjani M, Swanton C. Origins and impact of extrachromosomal DNA. Nature 2024; 635:193-200. [PMID: 39506150 PMCID: PMC11540846 DOI: 10.1038/s41586-024-08107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Extrachromosomal DNA (ecDNA) is a major contributor to treatment resistance and poor outcome for patients with cancer1,2. Here we examine the diversity of ecDNA elements across cancer, revealing the associated tissue, genetic and mutational contexts. By analysing data from 14,778 patients with 39 tumour types from the 100,000 Genomes Project, we demonstrate that 17.1% of tumour samples contain ecDNA. We reveal a pattern highly indicative of tissue-context-based selection for ecDNAs, linking their genomic content to their tissue of origin. We show that not only is ecDNA a mechanism for amplification of driver oncogenes, but it also a mechanism that frequently amplifies immunomodulatory and inflammatory genes, such as those that modulate lymphocyte-mediated immunity and immune effector processes. Moreover, ecDNAs carrying immunomodulatory genes are associated with reduced tumour T cell infiltration. We identify ecDNAs bearing only enhancers, promoters and lncRNA elements, suggesting the combinatorial power of interactions between ecDNAs in trans. We also identify intrinsic and environmental mutational processes linked to ecDNA, including those linked to its formation, such as tobacco exposure, and progression, such as homologous recombination repair deficiency. Clinically, ecDNA detection was associated with tumour stage, more prevalent after targeted therapy and cytotoxic treatments, and associated with metastases and shorter overall survival. These results shed light on why ecDNA is a substantial clinical problem that can cooperatively drive tumour growth signals, alter transcriptional landscapes and suppress the immune system.
Collapse
Affiliation(s)
- Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Kerstin Thol
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas B K Watkins
- Department of Pathology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Georgia Stavrou
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Natasha E Weiser
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | | | - Robert Bentham
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jeanette Kittel
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - S Y Cindy Yang
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Natasha Sharma
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Maria Litovchenko
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - David A Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Adrienne M Flanagan
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Paul S Mischel
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
21
|
Nzitakera A, Uwamariya D, Kato H, Surwumwe JB, Mbonigaba A, Ndoricyimpaye EL, Uwamungu S, Manirakiza F, Ndayisaba MC, Ntakirutimana G, Seminega B, Dusabejambo V, Rutaganda E, Kamali P, Ngabonziza F, Ishikawa R, Watanabe H, Rugwizangoga B, Baba S, Yamada H, Yoshimura K, Sakai Y, Sugimura H, Shinmura K. TP53 mutation status and consensus molecular subtypes of colorectal cancer in patients from Rwanda. BMC Cancer 2024; 24:1266. [PMID: 39394554 PMCID: PMC11468329 DOI: 10.1186/s12885-024-13009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Mutations in the TP53 tumor suppressor gene are well-established drivers of colorectal cancer (CRC) development. However, data on the prevalence of TP53 variants and their association with consensus molecular subtype (CMS) classification in patients with CRC from Rwanda are currently lacking. This study addressed this knowledge gap by investigating TP53 mutation status concerning CMS classification in a CRC cohort from Rwanda. METHODS Formalin-fixed paraffin-embedded (FFPE) tissue blocks were obtained from 51 patients with CRC at the University Teaching Hospital of Kigali, Rwanda. Exons 4 to 11 and their flanking intron-exon boundaries in the TP53 gene were sequenced using Sanger sequencing to identify potential variants. The recently established immunohistochemistry-based classifier was employed to determine the CMS of each tumor. RESULTS Sequencing analysis of cancerous tissue DNA revealed TP53 pathogenic variants in 23 of 51 (45.1%) patients from Rwanda. These variants were predominantly missense types (18/23, 78.3%). The most frequent were c.455dup (p.P153Afs*28), c.524G > A (p.R175H), and c.733G > A (p.G245S), each identified in three tumors. Trinucleotide sequence context analysis of the 23 mutations (20 of which were single-base substitutions) revealed a predominance of the [C > N] pattern among single-base substitutions (SBSs) (18/20; 90.0%), with C[C > T]G being the most frequent mutation (5/18, 27.8%). Furthermore, pyrimidine bases (C and T) were preferentially found at the 5' flanking position of the mutated cytosine (13/18; 72.2%). Analysis of CMS subtypes revealed the following distribution: CMS1 (microsatellite instability-immune) (6/51, 11.8%), CMS2 (canonical) (28/51, 54.9%), CMS3 (metabolic) (9/51, 17.6%), and CMS4 (mesenchymal) (8/51, 15.7%). Interestingly, the majority of TP53 variants were in the CMS2 subgroup (14/23; 60.1%). CONCLUSION Our findings indicate a high frequency of TP53 variants in CRC patients from Rwanda. Importantly, these variants are enriched in the CMS2 subtype. This study, representing the second investigation into molecular alterations in patients with CRC from Rwanda and the first to explore TP53 mutations and CMS classification, provides valuable insights into the molecular landscape of CRC in this understudied population.
Collapse
Affiliation(s)
- Augustin Nzitakera
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Delphine Uwamariya
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Jean Bosco Surwumwe
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - André Mbonigaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Université Catholique de Louvain, Médecine Expérimentale, Brussels, 1348, Belgium
| | - Schifra Uwamungu
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Felix Manirakiza
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Marie Claire Ndayisaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Benoit Seminega
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Vincent Dusabejambo
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Eric Rutaganda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Placide Kamali
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - François Ngabonziza
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Belson Rugwizangoga
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Tumor Immunology Laboratory, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SE- 40530, Sweden
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Medicine, 1- 20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Haruhiko Sugimura
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
22
|
Huang YJ, Lim JQ, Hsu JS, Kuo MC, Wang PN, Kao HW, Wu JH, Chen CC, Tsai SF, Ong CK, Shih LY. Next-Generation Integrated Sequencing Identifies Poor Prognostic Factors in Patients with MYD88-Mutated Chronic Lymphocytic Leukemia in Taiwan. Pathobiology 2024:1-13. [PMID: 39357512 DOI: 10.1159/000541709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the Western countries and is very rare in Asia. METHODS Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 215 patients with CLL were analyzed by using next-generation sequencing to investigate the ethnic differences in genetic abnormalities. RESULTS Whole-genome sequencing and whole-exome sequencing analyses on 30 cases showed that 9 genes, including IGLL5, MYD88, TCHH, DSCAM, AXDND1, BICRA, KMT2D, MYT1L, and RBM43, were more frequently mutated in our Taiwanese cohort compared with those of the Western cohorts. IGLL5, MYD88, and KMT2D genes were further analyzed by targeted sequencing in another 185 CLL patients, unraveling frequencies of 29.3%, 20.9%, and 15.0%, respectively. The most frequent positional mutation of MYD88 was V217F (26/45, 57.8%), followed by L265P (9/45, 20.0%). MYD88 mutations were significantly associated with IGLL5 mutations (p = 0.0004), mutated IGHV (p < 0.0001) and 13q deletion (p = 0.0164). CLL patients with co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations were associated with a significantly inferior survival compared to those with MYD88 mutation alone (not reached vs. 131.8 months, p = 0.007). In multivariate analysis, MYD88 mutation without KMT2D or IGLL5 mutations was an independently favorable predictor. CONCLUSIONS IGLL5, MYD88, and KMT2D mutations were enriched in Taiwanese CLL, and co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations was associated with a poorer prognosis.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- ONCO-ACP, Duke-NUS Medical School, Singapore, Singapore
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiao-Wen Kao
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Hou Wu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiu-Chen Chen
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
Budczies J, Kazdal D, Menzel M, Beck S, Kluck K, Altbürger C, Schwab C, Allgäuer M, Ahadova A, Kloor M, Schirmacher P, Peters S, Krämer A, Christopoulos P, Stenzinger A. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat Rev Clin Oncol 2024; 21:725-742. [PMID: 39192001 DOI: 10.1038/s41571-024-00932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Tumour mutational burden (TMB), defined as the total number of somatic non-synonymous mutations present within the cancer genome, varies across and within cancer types. A first wave of retrospective and prospective research identified TMB as a predictive biomarker of response to immune-checkpoint inhibitors and culminated in the disease-agnostic approval of pembrolizumab for patients with TMB-high tumours based on data from the Keynote-158 trial. Although the applicability of outcomes from this trial to all cancer types and the optimal thresholds for TMB are yet to be ascertained, research into TMB is advancing along three principal avenues: enhancement of TMB assessments through rigorous quality control measures within the laboratory process, including the mitigation of confounding factors such as limited panel scope and low tumour purity; refinement of the traditional TMB framework through the incorporation of innovative concepts such as clonal, persistent or HLA-corrected TMB, tumour neoantigen load and mutational signatures; and integration of TMB with established and emerging biomarkers such as PD-L1 expression, microsatellite instability, immune gene expression profiles and the tumour immune contexture. Given its pivotal functions in both the pathogenesis of cancer and the ability of the immune system to recognize tumours, a profound comprehension of the foundational principles and the continued evolution of TMB are of paramount relevance for the field of oncology.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Menzel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Christian Altbürger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumour Diseases at Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| |
Collapse
|
24
|
Rodrigues LM, Maistro S, Katayama MLH, Rocha VM, Lopez RVM, Lopes EFDT, Gonçalves FT, Fridman C, Serio PADMP, Barros LRC, Leite LAS, Segatelli V, Estevez-Diz MDP, Guindalini RSC, Ribeiro Junior U, Folgueira MAAK. Prevalence of germline variants in Brazilian pancreatic carcinoma patients. Sci Rep 2024; 14:21083. [PMID: 39256447 PMCID: PMC11387492 DOI: 10.1038/s41598-024-71884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
We evaluated the prevalence of pathogenic/likely pathogenic germline variants (PGV) in Brazilian pancreatic adenocarcinoma (PC) patients, that represent a multiethnic population, in a cross-sectional study. We included 192 PC patients unselected for family history of cancer. We evaluated a panel of 113 cancer genes, through genomic DNA sequencing and 46 ancestry-informative markers, through multiplex PCR. The median age was 61 years; 63.5% of the patients presented disease clinical stages III or IV; 8.3% reported personal history of cancer; 4.7% and 16.1% reported first-degree relatives with PC or breast and/or prostate cancer, respectively. Although the main ancestry was European, there was considerable genetic composition admixture. Twelve patients (6.25%) were PGV carriers in PC predisposition genes (ATM, BRCA1, BRCA2, CDKN2A, MSH2, PALB2) and another 25 (13.0%) were PGV carriers in genes with a limited association or not previously associated with PC (ACD, BLM, BRIP1, CHEK2, ERCC4, FANCA, FANCE, FANCM, GALNT12, MITF, MRE11, MUTYH, POLE, RAD51B, RAD51C, RECQL4, SDHA, TERF2IP). The most frequently affected genes were CHEK2, ATM and FANC. In tumor samples from PGV carriers in ACD, BRIP1, MRE11, POLE, SDHA, TERF2IP, which were examined through exome sequencing, the main single base substitutions (SBS) mutational signature was SBS1+5+18, probably associated with age, tobacco smoking and reactive oxygen species. SBS3 associated with homologous repair deficiency was also represented, but on a lower scale. There was no difference in the frequency of PGV carriers between: (a) patients with or without first-degree relatives with cancer; and (b) patients with admixed ancestry versus those with predominantly European ancestry. Furthermore, there was no difference in overall survival between PGV carriers and non-carriers. Therefore, genetic testing should be offered to all Brazilian pancreatic cancer patients, regardless of their ancestry. Genes with limited or previously unrecognized associations with pancreatic cancer should be further investigated to clarify their role in cancer risk.
Collapse
Affiliation(s)
- Lívia Munhoz Rodrigues
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Simone Maistro
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Maria Lucia Hirata Katayama
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Vinícius Marques Rocha
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Rossana Veronica Mendoza Lopez
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Edia Filomena di Tullio Lopes
- Registro Hospitalar de Cancer, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, São Paulo, SP, Brazil
| | - Fernanda Toledo Gonçalves
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Cintia Fridman
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Luciana Rodrigues Carvalho Barros
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Luiz Antonio Senna Leite
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Vanderlei Segatelli
- Departamento de Patologia Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Maria Del Pilar Estevez-Diz
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Ulysses Ribeiro Junior
- Division of Digestive Surgery, Department of Gastroenterology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo FMUSP, Sao Paulo, SP, Brazil
| | - Maria Aparecida Azevedo Koike Folgueira
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
25
|
Su DG, Dhiman A, Bansal VV, Zha Y, Shergill A, Polite B, Alpert L, Turaga KK, Eng OS. Mutational Features and Tumor Microenvironment Alterations in High-Grade Appendiceal Cancers Treated With Iterative Hyperthermic Intraperitoneal Chemotherapy. JCO Precis Oncol 2024; 8:e2400149. [PMID: 39259912 PMCID: PMC11432692 DOI: 10.1200/po.24.00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE High-grade appendiceal adenocarcinomas (HGAA) with peritoneal metastases (PMs) are associated with poor survival. Hyperthermic intraperitoneal chemotherapy (HIPEC) is a novel treatment approach for unresectable HGAA-PM. However, its influence on immunogenomic profiles has not yet been fully explored. MATERIALS AND METHODS We obtained 79 samples of metastatic peritoneal tumor deposits from patients diagnosed with HGAA and performed whole-exome sequencing, RNA sequencing, and immunoprofiling before and after HIPEC. Tumor biopsies were subjected to immunogenomic profiling to detect mutational signatures and immune populations associated with oncologic outcomes. RESULTS Fifteen patients with HGAA-PMs were included in the study. The median progression-free survival (PFS) was 6.7 months (2.7-25.3) and the median overall survival was 11.4 months (4.7-42). Mucin-associated genes (MUC16, MUC3A, and MUC5AC) and titin (TTN) had the highest mutation frequencies. Mutational signatures such as single-base substitution 29 and doublet-base substitution 11 were present in >50% of single-base and double-base mutations. Higher PD-L1 coexpression on CD8+ T cells demonstrated a higher PFS both intratumorally (P = .019) and at the margin (P = .025). CONCLUSION HIPEC-associated mutational signatures were identified in HGAA-PMs. Elevated PD-L1+ cytotoxic T-cell populations after HIPEC had better PFS, offering valuable insights for prognostication in the context of HIPEC treatment.
Collapse
Affiliation(s)
- David G Su
- Division of Surgical Oncology, Yale School of Medicine, New Haven, CT
| | - Ankit Dhiman
- Department of Surgery, Medical College of Georgia, Augusta, GA
| | - Varun V Bansal
- Division of Surgical Oncology, Yale School of Medicine, New Haven, CT
| | - Yuanyuan Zha
- Department of Pathology, University of Chicago Medical Center, Chicago, IL
| | - Ardaman Shergill
- Department of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL
| | - Blasé Polite
- Department of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL
| | - Lindsay Alpert
- Department of Pathology, University of Chicago Medical Center, Chicago, IL
| | - Kiran K Turaga
- Division of Surgical Oncology, Yale School of Medicine, New Haven, CT
| | - Oliver S Eng
- Department of Surgery, University of California, Irvine, Orange, CA
| |
Collapse
|
26
|
Nunes L, Li F, Wu M, Luo T, Hammarström K, Torell E, Ljuslinder I, Mezheyeuski A, Edqvist PH, Löfgren-Burström A, Zingmark C, Edin S, Larsson C, Mathot L, Osterman E, Osterlund E, Ljungström V, Neves I, Yacoub N, Guðnadóttir U, Birgisson H, Enblad M, Ponten F, Palmqvist R, Xu X, Uhlén M, Wu K, Glimelius B, Lin C, Sjöblom T. Prognostic genome and transcriptome signatures in colorectal cancers. Nature 2024; 633:137-146. [PMID: 39112715 PMCID: PMC11374687 DOI: 10.1038/s41586-024-07769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Colorectal cancer is caused by a sequence of somatic genomic alterations affecting driver genes in core cancer pathways1. Here, to understand the functional and prognostic impact of cancer-causing somatic mutations, we analysed the whole genomes and transcriptomes of 1,063 primary colorectal cancers in a population-based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not previously implicated in colorectal cancer and 24 had not been linked to any cancer. Two distinct patterns of pathway co-mutations were observed, timing analyses identified nine early and three late driver gene mutations, and several signatures of colorectal-cancer-specific mutational processes were identified. Mutations in WNT, EGFR and TGFβ pathway genes, the mitochondrial CYB gene and 3 regulatory elements along with 21 copy-number variations and the COSMIC SBS44 signature correlated with survival. Gene expression classification yielded five prognostic subtypes with distinct molecular features, in part explained by underlying genomic alterations. Microsatellite-instable tumours divided into two classes with different levels of hypoxia and infiltration of immune and stromal cells. To our knowledge, this study constitutes the largest integrated genome and transcriptome analysis of colorectal cancer, and interlinks mutations, gene expression and patient outcomes. The identification of prognostic mutations and expression subtypes can guide future efforts to individualize colorectal cancer therapy.
Collapse
Affiliation(s)
- Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fuqiang Li
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Meizhen Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Torell
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Osterman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emerik Osterlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inês Neves
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicole Yacoub
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Unnur Guðnadóttir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Malin Enblad
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xun Xu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kui Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Cong Lin
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
27
|
Crisafulli G. Mutational Signatures in Colorectal Cancer: Translational Insights, Clinical Applications, and Limitations. Cancers (Basel) 2024; 16:2956. [PMID: 39272814 PMCID: PMC11393898 DOI: 10.3390/cancers16172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
A multitude of exogenous and endogenous processes have the potential to result in DNA damage. While the repair mechanisms are typically capable of correcting this damage, errors in the repair process can result in mutations. The findings of research conducted in 2012 indicate that mutations do not occur randomly but rather follow specific patterns that can be attributed to known or inferred mutational processes. The process of mutational signature analysis allows for the inference of the predominant mutational process for a given cancer sample, with significant potential for clinical applications. A deeper comprehension of these mutational signatures in CRC could facilitate enhanced prevention strategies, facilitate the comprehension of genotoxic drug activity, predict responses to personalized treatments, and, in the future, inform the development of targeted therapies in the context of precision oncology. The efforts of numerous researchers have led to the identification of several mutational signatures, which can be categorized into different mutational signature references. In CRC, distinct mutational signatures are identified as correlating with mismatch repair deficiency, polymerase mutations, and chemotherapy treatment. In this context, a mutational signature analysis offers considerable potential for enhancing minimal residual disease (MRD) tests in stage II (high-risk) and stage III CRC post-surgery, stratifying CRC based on the impacts of genetic and epigenetic alterations for precision oncology, identifying potential therapeutic vulnerabilities, and evaluating drug efficacy and guiding therapy, as illustrated in a proof-of-concept clinical trial.
Collapse
|
28
|
Brown GW. The cytidine deaminase APOBEC3C has unique sequence and genome feature preferences. Genetics 2024; 227:iyae092. [PMID: 38946641 DOI: 10.1093/genetics/iyae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.
Collapse
Affiliation(s)
- Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
29
|
Martinek R, Lózsa R, Póti Á, Németh E, Várady G, Szabó P, Szüts D. Comprehensive investigation of the mutagenic potential of six pesticides classified by IARC as probably carcinogenic to humans. CHEMOSPHERE 2024; 362:142700. [PMID: 38936485 DOI: 10.1016/j.chemosphere.2024.142700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Pesticides are significant environmental pollutants, and many of them possess mutagenic potential, which is closely linked to carcinogenesis. Here we tested the mutagenicity of all six pesticides classified probably carcinogenic (Group 2A) by the International Agency of Research on Cancer: 4,4'-DDT, captafol, dieldrin, diazinon, glyphosate and malathion. Whole genome sequencing of TK6 human lymphoblastoid cell clones following 30-day exposure at subtoxic concentrations revealed a clear mutagenic effect of treatment with captafol or malathion when added at 200 nM or 100 μM initial concentrations, respectively. Each pesticide induced a specific base substitution mutational signature: captafol increased C to A mutations primarily, while malathion induced mostly C to T mutations. 4,4'-DDT, dieldrin, diazinon and glyphosate were not mutagenic. Whereas captafol induced chromosomal instability, H2A.X phosphorylation and cell cycle arrest in G2/M phase, all indicating DNA damage, malathion did not induce DNA damage markers or cell cycle alterations despite its mutagenic effect. Hypersensitivity of REV1 and XPA mutant DT40 chicken cell lines suggests that captafol induces DNA adducts that are bypassed by translesion DNA synthesis and are targets for nucleotide excision repair. The experimentally identified mutational signatures of captafol and malathion could shed light on the mechanism of action of these compounds. The signatures are potentially suitable for detecting past exposure in tumour samples, but the reanalysis of large cancer genome databases did not reveal any evidence of captafol or malathion exposure.
Collapse
Affiliation(s)
- Regina Martinek
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary; Doctoral School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| | - Rita Lózsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Ádám Póti
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - György Várady
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Pál Szabó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| |
Collapse
|
30
|
Lee D, Hua M, Wang D, Song L, Zhang T, Hua X, Yu K, Yang XR, Chanock SJ, Shi J, Landi MT, Zhu B. Pan-cancer mutational signature analysis of 111,711 targeted sequenced tumors using SATS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.18.23290188. [PMID: 37425683 PMCID: PMC10327246 DOI: 10.1101/2023.05.18.23290188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tumor mutational signatures are informative for cancer diagnosis and treatment. However, targeted sequencing, commonly used in clinical settings, lacks specialized analytical tools and a dedicated catalogue of mutational signatures. Here, we introduce SATS, a scalable mutational signature analyzer for targeted sequencing data. SATS leverages tumor mutational burdens to identify and quantify signatures in individual tumors, overcoming the challenges of sparse mutations and variable gene panels. Validations across simulated data, pseudo-targeted sequencing data, and matched whole-genome and targeted sequencing samples show that SATS can accurately detect common mutational signatures and estimate their burdens. Applying SATS to 111,711 tumors from the AACR Project GENIE, we created a pan-cancer mutational signature catalogue specific to targeted sequencing. We further validated signatures in lung, breast and colorectal cancers using an additional 16,774 independent samples. This signature catalogue is a valuable resource for estimating signature burdens in individual targeted sequenced tumors, facilitating the integration of mutational signatures with clinical data.
Collapse
|
31
|
Dietzen M, Zhai H, Lucas O, Pich O, Barrington C, Lu WT, Ward S, Guo Y, Hynds RE, Zaccaria S, Swanton C, McGranahan N, Kanu N. Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution. Nat Commun 2024; 15:6039. [PMID: 39019871 PMCID: PMC11255325 DOI: 10.1038/s41467-024-50107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
During each cell cycle, the process of DNA replication timing is tightly regulated to ensure the accurate duplication of the genome. The extent and significance of alterations in this process during malignant transformation have not been extensively explored. Here, we assess the impact of altered replication timing (ART) on cancer evolution by analysing replication-timing sequencing of cancer and normal cell lines and 952 whole-genome sequenced lung and breast tumours. We find that 6%-18% of the cancer genome exhibits ART, with regions with a change from early to late replication displaying an increased mutation rate and distinct mutational signatures. Whereas regions changing from late to early replication contain genes with increased expression and present a preponderance of APOBEC3-mediated mutation clusters and associated driver mutations. We demonstrate that ART occurs relatively early during cancer evolution and that ART may have a stronger correlation with mutation acquisition than alterations in chromatin structure.
Collapse
Affiliation(s)
- Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Haoran Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Olivia Lucas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Oriol Pich
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Christopher Barrington
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Yanping Guo
- CRUK Flow Cytometry Translational Technology Platform, UCL Cancer Institute, London, UK
| | - Robert E Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
32
|
Tan KT, Slevin MK, Leibowitz ML, Garrity-Janger M, Shan J, Li H, Meyerson M. Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing. CELL GENOMICS 2024; 4:100588. [PMID: 38917803 PMCID: PMC11293586 DOI: 10.1016/j.xgen.2024.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | | | - Mitchell L Leibowitz
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Max Garrity-Janger
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jidong Shan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heng Li
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Mochizuki A, Shiraishi K, Honda T, Higashiyama RI, Sunami K, Matsuda M, Shimada Y, Miyazaki Y, Yoshida Y, Watanabe SI, Yatabe Y, Hamamoto R, Kohno T. Passive Smoking-Induced Mutagenesis as a Promoter of Lung Carcinogenesis. J Thorac Oncol 2024; 19:984-994. [PMID: 38382595 DOI: 10.1016/j.jtho.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION The International Agency for Research on Cancer has classified passive smoking (PS) or secondhand smoke exposure as a group 1 carcinogen linked to lung cancer. However, in contrast to active smoking, the mutagenic properties of PS remain unclear. METHODS A consecutive cohort of 564 lung adenocarcinoma samples from female never-smokers, who provided detailed information about their exposure to PS during adolescence and in their thirties through a questionnaire, was prepared. Of these, all 291 cases for whom frozen tumor tissues were available were subjected to whole exome sequencing to estimate tumor mutational burden, and the top 84 cases who were exposed daily, or not, to PS during adolescence, in their thirties or in both periods, were further subjected to whole genome sequencing. RESULTS A modest yet statistically significant increase in tumor mutational burden was observed in the group exposed to PS compared with the group not exposed to PS (median values = 1.44 versus 1.29 per megabase, respectively; p = 0.020). Instead of inducing driver oncogene mutations, PS-induced substantial subclonal mutations exhibiting APOBEC-type signatures, including SMAD4 and ADGRG6 hotspot mutations. A polymorphic APOBEC3A/3B allele-specific to the Asian population that leads to up-regulated expression of APOBEC3A accentuated the mutational load in individuals exposed daily to PS during adolescence. CONCLUSIONS This study reveals that PS-induced mutagenesis can promote lung carcinogenesis. The APOBEC3A/3B polymorphism may serve as a biomarker for identifying passive nonsmoking individuals at high risk of developing lung cancer.
Collapse
Affiliation(s)
- Akifumi Mochizuki
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan; Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Kuniko Sunami
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Maiko Matsuda
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
34
|
Németh E, Szüts D. The mutagenic consequences of defective DNA repair. DNA Repair (Amst) 2024; 139:103694. [PMID: 38788323 DOI: 10.1016/j.dnarep.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
35
|
Gao J, Wu Y, Yu J, Qiu Y, Yi T, Luo C, Zhang J, Lu G, Li X, Xiong F, Wu X, Pan X. Impact of genomic and epigenomic alterations of multigene on a multicancer pedigree. Cancer Med 2024; 13:e7394. [PMID: 38970307 PMCID: PMC11226725 DOI: 10.1002/cam4.7394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Germline mutations have been identified in a small number of hereditary cancers, but the genetic predisposition for many familial cancers remains to be elucidated. METHODS This study identified a Chinese pedigree that presented different cancers (breast cancer, BRCA; adenocarcinoma of the esophagogastric junction, AEG; and B-cell acute lymphoblastic leukemia, B-ALL) in each of the three generations. Whole-genome sequencing and whole-exome sequencing were performed on peripheral blood or bone marrow and cancer biopsy samples. Whole-genome bisulfite sequencing was conducted on the monozygotic twin brothers, one of whom developed B-ALL. RESULTS According to the ACMG guidelines, bioinformatic analysis of the genome sequencing revealed 20 germline mutations, particularly mutations in the DNAH11 (c.9463G > A) and CFH (c.2314G > A) genes that were documented in the COSMIC database and validated by Sanger sequencing. Forty-one common somatic mutated genes were identified in the cancer samples, displaying the same type of single nucleotide substitution Signature 5. Meanwhile, hypomethylation of PLEK2, MRAS, and RXRA as well as hypermethylation of CpG island associated with WT1 was shown in the twin with B-ALL. CONCLUSIONS These findings reveal genomic alterations in a pedigree with multiple cancers. Mutations found in the DNAH11, CFH genes, and other genes predispose to malignancies in this family. Dysregulated methylation of WT1, PLEK2, MRAS, and RXRA in the twin with B-ALL increases cancer susceptibility. The similarity of the somatic genetic changes among the three cancers indicates a hereditary impact on the pedigree. These familial cancers with germline and somatic mutations, as well as epigenomic alterations, represent a common molecular basis for many multiple cancer pedigrees.
Collapse
Affiliation(s)
- Jinyu Gao
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Yongzhang Wu
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jieming Yu
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical UniversityShenzhenChina
| | - Yinbin Qiu
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Tiantian Yi
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Chaochao Luo
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Junxiao Zhang
- SequMed Institute of Biomedical SciencesGuangzhouChina
| | - Gary Lu
- Department of Fetal Medicine and Prenatal DiagnosisZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Xu Li
- Kaiser Permanente Regional Genetics Laboratory, San Jose Medical CenterSan JoseCaliforniaUSA
| | - Fu Xiong
- Department of Medical GeneticsSchool of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Xuedong Wu
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Xinghua Pan
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Precision Regenerative Medicine Research Centre, Division of Medical SciencesMacau University of Science and TechnologyMacaoChina
| |
Collapse
|
36
|
Korenjak M, Temiz NA, Keita S, Chavanel B, Renard C, Sirand C, Cahais V, Mayel T, Vevang KR, Jacobs FC, Guo J, Smith WE, Oram MK, Tăbăran FA, Ahlat O, Cornax I, O'Sullivan MG, Das S, Nandi SP, Cheng Y, Alexandrov LB, Balbo S, Hecht SS, Senkin S, Virard F, Peterson LA, Zavadil J. Human cancer genomes harbor the mutational signature of tobacco-specific nitrosamines NNN and NNK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.600253. [PMID: 38979250 PMCID: PMC11230374 DOI: 10.1101/2024.06.28.600253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tobacco usage is linked to multiple cancer types and accounts for a quarter of all cancer-related deaths. Tobacco smoke contains various carcinogenic compounds, including polycyclic aromatic hydrocarbons (PAH), though the mutagenic potential of many tobacco-related chemicals remains largely unexplored. In particular, the highly carcinogenic tobacco-specific nitrosamines NNN and NNK form pre-mutagenic pyridyloxobutyl (POB) DNA adducts. In the study presented here, we identified genome-scale POB-induced mutational signatures in cell lines and rat tumors, while also investigating their role in human cancer. These signatures are characterized by T>N and C>T mutations forming from specific POB adducts damaging dT and dC residues. Analysis of 2,780 cancer genomes uncovered POB signatures in ∼180 tumors; from cancer types distinct from the ones linked to smoking-related signatures SBS4 and SBS92. This suggests that, unlike PAH compounds, the POB pathway may contribute uniquely to the mutational landscapes of certain hematological malignancies and cancers of the kidney, breast, prostate and pancreas.
Collapse
|
37
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
38
|
Yaacov A, Ben Cohen G, Landau J, Hope T, Simon I, Rosenberg S. Cancer mutational signatures identification in clinical assays using neural embedding-based representations. Cell Rep Med 2024; 5:101608. [PMID: 38866015 PMCID: PMC11228799 DOI: 10.1016/j.xcrm.2024.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
While mutational signatures provide a plethora of prognostic and therapeutic insights, their application in clinical-setting, targeted gene panels is extremely limited. We develop a mutational representation model (which learns and embeds specific mutation signature connections) that enables prediction of dominant signatures with only a few mutations. We predict the dominant signatures across more than 60,000 tumors with gene panels, delineating their landscape across different cancers. Dominant signature predictions in gene panels are of clinical importance. These included UV, tobacco, and apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) signatures that are associated with better survival, independently from mutational burden. Further analyses reveal gene and mutation associations with signatures, such as SBS5 with TP53 and APOBEC with FGFR3S249C. In a clinical use case, APOBEC signature is a robust and specific predictor for resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Our model provides an easy-to-use way to detect signatures in clinical setting assays with many possible clinical implications for an unprecedented number of cancer patients.
Collapse
Affiliation(s)
- Adar Yaacov
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Gil Ben Cohen
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jakob Landau
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tom Hope
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Rosenberg
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
39
|
Anderson CJ, Talmane L, Luft J, Connelly J, Nicholson MD, Verburg JC, Pich O, Campbell S, Giaisi M, Wei PC, Sundaram V, Connor F, Ginno PA, Sasaki T, Gilbert DM, López-Bigas N, Semple CA, Odom DT, Aitken SJ, Taylor MS. Strand-resolved mutagenicity of DNA damage and repair. Nature 2024; 630:744-751. [PMID: 38867042 PMCID: PMC11186772 DOI: 10.1038/s41586-024-07490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.
Collapse
Affiliation(s)
- Craig J Anderson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lana Talmane
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Juliet Luft
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - John Connelly
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory Medicine, NHS Lothian, Edinburgh, UK
| | - Michael D Nicholson
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jan C Verburg
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susan Campbell
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marco Giaisi
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pei-Chi Wei
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vasavi Sundaram
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Paul A Ginno
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Colin A Semple
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sarah J Aitken
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Martin S Taylor
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
40
|
Hanssen F, Garcia MU, Folkersen L, Pedersen A, Lescai F, Jodoin S, Miller E, Seybold M, Wacker O, Smith N, Gabernet G, Nahnsen S. Scalable and efficient DNA sequencing analysis on different compute infrastructures aiding variant discovery. NAR Genom Bioinform 2024; 6:lqae031. [PMID: 38666213 PMCID: PMC11044436 DOI: 10.1093/nargab/lqae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
DNA variation analysis has become indispensable in many aspects of modern biomedicine, most prominently in the comparison of normal and tumor samples. Thousands of samples are collected in local sequencing efforts and public databases requiring highly scalable, portable, and automated workflows for streamlined processing. Here, we present nf-core/sarek 3, a well-established, comprehensive variant calling and annotation pipeline for germline and somatic samples. It is suitable for any genome with a known reference. We present a full rewrite of the original pipeline showing a significant reduction of storage requirements by using the CRAM format and runtime by increasing intra-sample parallelization. Both are leading to a 70% cost reduction in commercial clouds enabling users to do large-scale and cross-platform data analysis while keeping costs and CO2 emissions low. The code is available at https://nf-co.re/sarek.
Collapse
Affiliation(s)
- Friederike Hanssen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, 72076 Baden-Württemberg, Germany
- M3 Research Center, University Hospital, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University of Tübingen, Tübingen 72076, Baden-Württemberg, Germany
| | - Maxime U Garcia
- Seqera Labs, Carrer de Marià Aguilò, 28, Barcelona 08005, Spain
- Barntumörbanken, Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Visionsgatan 4, Solna 17164, Sweden
- National Genomics Infrastructure, SciLifeLab, SciLifeLab, Tomtebodavägen 23, Solna 17165, Sweden
| | | | | | - Francesco Lescai
- Department of Biology and Biotechnology ”L. Spallanzani”, University of Pavia, via Ferrata, 9, Pavia, 27100 PV, Italy
| | - Susanne Jodoin
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
- M3 Research Center, University Hospital, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
| | - Edmund Miller
- Department of Biological Sciences and Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Matthias Seybold
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
| | - Oskar Wacker
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
- M3 Research Center, University Hospital, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
| | - Nicholas Smith
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, Garching, 85748 Bavaria, Germany
| | - Gisela Gabernet
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
- Department of Pathology, Yale School of Medicine, 300 George, New Haven, CT 06510, USA
| | - Sven Nahnsen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, 72076 Baden-Württemberg, Germany
- M3 Research Center, University Hospital, Otfried-Müller Str. 37, Tübingen 72076, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University of Tübingen, Tübingen 72076, Baden-Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen 72076, Baden-Württemberg, Germany
| |
Collapse
|
41
|
Díaz-Gay M, Zhang T, Hoang PH, Khandekar A, Zhao W, Steele CD, Otlu B, Nandi SP, Vangara R, Bergstrom EN, Kazachkova M, Pich O, Swanton C, Hsiung CA, Chang IS, Wong MP, Leung KC, Sang J, McElderry J, Yang L, Nowak MA, Shi J, Rothman N, Wedge DC, Homer R, Yang SR, Lan Q, Zhu B, Chanock SJ, Alexandrov LB, Landi MT. The mutagenic forces shaping the genomic landscape of lung cancer in never smokers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307318. [PMID: 38798417 PMCID: PMC11118654 DOI: 10.1101/2024.05.15.24307318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lung cancer in never smokers (LCINS) accounts for up to 25% of all lung cancers and has been associated with exposure to secondhand tobacco smoke and air pollution in observational studies. Here, we evaluate the mutagenic exposures in LCINS by examining deep whole-genome sequencing data from a large international cohort of 871 treatment-naïve LCINS recruited from 28 geographical locations within the Sherlock-Lung study. KRAS mutations were 3.8-fold more common in adenocarcinomas of never smokers from North America and Europe, while a 1.6-fold higher prevalence of EGFR and TP53 mutations was observed in adenocarcinomas from East Asia. Signature SBS40a, with unknown cause, was found in most samples and accounted for the largest proportion of single base substitutions in adenocarcinomas, being enriched in EGFR-mutated cases. Conversely, the aristolochic acid signature SBS22a was almost exclusively observed in patients from Taipei. Even though LCINS exposed to secondhand smoke had an 8.3% higher mutational burden and 5.4% shorter telomeres, passive smoking was not associated with driver mutations in cancer driver genes or the activities of individual mutational signatures. In contrast, patients from regions with high levels of air pollution were more likely to have TP53 mutations while exhibiting shorter telomeres and an increase in most types of somatic mutations, including a 3.9-fold elevation of signature SBS4 (q-value=3.1 × 10-5), previously linked mainly to tobacco smoking, and a 76% increase of clock-like signature SBS5 (q-value=5.0 × 10-5). A positive dose-response effect was observed with air pollution levels, which correlated with both a decrease in telomere length and an elevation in somatic mutations, notably attributed to signatures SBS4 and SBS5. Our results elucidate the diversity of mutational processes shaping the genomic landscape of lung cancer in never smokers.
Collapse
Affiliation(s)
- Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H. Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher D. Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Shuvro P. Nandi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Maria Pik Wong
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kin Chung Leung
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, Department of Human Genetics, Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Martin A Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C. Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
- Manchester NIHR Biomedical Research Centre, Manchester, UK
| | - Robert Homer
- Yale Surgery Pathology Department, Yale University, New Haven, CT, USA
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
42
|
Zhuk AS, Stepchenkova EI, Zotova IV, Belopolskaya OB, Pavlov YI, Kostroma II, Gritsaev SV, Aksenova AY. G-Quadruplex Forming DNA Sequence Context Is Enriched around Points of Somatic Mutations in a Subset of Multiple Myeloma Patients. Int J Mol Sci 2024; 25:5269. [PMID: 38791307 PMCID: PMC11121618 DOI: 10.3390/ijms25105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, which remains incurable despite recent advances in treatment strategies. Like other forms of cancer, MM is characterized by genomic instability, caused by defects in DNA repair. Along with mutations in DNA repair genes and genotoxic drugs used to treat MM, non-canonical secondary DNA structures (four-stranded G-quadruplex structures) can affect accumulation of somatic mutations and chromosomal abnormalities in the tumor cells of MM patients. Here, we tested the hypothesis that G-quadruplex structures may influence the distribution of somatic mutations in the tumor cells of MM patients. We sequenced exomes of normal and tumor cells of 11 MM patients and analyzed the data for the presence of G4 context around points of somatic mutations. To identify molecular mechanisms that could affect mutational profile of tumors, we also analyzed mutational signatures in tumor cells as well as germline mutations for the presence of specific SNPs in DNA repair genes or in genes regulating G-quadruplex unwinding. In several patients, we found that sites of somatic mutations are frequently located in regions with G4 context. This pattern correlated with specific germline variants found in these patients. We discuss the possible implications of these variants for mutation accumulation and specificity in MM and propose that the extent of G4 context enrichment around somatic mutation sites may be a novel metric characterizing mutational processes in tumors.
Collapse
Affiliation(s)
- Anna S. Zhuk
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Institute of Applied Computer Science, ITMO University, 197101 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina V. Zotova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
| | - Olesya B. Belopolskaya
- Resource Center “Bio-Bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia;
- The Laboratory of Genogeography, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ivan I. Kostroma
- City Hospital No. 15, 198205 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | | | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
| |
Collapse
|
43
|
Liu YT, Meng XY. The underexplored role of APOBEC3 enzymes in autoimmune diseases. Rheumatology (Oxford) 2024; 63:e166-e167. [PMID: 38060252 DOI: 10.1093/rheumatology/kead663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Yi-Tong Liu
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, China
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Xiang-Yu Meng
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, China
- Health Science Center, Hubei Minzu University, Enshi, China
| |
Collapse
|
44
|
Pancotti C, Rollo C, Codicè F, Birolo G, Fariselli P, Sanavia T. MUSE-XAE: MUtational Signature Extraction with eXplainable AutoEncoder enhances tumour types classification. Bioinformatics 2024; 40:btae320. [PMID: 38754097 PMCID: PMC11139523 DOI: 10.1093/bioinformatics/btae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024] Open
Abstract
MOTIVATION Mutational signatures are a critical component in deciphering the genetic alterations that underlie cancer development and have become a valuable resource to understand the genomic changes during tumorigenesis. Therefore, it is essential to employ precise and accurate methods for their extraction to ensure that the underlying patterns are reliably identified and can be effectively utilized in new strategies for diagnosis, prognosis, and treatment of cancer patients. RESULTS We present MUSE-XAE, a novel method for mutational signature extraction from cancer genomes using an explainable autoencoder. Our approach employs a hybrid architecture consisting of a nonlinear encoder that can capture nonlinear interactions among features, and a linear decoder which ensures the interpretability of the active signatures. We evaluated and compared MUSE-XAE with other available tools on both synthetic and real cancer datasets and demonstrated that it achieves superior performance in terms of precision and sensitivity in recovering mutational signature profiles. MUSE-XAE extracts highly discriminative mutational signature profiles by enhancing the classification of primary tumour types and subtypes in real world settings. This approach could facilitate further research in this area, with neural networks playing a critical role in advancing our understanding of cancer genomics. AVAILABILITY AND IMPLEMENTATION MUSE-XAE software is freely available at https://github.com/compbiomed-unito/MUSE-XAE.
Collapse
Affiliation(s)
- Corrado Pancotti
- Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, via Santena 19, Torino 10126, Italy
| | - Cesare Rollo
- Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, via Santena 19, Torino 10126, Italy
| | - Francesco Codicè
- Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, via Santena 19, Torino 10126, Italy
| | - Giovanni Birolo
- Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, via Santena 19, Torino 10126, Italy
| | - Piero Fariselli
- Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, via Santena 19, Torino 10126, Italy
| | - Tiziana Sanavia
- Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, via Santena 19, Torino 10126, Italy
| |
Collapse
|
45
|
Kong LR, Gupta K, Wu AJ, Perera D, Ivanyi-Nagy R, Ahmed SM, Tan TZ, Tan SLW, Fuddin A, Sundaramoorthy E, Goh GS, Wong RTX, Costa ASH, Oddy C, Wong H, Patro CPK, Kho YS, Huang XZ, Choo J, Shehata M, Lee SC, Goh BC, Frezza C, Pitt JJ, Venkitaraman AR. A glycolytic metabolite bypasses "two-hit" tumor suppression by BRCA2. Cell 2024; 187:2269-2287.e16. [PMID: 38608703 DOI: 10.1016/j.cell.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore
| | - Komal Gupta
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Andy Jialun Wu
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - David Perera
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | | | - Syed Moiz Ahmed
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Shawn Lu-Wen Tan
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore
| | | | | | | | | | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Callum Oddy
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Hannan Wong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - C Pawan K Patro
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Yun Suen Kho
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Joan Choo
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mona Shehata
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; University of Cologne, 50923 Köln, Germany
| | - Jason J Pitt
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Genome Institute of Singapore, A(∗)STAR, Singapore 138673, Singapore
| | - Ashok R Venkitaraman
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Medicine, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
46
|
Olkinuora A, Mäki-Nevala S, Ukwattage S, Ristimäki A, Ahtiainen M, Mecklin JP, Peltomäki P. Novel insights into tumorigenesis revealed by molecular analysis of Lynch syndrome cases with multiple colorectal tumors. Front Oncol 2024; 14:1378392. [PMID: 38725616 PMCID: PMC11079657 DOI: 10.3389/fonc.2024.1378392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Background Lynch syndrome (LS) is an autosomal dominant multi-organ cancer syndrome with a high lifetime risk of cancer. The number of cumulative colorectal adenomas in LS does not generally exceed ten, and removal of adenomas via routine screening minimizes the cancer burden. However, abnormal phenotypes may mislead initial diagnosis and subsequently cause suboptimal treatment. Aim Currently, there is no standard guide for the care of multiple colorectal adenomas in LS individuals. We aimed to shed insight into the molecular features and reasons for multiplicity of adenomas in LS patients. Methods We applied whole exome sequencing on nine adenomas (ten samples) and three assumed primary carcinomas (five samples) of an LS patient developing the tumors during a 21-year follow-up period. We compared the findings to the tumor profiles of two additional LS cases ascertained through colorectal tumor multiplicity, as well as to ten adenomas and 15 carcinomas from 23 unrelated LS patients with no elevated adenoma burden from the same population. As LS associated cancers can arise via several molecular pathways, we also profiled the tumors for CpG Island Methylator Phenotype (CIMP), and LINE-1 methylation. Results All tumors were microsatellite unstable (MSI), and MSI was present in several samples derived from normal mucosa as well. Interestingly, frequent frameshift variants in RNF43 were shared among substantial number of the tumors of our primary case and the tumors of LS cases with multiple tumors but almost absent in our control LS cases. The RNF43 variants were completely absent in the normal tissue, indicating tumor-associated mutational hotspots. The RNF43 status correlated with the mutational signature SBS96. Contrary to LS tumors from the reference set with no elevated colorectal tumor burden, the somatic variants occurred significantly more frequently at C>T in the CpG context, irrespective of CIMP or LINE-1 status, potentially indicating other, yet unknown methylation-related mechanisms. There were no signs of somatic mosaicism affecting the MMR genes. Somatic variants in APC and CTNNB1 were unique to each tumor. Conclusion Frequent somatic RNF43 hot spot variants combined with SBS96 signature and increased tendency to DNA methylation may contribute to tumor multiplicity in LS.
Collapse
Affiliation(s)
- Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Satu Mäki-Nevala
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sanjeevi Ukwattage
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, HUS, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maarit Ahtiainen
- Department of Pathology, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center, HUS, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
47
|
Weijers DD, Hirsch S, Bakhuizen JJ, van Engelen N, Kester LA, Kranendonk MEG, Hiemcke-Jiwa LS, de Vos-Kerkhof E, Loeffen JLC, Autry RJ, Pajtler KW, Jäger N, Jongmans MCJ, Kuiper RP. Molecular analysis of cancer genomes in children with Lynch syndrome: Exploring causal associations. Int J Cancer 2024; 154:1455-1463. [PMID: 38175816 DOI: 10.1002/ijc.34832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Lynch syndrome (LS) predisposes to cancer in adulthood and is caused by heterozygous germline variants in a mismatch repair (MMR) gene. Recent studies show an increased prevalence of LS among children with cancer, suggesting a causal relationship. For LS-spectrum (LSS) cancers, including high-grade gliomas and colorectal cancer, causality has been supported by typical MMR-related tumor characteristics, but for non-LSS cancers, causality is unclear. We characterized 20 malignant tumors of 18 children with LS, including 16 non-LSS tumors. We investigated second hits, tumor mutational load, mutational signatures and MMR protein expression. In all LSS tumors and three non-LSS tumors, we detected MMR deficiency caused by second hit somatic alterations. Furthermore, these MMR-deficient tumors carried driver variants that likely originated as a consequence of MMR deficiency. However, in 13 non-LSS tumors (81%), a second hit and MMR deficiency were absent, thus a causal link between LS and cancer development in these children is lacking. These findings demonstrate that causality of LS in children with cancer, which can be determined by molecular tumor characterization, seems to be restricted to specific tumor types. Large molecular and epidemiological studies are needed to further refine the tumor spectrum in children with LS.
Collapse
Affiliation(s)
- Dilys D Weijers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Steffen Hirsch
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jette J Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | | | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Laura S Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jan L C Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Robert J Autry
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Lin CJ, Jin X, Ma D, Chen C, Ou-Yang Y, Pei YC, Zhou CZ, Qu FL, Wang YJ, Liu CL, Fan L, Hu X, Shao ZM, Jiang YZ. Genetic interactions reveal distinct biological and therapeutic implications in breast cancer. Cancer Cell 2024; 42:701-719.e12. [PMID: 38593782 DOI: 10.1016/j.ccell.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.
Collapse
Affiliation(s)
- Cai-Jin Lin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ding Ma
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Chen
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ou-Yang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Chen Pei
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chao-Zheng Zhou
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fei-Lin Qu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yun-Jin Wang
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Fan
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
49
|
Villy MC, Le Ven A, Le Mentec M, Masliah-Planchon J, Houy A, Bièche I, Vacher S, Vincent-Salomon A, Dubois d'Enghien C, Schwartz M, Piperno-Neumann S, Matet A, Malaise D, Bubien V, Lortholary A, Ait Omar A, Cavaillé M, Stoppa-Lyonnet D, Cassoux N, Stern MH, Rodrigues M, Golmard L, Colas C. Familial uveal melanoma and other tumors in 25 families with monoallelic germline MBD4 variants. J Natl Cancer Inst 2024; 116:580-587. [PMID: 38060262 DOI: 10.1093/jnci/djad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Monoallelic germline MBD4 pathogenic variants were recently reported to cause a predisposition to uveal melanoma, associated with a specific tumor mutational signature and good response to immunotherapy. Monoallelic tumor pathogenic variants have also been described in brain tumors, breast cancers, and myxofibrosarcomas, whereas biallelic germline MBD4 pathogenic variants have been involved in a recessive hereditary adenomatous polyposis and a specific type of acute myeloid leukemia. METHODS We analyzed MBD4 for all patients with a diagnosis of uveal melanoma at Institut Curie since July 2021 and in the 3240 consecutive female probands explored at the Institut Curie for suspicion of predisposition to breast cancer between July 2021 and February 2023. RESULTS We describe 25 families whose probands carry a monoallelic germline pathogenic variant in MBD4. Eighteen of these families presented with uveal melanoma (including a case patient with multiple uveal melanoma), and 7 families presented with breast cancer. Family histories showed the first familial case of uveal melanoma in monoallelic MBD4 pathogenic variant carriers and other various types of cancers in relatives, especially breast, renal, and colorectal tumors. CONCLUSIONS Monoallelic MBD4 pathogenic variant may explain some cases of familial and multiple uveal melanoma as well as various cancer types, expanding the tumor spectrum of this predisposition. Further genetic testing in relatives combined with molecular tumor analyses will help define the tumor spectrum and estimate each tumor's risk.
Collapse
Affiliation(s)
- Marie-Charlotte Villy
- Department of Genetics, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - Anaïs Le Ven
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Marine Le Mentec
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Julien Masliah-Planchon
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Alexandre Houy
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Anne Vincent-Salomon
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Catherine Dubois d'Enghien
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Mathias Schwartz
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Sophie Piperno-Neumann
- Paris Sciences & Lettres Research University, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Alexandre Matet
- Université Paris Cité, Paris, France
- Department of Ocular Oncology, Institut Curie, Paris, France
| | - Denis Malaise
- Paris Sciences & Lettres Research University, Paris, France
- Department of Ocular Oncology, Institut Curie, Paris, France
| | | | - Alain Lortholary
- Department of Medical Oncology, GINECO-Hôpital Privé du Confluent, Nantes, France
| | - Amal Ait Omar
- Department of Gastroenterology, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Mathias Cavaillé
- Department of Oncogenetics, Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, AURAGEN, Clermont-Ferrand, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Nathalie Cassoux
- Université Paris Cité, Paris, France
- Department of Ocular Oncology, Institut Curie, Paris, France
| | - Marc-Henri Stern
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Manuel Rodrigues
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| |
Collapse
|
50
|
Yan X, Mischel P, Chang H. Extrachromosomal DNA in cancer. Nat Rev Cancer 2024; 24:261-273. [PMID: 38409389 DOI: 10.1038/s41568-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches.
Collapse
Affiliation(s)
- Xiaowei Yan
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Chang
- Department of Dermatology, Stanford University, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|