1
|
Su L, Dong J, Shen Y, Xie S, Wu S, Pan N, Liu F, Shang Q, Cai F, Ren TB, Yuan L, Yin SF, Han LB, Zhou Y. General (hetero)polyaryl amine synthesis via multicomponent cycloaromatization of amines. Nat Commun 2025; 16:169. [PMID: 39746930 PMCID: PMC11696898 DOI: 10.1038/s41467-024-54190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025] Open
Abstract
(Hetero)polyaryl amines are extensively prevalent in pharmaceuticals, fine chemicals, and materials but the intricate and varied nature of their structures severely restricts their synthesis. Here, we present a selective multicomponent cycloaromatization of structurally and functionally diverse amine substrates for the general and modular synthesis of (hetero)polyaryl amines through copper(I)-catalysis. This strategy directly constructs a remarkable range of amino group-functionalized (hetero)polyaryl frameworks (194 examples), including naphthalene, binaphthalene, phenanthren, benzothiophene, dibenzothiophene, benzofuran, dibenzofuran, quinoline, isoquinoline, quinazoline, and others, which are challenging or impossible to obtain using alternative methods. Copper(III)-acetylide species are involved in driving the exclusive 7-endo-dig cyclization, suppressing many side-reactions that are susceptible to occur. Due to the easy introduction of various functional units into heteropolyarylamines, multiple functionalized fluorescent dyes can be arbitrarily synthesized, which can serve as effective fluorescent probes for monitoring the pathological processes (e.g. chemotherapy-induced cell apoptosis) and studying the related disease mechanisms.
Collapse
Affiliation(s)
- Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Jianyu Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China.
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shimin Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Shaofeng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Neng Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Feng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qian Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Fangfang Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China.
| | - Li-Biao Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
2
|
Lv Z, Hong Z, Ke D, Qian C, Chen X, Zhou S. Regulating the production distribution in Ni-Cu nanoparticle mediated nitrile hydrogenation. J Colloid Interface Sci 2024; 683:247-261. [PMID: 39733540 DOI: 10.1016/j.jcis.2024.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
The selective hydrogenation of nitrile compounds represents a pivotal area of research within both industrial and academic catalysis. In this study, we prepared Ni-Cu bimetallic catalysts through a co-deposition-crystallization sequence, aimed at the efficient production of primary and secondary amines. The enhanced selectivity for primary amines is attributed to the downshift of the d-band center of Ni0.1Cu, which weakens the adsorption of key imine intermediates. Consequently, the synthesized Ni-Cu catalysts demonstrated exceptional catalytic performance in the selective hydrogenation of nitrile compounds, including those with reduction-sensitive functional groups such as -Cl and -Br, achieving 100 % conversion efficiency and significant yields ranging from 80 % to 99 %. The reaction conditions were comprehensively optimized, taking into account factors such as temperature, solvent, time, additives, and hydrogen pressure. Furthermore, the catalytic performance of Ni0.1Cu and Ni0.4Cu in the selective hydrogenation of nitriles was sustained over at least five reaction cycles. Temperature-programmed desorption results elucidated the structure-activity relationship, revealing that a strong interaction site prevails in Ni0.4Cu, while a weaker or moderate interaction site in Ni0.1Cu is responsible for the formation of primary amines. Theoretical calculations indicate that the reaction proceeds via an imine mechanism, with benzylideneimine serving as a key intermediate. This work may stimulate further research into the development of bimetallic nano-catalysts for selective nitrile hydrogenation in industrial catalytic processes.
Collapse
Affiliation(s)
- Zihan Lv
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China
| | - Zeng Hong
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China.
| | - Da Ke
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China.
| | - Xinzhi Chen
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China.
| |
Collapse
|
3
|
Wang Y, Chen B, Li L, Mei X, Gu Y, Wu H, He M, Han B. Thermally-Stable Single-Site Pd on CeO 2 Catalyst for Selective Amination of Phenols to Aromatic Amines without External Hydrogen. Angew Chem Int Ed Engl 2024; 63:e202412062. [PMID: 39315608 DOI: 10.1002/anie.202412062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Developing a new route to produce aromatic amines as key chemicals from renewable phenols is a benign alternative to current fossil-based routes like nitroaromatic hydrogenation, but is challenging because of the high dissociation energy of the Ar-OH bond and difficulty in controlling side reactions. Herein, an aerosolizing-pyrolysis strategy was developed to prepare high-density single-site cationic Pd species immobilized on CeO2 (Pd1/CeO2) with excellent sintering resistance. The obtained Pd1/CeO2 catalysts achieved remarkable selectivity of important aromatic amines (yield up to 76.2 %) in the phenols amination with amines without external hydrogen sources, while Pd nano-catalysts mainly afforded phenyl-ring-saturation products. The excellent catalytic properties of the Pd1/CeO2 are closely related to high-loading Pd single-site catalysts with abundant surface defect sites and suitable acid-base properties. This report provides a sustainable route for producing aromatic amines from renewable feedstocks.
Collapse
Affiliation(s)
- Yaqin Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, P. R. China
| | - Xuelei Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| |
Collapse
|
4
|
Qiu X, Qu G, Cui B, Cao C, Shi Y. Palladium Catalyzed Cyanation of Diaryl Sulfoxides. J Org Chem 2024; 89:17729-17737. [PMID: 39511133 DOI: 10.1021/acs.joc.4c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Aryl nitriles are highly versatile and useful compounds. A palladium-catalyzed cyanation of diaryl sulfoxides using bench-stable Zn(CN)2 as the cyanating reagent has been developed. The reaction proceeded well using Pd(OAc)2 as the catalyst with the inexpensive ligand PCy3 in the presence of t-BuONa. The method has a broad scope of substrates and is scalable. The regioselective cyanation of unsymmetrical diaryl sulfoxides was observed at the side of electron-deficient and more steric hindered aryl groups.
Collapse
Affiliation(s)
- Xianchao Qiu
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangcai Qu
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Benqiang Cui
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Changsheng Cao
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Yanhui Shi
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
5
|
Kuloor C, Akash, Goyal V, Zbořil R, Beller M, Jagadeesh RV. Nickel-Catalyzed Reductive Hydrolysis of Nitriles to Alcohols. Angew Chem Int Ed Engl 2024:e202414689. [PMID: 39639819 DOI: 10.1002/anie.202414689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Nitriles are an abundant class of compounds that are widely used as versatile feedstocks to produce various chemicals including pharmaceuticals, and agrochemicals as well as materials. Here we report Ni-catalyzed reductive hydrolysis of nitriles to alcohols in the presence of molecular hydrogen. This conversion likely occurs in a domino reaction sequence that first involves the hydrogenation of nitrile to primary imine, then the hydrolysis of imine, and subsequent deamination to the aldehyde, which is finally hydrogenated to the desired alcohol. Crucial for this reductive hydrolysis process is the commercially available triphos-ligated Ni-complex that enables highly efficient and selective transformation of aromatic, heterocyclic, and aliphatic nitriles including fatty nitriles to prepare functionalized primary alcohols. Further, the synthetic applicability of this Ni-based protocol is presented for the selective conversion of nitrile to alcoholic group in structurally diverse and complex drug molecules as well as agrochemicals. The resulting products, alcohols are indispensable chemicals commonly used in organic synthesis and life sciences as well as material and energy technologies.
Collapse
Affiliation(s)
- Chakreshwara Kuloor
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Akash
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Vishakha Goyal
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Mathias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| |
Collapse
|
6
|
Huang H, Liu S, Guo X, Jiang H, Cai Y, Tan Z, Zhou G, Cai X, Zhuang M, Xie S. Sustainable ammonia and amines from chitin. BIORESOURCE TECHNOLOGY 2024; 414:131582. [PMID: 39384048 DOI: 10.1016/j.biortech.2024.131582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Efforts are underway to explore alternative methods to the Haber-Bosch process for sustainable ammonia production, while the potential for ammonia extraction from natural nitrogenous biomass is under-exploited. Here, a synergistic catalytic strategy involving acid and modified Ru-based catalysts is communicated for the direct production of amines and ammonia from chitin. Phosphoric acid promotes the cleavage of ether bonds in biomass polymers and also serves to protect amino groups from being removed. Selective hydrogenation, deoxygenation, and amination can be achieved by controllably adjusting the ratio of Ru0/Run+. The utilization of nitrogen atoms in chitin can reach up to 95 % (21 % amines, 74 % ammonium), and the catalytic process is applicable to waste shrimp shells. This study demonstrates the possibility of efficient production of nitrogen-containing compounds from abundant biopolymers.
Collapse
Affiliation(s)
- Hao Huang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengyao Liu
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xucong Guo
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huoyan Jiang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yihong Cai
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zixuan Tan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guangping Zhou
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaolan Cai
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Min Zhuang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoqu Xie
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China.
| |
Collapse
|
7
|
Sokolova D, Lurshay TC, Rowbotham JS, Stonadge G, Reeve HA, Cleary SE, Sudmeier T, Vincent KA. Selective hydrogenation of nitro compounds to amines by coupled redox reactions over a heterogeneous biocatalyst. Nat Commun 2024; 15:7297. [PMID: 39181899 PMCID: PMC11344822 DOI: 10.1038/s41467-024-51531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Cleaner synthesis of amines remains a key challenge in organic chemistry because of their prevalence in pharmaceuticals, agrochemicals and synthetic building blocks. Here, we report a different paradigm for chemoselective hydrogenation of nitro compounds to amines, under mild, aqueous conditions. The hydrogenase enzyme releases electrons from H2 to a carbon black support which facilitates nitro-group reduction. For 30 nitroarenes we demonstrate full conversion (isolated yields 78 - 96%), with products including pharmaceuticals benzocaine, procainamide and mesalazine, and 4-aminophenol - precursor to paracetamol (acetaminophen). We also showcase gram-scale synthesis of procainamide with 90% isolated yield. We demonstrate potential for extension to aliphatic substrates. The catalyst is highly selective for reduction of the nitro group over other unsaturated bonds, tolerant to a wide range of functional groups, and exhibits excellent stability in reactions lasting up to 72 hours and full reusability over 5 cycles with a total turnover number over 1 million, indicating scope for direct translation to fine chemical manufacturing.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Tara C Lurshay
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- HydRegen Limited, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, OX5 1PF, UK
| | - Jack S Rowbotham
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, M1 7DN, UK
| | - Georgia Stonadge
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Holly A Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- HydRegen Limited, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, OX5 1PF, UK
| | - Sarah E Cleary
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
- HydRegen Limited, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, OX5 1PF, UK.
| | - Tim Sudmeier
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
8
|
Zhu Y, Wu D, Tang J, Braaten D, Liu B, Peng Z. Advances in electrocatalytic dehydrogenation of ethylamine to acetonitrile. Chem Commun (Camb) 2024; 60:9007-9021. [PMID: 39091223 DOI: 10.1039/d4cc03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The electrocatalytic dehydrogenation of ethylamine (EDH), owing to its high hydrogen content, holds broad prospects in electrochemical hydrogen (H2) production, H2 storage, and addressing energy issues, thus deserving wide attention. In this feature article, we first summarized the fundamentals of thermocatalytic and electrocatalytic EDH and reviewed the recent state-of-the-art advances in catalyst research, specifically platinum group metal (PGM) catalysts and non-PGM catalysts. We systematically discussed the potential applications of electrocatalytic EDH in energy storage and conversion. Finally, we provide our perspective on the key challenges and future developments in this field. We believe this feature article will offer helpful guidance for oriented design and optimization of stable and efficient catalysts for electrocatalytic EDH and related energy applications.
Collapse
Affiliation(s)
- Yanlin Zhu
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| | - Dezhen Wu
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH, 44325, USA
| | - Jinyao Tang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| | - Dakota Braaten
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Bin Liu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Zhenmeng Peng
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
9
|
Zhu FY, Wu BD, Du MH, Yao JL, Abrahams BF, Gu H, Braunstein P, Lang JP. Tandem Protocol for Diversified Deuteration of Secondary Aliphatic Amines under Mild Conditions. J Org Chem 2024; 89:11414-11420. [PMID: 39102497 DOI: 10.1021/acs.joc.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Deuteration of amine compounds has been widely of concern because of its practical role in organic reaction mechanisms and drug research; however, only limited deuteration label methods are accessible with D2O as a deuterium source. Herein, we propose a convenient deuteration protocol, including preparing D2 by the AlGa activation method, using PtRu nanowires as catalysts, and utilizing the elementary step in the couple reaction involving an imine unit, to realize the rapid preparation of a secondary amine with a diversified deuteration label. The self-coupling between nitriles not only provides a symmetric secondary amine with four α-D atoms but also produces high-valued ND3 in an atomic-economic way.
Collapse
Affiliation(s)
- Feng-Yuan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Bao-De Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Ming-Hao Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | | | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Pierre Braunstein
- Université de Strasbourg─CNRS, Institut de Chimie (UMR 7177 CNRS), 4 rue Blaise Pascal-CS 90032, Strasbourg 67081, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Liu X, Huang L, Ma Y, She G, Zhou P, Zhu L, Zhang Z. Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation. Nat Commun 2024; 15:7012. [PMID: 39147765 PMCID: PMC11327299 DOI: 10.1038/s41467-024-51307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
A single-atom catalyst with generally regarded inert Zn-N4 motifs derived from ZIF-8 is unexpectedly efficient for the activation of alcohols, enabling alcohol-mediated alkylation and transfer hydrogenation. C-alkylation of nitriles, ketones, alcohols, N-heterocycles, amides, keto acids, and esters, and N-alkylation of amines and amides all go smoothly with the developed method. Taking the α-alkylation of nitriles with alcohols as an example, the α-alkylation starts from the (1) nitrogen-doped carbon support catalyzed dehydrogenation of alcohols into aldehydes, which further condensed with nitriles to give vinyl nitriles, followed by (2) transfer hydrogenation of C=C bonds in vinyl nitriles on Zn-N4 sites. The experimental results and DFT calculations reveal that the Lewis acidic Zn-N4 sites promote step (2) by activating the alcohols. This is the first example of highly efficient single-atom catalysts for various organic transformations with biomass-derived alcohols as the alkylating reagents and hydrogen donors.
Collapse
Affiliation(s)
- Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Yuandie Ma
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Guoqiang She
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Peng Zhou
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
11
|
Liu H, Tian L, Zhang Z, Wang L, Li J, Liang X, Zhuang J, Yin H, Yang D, Zhao G, Su F, Wang D, Li Y. Atomic-Level Asymmetric Tuning of the Co 1-N 3P 1 Catalyst for Highly Efficient N-Alkylation of Amines with Alcohols. J Am Chem Soc 2024; 146:20518-20529. [PMID: 38995120 DOI: 10.1021/jacs.4c07197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Despite the extensive development of non-noble metals for the N-alkylation of amines with alcohols, the exploitation of catalysts with high selectivity, activity, and stability still faces challenges. The controllable modification of single-atom sites through asymmetric coordination with a second heteroatom offers new opportunities for enhancing the intrinsic activity of transition metal single-atom catalysts. Here, we prepared the asymmetric N/P hybrid coordination of single-atom Co1-N3P1 by absorbing the Co-P complex on ZIF-8 using a concise impregnation-pyrolysis process. The catalyst exhibits ultrahigh activity and selectivity in the N-alkylation of aniline and benzyl alcohol, achieving a turnover number (TON) value of 3480 and a turnover frequency (TOF) value of 174-h. The TON value is 1 order of magnitude higher than the reported catalysts and even 37-fold higher than that of the homogeneous catalyst CoCl2(PPh3)2. Furthermore, the catalyst maintains its high activity and selectivity even after 6 cycles of usage. Controlling experiments and isotope labeling experiments confirm that in the asymmetric Co1-N3P1 system, the N-alkylation of aniline with benzyl alcohol proceeds via a transfer hydrogenation mechanism involving the monohydride route. Theoretical calculations prove that the superior activity of asymmetric Co1-N3P1 is attributed to the higher d-band energy level of Co sites, which leads to a more stable four-membered ring transition state and a lower reaction energy barrier compared to symmetrical Co1-N4.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Luyao Tian
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Zhentao Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Ligang Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Jialu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jiahao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hang Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Da Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Guofeng Zhao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Fabing Su
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
12
|
Feng M, Norlöff M, Guichard B, Kealey S, D'Anfray T, Thuéry P, Taran F, Gee A, Feuillastre S, Audisio D. Pyridine-based strategies towards nitrogen isotope exchange and multiple isotope incorporation. Nat Commun 2024; 15:6063. [PMID: 39025881 PMCID: PMC11258231 DOI: 10.1038/s41467-024-50139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Isotopic labeling is at the core of health and life science applications such as nuclear imaging, metabolomics and plays a central role in drug development. The rapid access to isotopically labeled organic molecules is a sine qua non condition to support these societally vital areas of research. Based on a rationally driven approach, this study presents an innovative solution to access labeled pyridines by a nitrogen isotope exchange reaction based on a Zincke activation strategy. The technology conceptualizes an opportunity in the field of isotope labeling. 15N-labeling of pyridines and other relevant heterocycles such as pyrimidines and isoquinolines showcases on a large set of derivatives, including pharmaceuticals. Finally, we explore a nitrogen-to-carbon exchange strategy in order to access 13C-labeled phenyl derivatives and deuterium labeling of mono-substituted benzene from pyridine-2H5. These results open alternative avenues for multiple isotope labeling on aromatic cores.
Collapse
Affiliation(s)
- Minghao Feng
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Maylis Norlöff
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Benoit Guichard
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Steven Kealey
- King's College London, School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Timothée D'Anfray
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antony Gee
- King's College London, School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| | - Davide Audisio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Xing Q, Chandrachud PP, Tillett K, Lopchuk JM. Regioselective hydroamination of unactivated olefins with diazirines as a diversifiable nitrogen source. Nat Commun 2024; 15:6049. [PMID: 39025859 PMCID: PMC11258257 DOI: 10.1038/s41467-024-50254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Nitrogen-containing compounds, such as amines, hydrazines, and heterocycles, play an indispensable role in medicine, agriculture, and materials. Alkylated derivatives of these compounds, especially in sterically congested environments, remain a challenge to prepare. Here we report a versatile method for the regioselective hydroamination of readily available unactivated olefins with diazirines. Over fifty examples are reported, including the protecting group-free amination of fourteen different natural products. A broad functional group tolerance includes alcohols, ketones, aldehydes, and epoxides. The proximate products of these reactions are diaziridines, which, under mild conditions, are converted to primary amines, hydrazines, and heterocycles. Five target- and diversity-oriented syntheses of pharmaceutical compounds are shown, along with the preparation of a bis-15N diazirine validated in the late-stage isotopic labeling of an RNA splicing modulator candidate. In this work, we report using diazirine (1) as an electrophilic nitrogen source in a regioselective hydroamination reaction, and the diversification of the resulting diaziridines.
Collapse
Affiliation(s)
- Qingyu Xing
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Preeti P Chandrachud
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Khalilia Tillett
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Justin M Lopchuk
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
14
|
Bai JQ, Xu J, Ma M, Miao Z, Yu J, Liu H, Qian Z, Cai M, Cheng Q, Jiang Y, Sun S. Photo-thermal Catalytic Hydrogenation of Halogenated Nitrobenzenes over Ni/P25 Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12179-12190. [PMID: 38809579 DOI: 10.1021/acs.langmuir.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As haloanilines (HANs) are important organic intermediates and fine chemicals, their preparation over non-noble-metal-based catalysts by catalytic hydrogenation has attracted wide attention. However, the reaction suffers from relatively harsh conditions. Herein, we found that a 3.5%Ni/P25 catalyst exhibited superior photo-thermal catalytic activity with a TOFs of 5207 h-1 for hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline under a 300 W full spectrum, which was much higher than that of photo- and thermal catalysis alone. Moreover, the 3.5%Ni/P25 catalyst could be recycled 4 times and was effective for the hydrogenation of various halonitrobenzenes (HNBs) with superior selectivity. Furthermore, the kinetic research showed that the excellent catalytic performance could be attributed to the better activation and dissociation of H2 by photo-thermal catalysis and the hydrogenation of p-CNB obeyed the condensation routine by ionic hydrogenation over 3.5%Ni/P25.
Collapse
Affiliation(s)
- Jia-Qi Bai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Sennics Co., Ltd. Anhui, 1111 West Cuihuliu Road, Circulation Economical Industrial Park, Tongling 244000, People's Republic of China
| | - Jiahui Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Mei Ma
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Zhengan Miao
- Sennics Co., Ltd. Anhui, 1111 West Cuihuliu Road, Circulation Economical Industrial Park, Tongling 244000, People's Republic of China
| | - Jiawen Yu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Huangfei Liu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Zhangkai Qian
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Qin Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yong Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| |
Collapse
|
15
|
Nicolai J, Fantoni T, Butcher TW, Arlow SI, Ryabukhin SV, Volochnyuk DM, Hartwig JF. Copper-Mediated Cyanodifluoromethylation of (Hetero)aryl Iodides and Activated (Hetero)aryl Bromides with TMSCF 2CN. J Am Chem Soc 2024; 146:15464-15472. [PMID: 38780539 DOI: 10.1021/jacs.4c03618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Molecules bearing fluorine are increasingly prevalent in pharmaceuticals, agrochemicals, and functional materials. The cyanodifluoromethyl group is unique because its size is closer than that of any other substituted difluoromethyl group to the size of the trifluoromethyl group, but its electronic properties are distinct from those of the trifluoromethyl group. In addition, the presence of the cyano group provides synthetic entry to a wide range of substituted difluoromethyl groups. However, the synthesis of cyanodifluoromethyl compounds requires multiple steps, highly reactive reagents (such as DAST, NSFI, or IF5), or specialized starting materials (such as α,α-dichloroacetonitriles or α-mercaptoacetonitriles). Herein, we report a copper-mediated cyanodifluoromethylation of aryl and heteroaryl iodides and activated aryl and heteroaryl bromides with TMSCF2CN. This cyanodifluoromethylation tolerates an array of functional groups, is applicable to late-stage functionalization of complex molecules, yields analogues of FDA-approved pharmaceuticals and fine chemicals, and enables the synthesis of a range of complex molecules bearing a difluoromethylene unit by transformations of the electron-poor CN unit. Calculations of selected steps of the reaction mechanism by Density Functional Theory indicate that the barriers for both the oxidative addition of iodobenzene to [(DMF)CuCF2CN] and the reductive elimination of the fluoroalkyl product from the fluoroalkyl copper intermediate lie in between those of [(DMF)CuCF3] and [(DMF)CuCF2C(O)NMe2].
Collapse
Affiliation(s)
- Jeremy Nicolai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tommaso Fantoni
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Trevor W Butcher
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sophie I Arlow
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Serhiy V Ryabukhin
- The Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
- Enamine Ltd, Kyiv 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv 02000, Ukraine
| | - Dmytro M Volochnyuk
- The Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
- Enamine Ltd, Kyiv 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv 02000, Ukraine
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Tian H, Ding CY, Liao RZ, Li M, Tang C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Primary Amines to Nitriles. J Am Chem Soc 2024; 146:11801-11810. [PMID: 38626455 DOI: 10.1021/jacs.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The direct double dehydrogenation from primary amines to nitriles without an oxidant or hydrogen acceptor is both intriguing and challenging. In this paper, we describe a non-noble metal catalyst capable of realizing such a transformation with high efficiency. A cobalt-centered N,N-bidentate complex was designed and employed as a metal-ligand cooperative dehydrogenation catalyst. Detailed kinetic studies, control experiments, and DFT calculations revealed the crucial hydride transfer, proton transfer, and hydrogen evolution processes. Finally, a tandem outer-sphere/inner-sphere mechanism was proposed for the dehydrogenation of amines to nitriles through an imine intermediate.
Collapse
Affiliation(s)
- Haitao Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Cai-Yun Ding
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Man Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
18
|
Xin H, Yang M, Guan C, Li J, Gao P, Yang X, Duan XH, Guo LN. Iron-Catalyzed Cyanide-Free Synthesis of Alkyl Nitriles: Oxidative Deconstruction of Cycloalkanones with Ammonium Salts and Aerobic Oxidation. Org Lett 2024; 26:2266-2270. [PMID: 38451860 DOI: 10.1021/acs.orglett.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A sustainable, cyanide-free synthesis of alkyl nitriles via the aerobic oxidative deconstruction of unstrained cycloalkanones with ammonium salts has been developed. Using inexpensive and stable ammonium salts as the nitrogen source, a variety of alkyl nitriles containing a distal carbonyl group were obtained in good yields under visible-light-promoted iron catalysis. This protocol is characterized by mild conditions, abundant and environmentally benign materials, and high atom and step economy with minimal waste generation. The primary mechanism study revealed that 1O2 is likely to be involved in this reaction.
Collapse
Affiliation(s)
- Hong Xin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyu Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng Guan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jialong Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xu Yang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li-Na Guo
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Biriukov KO, Podyacheva E, Tarabrin I, Afanasyev OI, Chusov D. Simplified Version of the Eschweiler-Clarke Reaction. J Org Chem 2024; 89:3580-3584. [PMID: 38362854 DOI: 10.1021/acs.joc.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The traditional Eschweiler-Clarke reaction is a three-component process involving formaldehyde, amine, and formic acid. In this work, we showed that the reductive potential of formaldehyde was sufficient to provide methylation of secondary amines in the absence of acidic additives. Various acid-sensitive moieties remain intact under developed conditions. The scalability of the elaborated approach was shown for several products. Synthesis of the antifungal agent butenafine demonstrated the preparative utility of the developed approach.
Collapse
Affiliation(s)
- Klim O Biriukov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, 119334 Moscow, Russia
| | - Evgeniya Podyacheva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, 119334 Moscow, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russian Federation
| | - Ignatii Tarabrin
- Moscow South-Eastern School named after V. I. Chuikov (Moscow Chemical Lyceum), Tamozhenniy proezd 4, 111033 Moscow, Russian Federation
| | - Oleg I Afanasyev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, 119334 Moscow, Russia
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation
| | - Denis Chusov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, 119334 Moscow, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russian Federation
| |
Collapse
|
20
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
21
|
Wang T, He F, Jiang W, Liu J. Electrohydrogenation of Nitriles with Amines by Cobalt Catalysis. Angew Chem Int Ed Engl 2024; 63:e202316140. [PMID: 38124405 DOI: 10.1002/anie.202316140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Catalytic hydrogenation of nitriles represents an efficient and sustainable one-step synthesis of valuable bulk and fine chemicals. We report herein a molecular cobalt electrocatalyst for selective hydrogenative coupling of nitriles with amines using protons as the hydrogen source. The key to success for this reductive reaction is the use of an electrocatalytic approach for efficient cobalt-hydride generation through a sequence of cathodic reduction and protonation. As only electrons (e- ) and protons (H+ ) as the redox equivalent and hydrogen source, this general electrohydrogenation protocol is showcased by highly selective and straightforward synthesis of various functionalized and structurally diverse amines, as well as deuterium isotope labeling applications. Mechanistic studies reveal that the electrogenerated cobalt-hydride transfer to nitrile process is the rate-determining step.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Fangfang He
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, 511300, Guangzhou, Guangdong Province, China
| |
Collapse
|
22
|
Ma P, Wang Y, Ma N, Wang J. Alkaline-Metal-Promoted Divergent Synthesis of 1-Aminoisoquinolines and Isoquinolines. J Org Chem 2024. [PMID: 38193431 DOI: 10.1021/acs.joc.3c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Alkaline-metal-promoted divergent syntheses of 1-aminoisoquinolines and isoquinolines have been reported involving 2-methylaryl aldehydes, nitriles, and LiN(SiMe3)2 as reactants. In addition, the three-component reaction of 2-methylaryl nitriles, aldehydes, and LiN(SiMe3)2 has been developed to furnish 1-aminoisoquinolines. This protocol features readily available starting materials, excellent chemoselectivity, broad substrate scope, and satisfactory yields.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ning Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
24
|
Abstract
Stable isotopes such as 2H, 13C, and 15N have important applications in chemistry and drug discovery. Late-stage incorporation of uncommon isotopes via isotopic exchange allows for the direct conversion of complex molecules into their valuable isotopologues without requiring a de novo synthesis. While synthetic methods exist for the conversion of hydrogen and carbon atoms into their less abundant isotopes, a corresponding method for accessing 15N-primary amines from their naturally occurring 14N-analogues has not yet been disclosed. We report an approach to access 15N-labeled primary amines via late-stage isotopic exchange using a simple benzophenone imine as the 15N source. By activating α-1 and α-2° amines to Katritzky pyridinium salts and α-3° amines to redox-active imines, we can engage primary alkyl amines in a deaminative amination. The redox-active imines proceed via a radical-polar crossover mechanism, whereas the Katritzky salts are engaged in copper catalysis via an electron donor-acceptor complex. The method is general for a variety of amines, including multiple drug compounds, and results in complete and selective isotopic labeling.
Collapse
Affiliation(s)
- Julia R Dorsheimer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
25
|
Huang Q, Otake KI, Kitagawa S. A Nitro-Modified Luminescent Hydrogen-Bonded Organic Framework for Non-Contact and High-Contrast Sensing of Aromatic Amines. Angew Chem Int Ed Engl 2023; 62:e202310225. [PMID: 37596804 DOI: 10.1002/anie.202310225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
The global demand for intelligent sensing of aromatic amines has consistently increased due to concerns about health and the environment. Efforts to improve material design and understand mechanisms have been made, but highly efficient non-contact sensing with host-guest structures remains a challenge. Herein, we report the first example of non-contact, high-contrast sensing of aromatic amines in a hydrogen-bonded organic framework (HOF) based on a nitro-modified stereo building block. Direct observation of binding interactions of trapped amines is achieved, leading to charge separation-induced emission quenching between host and guests. Non-contact sensing of aniline and diphenylamine is realized with quenching efficiencies up to 91.7 % and 97.0 %, which shows potential for versatile applications. This work provides an inspiring avenue to engineer multifunctional HOFs via co-crystal preparations, thus enriching applications of porous materials with explicit mechanisms.
Collapse
Affiliation(s)
- Qiuyi Huang
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto University Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto University Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto University Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
26
|
Qi H, Li Y, Zhou Z, Cao Y, Liu F, Guan W, Zhang L, Liu X, Li L, Su Y, Junge K, Duan X, Beller M, Wang A, Zhang T. Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru 1Co NP catalyst. Nat Commun 2023; 14:6329. [PMID: 37816717 PMCID: PMC10564752 DOI: 10.1038/s41467-023-42043-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
The sustainable production of value-added N-heterocycles from available biomass allows to reduce the reliance on fossil resources and creates possibilities for economically and ecologically improved synthesis of fine and bulk chemicals. Herein, we present a unique Ru1CoNP/HAP surface single-atom alloy (SSAA) catalyst, which enables a new type of transformation from the bio-based platform chemical furfural to give N-heterocyclic piperidine. In the presence of NH3 and H2, the desired product is formed under mild conditions with a yield up to 93%. Kinetic studies show that the formation of piperidine proceeds via a series of reaction steps. Initially, in this cascade process, furfural amination to furfurylamine takes place, followed by hydrogenation to tetrahydrofurfurylamine (THFAM) and then ring rearrangement to piperidine. DFT calculations suggest that the Ru1CoNP SSAA structure facilitates the direct ring opening of THFAM resulting in 5-amino-1-pentanol which is quickly converted to piperidine. The value of the presented catalytic strategy is highlighted by the synthesis of an actual drug, alkylated piperidines, and pyridine.
Collapse
Affiliation(s)
- Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock, 18059, Germany
| | - Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhitong Zhou
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fei Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weixiang Guan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Leilei Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock, 18059, Germany
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock, 18059, Germany.
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
27
|
Wang Z, Zheng Y, Feng J, Zhang W, Gao Q. Promoting Amination of Furfural to Furfurylamine by Metal-Support Interactions on Pd/MoO 3-x Catalysts. Chemistry 2023; 29:e202300947. [PMID: 37309246 DOI: 10.1002/chem.202300947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
The reductive amination of carbonyl compounds is one of the most straightforward protocols to construct C-N bonds, but highly desires active and selective catalysts. Herein, Pd/MoO3-x catalysts are proposed for furfural amination, in which the interactions between Pd nanoparticles and MoO3-x supports can be easily ameliorated by varying the preparation temperature toward efficient catalytic turnover. Thanks to the synergistic cooperation of MoV -rich MoO3-x and highly dispersed Pd, the optimal catalysts afford the high yield of furfurylamine (84 %) at 80 °C. Thereinto, MoV species not only acts as the acidic promoter to facilitate the activation of carbonyl groups, but also interacts with Pd nanoparticles to promote the subsequent hydrogenolysis of Schiff base N-furfurylidenefurfurylamine and its germinal diamine. The good efficiency of Pd/MoO3-x within a broad substrate scope further highlights the key contribution of metal-support interactions to the refinery of biomass feedstocks.
Collapse
Affiliation(s)
- Zhiyuan Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, 510632, Guangzhou, P. R. China
| | - Yinjian Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, 510632, Guangzhou, P. R. China
| | - Jiye Feng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, 510632, Guangzhou, P. R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, 510632, Guangzhou, P. R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, 510632, Guangzhou, P. R. China
| |
Collapse
|
28
|
Spieß P, Sirvent A, Tiefenbrunner I, Sargueil J, Fernandes AJ, Arroyo‐Bondía A, Meyrelles R, Just D, Prado‐Roller A, Shaaban S, Kaiser D, Maulide N. Nms-Amides: An Amine Protecting Group with Unique Stability and Selectivity. Chemistry 2023; 29:e202301312. [PMID: 37283481 PMCID: PMC10946766 DOI: 10.1002/chem.202301312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 06/08/2023]
Abstract
p-Toluenesulfonyl (Tosyl) and nitrobenzenesulfonyl (Nosyl) are two of the most common sulfonyl protecting groups for amines in contemporary organic synthesis. While p-toluenesulfonamides are known for their high stability/robustness, their use in multistep synthesis is plagued by difficult removal. Nitrobenzenesulfonamides, on the other hand, are easily cleaved but display limited stability to various reaction conditions. In an effort to resolve this predicament, we herein present a new sulfonamide protecting group, which we term Nms. Initially developed through in silico studies, Nms-amides overcome these previous limitations and leave no room for compromise. We have investigated the incorporation, robustness and cleavability of this group and found it to be superior to traditional sulfonamide protecting groups in a broad range of case studies.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Ana Sirvent
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| | - Irmgard Tiefenbrunner
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Jules Sargueil
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Anthony J. Fernandes
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| | - Ana Arroyo‐Bondía
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Ricardo Meyrelles
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - David Just
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | | | - Saad Shaaban
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Daniel Kaiser
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
29
|
Wei C, Fang Y, Liu B, Tang C, Dong B, Yin X, Bian Z, Wang Z, Liu J, Qian Y, Wang G. Lattice oxygen-mediated electron tuning promotes electrochemical hydrogenation of acetonitrile on copper catalysts. Nat Commun 2023; 14:3847. [PMID: 37386000 DOI: 10.1038/s41467-023-39558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Copper is well-known to be selective to primary amines via electrocatalytic nitriles hydrogenation. However, the correlation between the local fine structure and catalytic selectivity is still illusive. Herein, we find that residual lattice oxygen in oxide-derived Cu nanowires (OD-Cu NWs) plays vital roles in boosting the acetonitrile electroreduction efficiency. Especially at high current densities of more than 1.0 A cm-2, OD-Cu NWs exhibit relatively high Faradic efficiency. Meanwhile, a series of advanced in situ characterizations and theoretical calculations uncover that oxygen residues, in the form of Cu4-O configuration, act as electron acceptors to confine the free electron flow on the Cu surface, consequently improving the kinetics of nitriles hydrogenation catalysis. This work could provide new opportunities to further improve the hydrogenation performance of nitriles and beyond, by employing lattice oxygen-mediated electron tuning engineering.
Collapse
Affiliation(s)
- Cong Wei
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yanyan Fang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bo Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chongyang Tang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Dong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Xuanwei Yin
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zenan Bian
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Jun Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yitai Qian
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Gongming Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
30
|
Moshnenko N, Kazantsev A, Chupakhin E, Bakulina O, Dar'in D. Synthetic Routes to Approved Drugs Containing a Spirocycle. Molecules 2023; 28:molecules28104209. [PMID: 37241950 DOI: 10.3390/molecules28104209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The use of spirocycles in drug discovery and medicinal chemistry has been booming in the last two decades. This has clearly translated into the landscape of approved drugs. Among two dozen clinically used medicines containing a spirocycle, 50% have been approved in the 21st century. The present review focuses on the notable synthetic routes to such drugs invented in industry and academia, and is intended to serve as a useful reference source of synthetic as well as general drug information for researchers engaging in the design of new spirocyclic scaffolds for medicinal use or embarking upon analog syntheses inspired by the existing approved drugs.
Collapse
Affiliation(s)
- Nazar Moshnenko
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexander Kazantsev
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, 191036 Saint Petersburg, Russia
| |
Collapse
|
31
|
Recent Advances in the Efficient Synthesis of Useful Amines from Biomass-Based Furan Compounds and Their Derivatives over Heterogeneous Catalysts. Catalysts 2023. [DOI: 10.3390/catal13030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Bio-based furanic oxygenates represent a well-known class of lignocellulosic biomass-derived platform molecules. In the presence of H2 and different nitrogen sources, these versatile building blocks can be transformed into valuable amine compounds via reductive amination or hydrogen-borrowing amination mechanisms, yet they still face many challenges due to the co-existence of many side-reactions, such as direct hydrogenation, polymerization and cyclization. Hence, catalysts with specific structures and functions are required to achieve satisfactory yields of target amines. In recent years, heterogeneous catalytic synthesis of amines from bio-based furanic oxygenates has received extensive attention. In this review, we summarize and discuss the recent significant progress in the generation of useful amines from bio-based furanic oxygenates with H2 and different nitrogen sources over heterogeneous catalysts, according to various raw materials and reaction pathways. The key factors affecting catalytic performances, such as active metals, supports, promoters, reaction solvents and conditions, as well as the possible reaction routes and catalytic reaction mechanisms are studied and discussed in depth. Special attention is paid to the structure–activity relationship, which would be helpful for the development of more efficient and stable heterogeneous catalysts. Moreover, the future research direction and development trend of the efficient synthesis for bio-based amines are prospected.
Collapse
|
32
|
Natural attapulgite supported nano-Ni catalysts for the efficient reductive amination of biomass-derived aldehydes and ketones. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
33
|
Li R, Wu Y, Wang C, He M, Liu C, Zhang B. One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D 2O to α,β-deuterio aryl ethylamines. Nat Commun 2022; 13:5951. [PMID: 36216818 PMCID: PMC9550836 DOI: 10.1038/s41467-022-33779-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Developing a step-economical approach for efficient synthesis of α,β-deuterio aryl ethylamines (α,β-DAEAs) with high deuterium ratios using an easy-to-handle deuterated source under ambient conditions is highly desirable. Here we report a room-temperature one-pot two-step transformation of aryl acetonitriles to α,β-DAEAs with up to 92% isolated yield and 99% α,β-deuterium ratios using D2O as a deuterium source. The process involves a fast α-C - H/C - D exchange and tandem electroreductive deuteration of C ≡ N over an in situ formed low-coordinated Fe nanoparticle cathode. The moderate adsorptions of nitriles/imine intermediates and the promoted formation of active hydrogen (H*) on unsaturated Fe sites facilitate the electroreduction process. In situ Raman confirms co-adsorption of aryl rings and the C ≡ N group on the Fe surface. A proposed H*-addition pathway is confirmed by the detected hydrogen and carbon radicals. Wide substrate scope, parallel synthesis of multiple α,β-DAEAs, and successful preparation of α,β-deuterated Melatonin and Komavine highlight the potential.
Collapse
Affiliation(s)
- Rui Li
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yongmeng Wu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China
| | - Changhong Wang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China
| | - Meng He
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China
| | - Cuibo Liu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
34
|
Fu Y, Wang Z, Zhang Y, Shen G, Zhu X. Quantitative Evaluation of the Hydrogen‐Donating Abilities ofAmines and Amides in Acetonitrile. ChemistrySelect 2022. [DOI: 10.1002/slct.202202625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan‐Hua Fu
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Zhen Wang
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Yanwei Zhang
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao‐Qing Zhu
- Department of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
35
|
Michalke J, Faust K, Bögl T, Bartling S, Rockstroh N, Topf C. Mild and Efficient Heterogeneous Hydrogenation of Nitroarenes Facilitated by a Pyrolytically Activated Dinuclear Ni(II)-Ce(III) Diimine Complex. Int J Mol Sci 2022; 23:ijms23158742. [PMID: 35955876 PMCID: PMC9369285 DOI: 10.3390/ijms23158742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
We communicate the assembly of a solid, Ce-promoted Ni-based composite that was applied as catalyst for the hydrogenation of nitroarenes to afford the corresponding organic amines. The catalytically active material described herein was obtained through pyrolysis of a SiO2-pellet-supported bimetallic Ni-Ce complex that was readily synthesized prior to use from a MeO-functionalized salen congener, Ni(OAc)2·4 H2O, and Ce(NO3)3·6 H2O. Rewardingly, the requisite ligand for the pertinent solution phase precursor was accessible upon straightforward and time-saving imine condensation of ortho-vanillin with 1,3-diamino-2,2′-dimethylpropane. The introduced catalytic protocol is operationally simple in that the whole reaction set-up is quickly put together on the bench without the need of cumbersome handling in a glovebox or related containment systems. Moreover, the advantageous geometry and compact-sized nature of the used pellets renders the catalyst separation and recycling exceptionally easy.
Collapse
Affiliation(s)
- Jessica Michalke
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Institute of Inorganic Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Kirill Faust
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Thomas Bögl
- Department of Analytical Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Stephan Bartling
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Nils Rockstroh
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Christoph Topf
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Correspondence:
| |
Collapse
|