1
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
2
|
Uckelmann M, Levina V, Taveneau C, Ng XH, Pandey V, Martinez J, Mendiratta S, Houx J, Boudes M, Venugopal H, Trépout S, Fulcher AJ, Zhang Q, Flanigan S, Li M, Sierecki E, Gambin Y, Das PP, Bell O, de Marco A, Davidovich C. Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates. Nat Struct Mol Biol 2025:10.1038/s41594-024-01457-6. [PMID: 39815045 DOI: 10.1038/s41594-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organization and dynamics of chromatin compacted by gene-repressing factors are unknown. Here, using cryo-electron tomography, we solved the three-dimensional structure of chromatin condensed by the polycomb repressive complex 1 (PRC1) in a complex with CBX8. PRC1-condensed chromatin is porous and stabilized through multivalent dynamic interactions of PRC1 with chromatin. Mechanistically, positively charged residues on the internally disordered regions of CBX8 mask negative charges on the DNA to stabilize the condensed state of chromatin. Within condensates, PRC1 remains dynamic while maintaining a static chromatin structure. In differentiated mouse embryonic stem cells, CBX8-bound chromatin remains accessible. These findings challenge the idea of rigidly compacted polycomb domains and instead provide a mechanistic framework for dynamic and accessible PRC1-chromatin condensates.
Collapse
Affiliation(s)
- Michael Uckelmann
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vita Levina
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Cyntia Taveneau
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Xiao Han Ng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Varun Pandey
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasmine Martinez
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shweta Mendiratta
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin Houx
- EMBL Australia Node for Single Molecule Science and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Marion Boudes
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Monash, Victoria, Australia
| | - Sylvain Trépout
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Monash, Victoria, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarena Flanigan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Minrui Li
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Emma Sierecki
- EMBL Australia Node for Single Molecule Science and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Science and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Partha Pratim Das
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Oliver Bell
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
- EMBL-Australia, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Mallik S, Venezian J, Lobov A, Heidenreich M, Garcia-Seisdedos H, Yeates TO, Shiber A, Levy ED. Structural determinants of co-translational protein complex assembly. Cell 2024:S0092-8674(24)01330-8. [PMID: 39708808 DOI: 10.1016/j.cell.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/12/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Protein assembly into functional complexes is critical to life's processes. While complex assembly is classically described as occurring between fully synthesized proteins, recent work showed that co-translational assembly is prevalent in human cells. However, the biological basis for the existence of this process and the identity of protein pairs that assemble co-translationally remain unknown. We show that co-translational assembly is governed by structural characteristics of complexes and involves mutually stabilized subunits. Accordingly, co-translationally assembling subunits are unstable in isolation and exhibit synchronized proteostasis with their partner. By leveraging structural signatures and AlphaFold2-based predictions, we accurately predicted co-translational assembly, including pair identities, at proteome scale and across species. We validated our predictions by ribosome profiling, stoichiometry perturbations, and single-molecule RNA-fluorescence in situ hybridization (smFISH) experiments that revealed co-localized mRNAs. This work establishes a fundamental connection between protein structure and the translation process, highlighting the overarching impact of three-dimensional structure on gene expression, mRNA localization, and proteostasis.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel.
| | - Johannes Venezian
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Arseniy Lobov
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel
| | - Meta Heidenreich
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel; Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Hector Garcia-Seisdedos
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ayala Shiber
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel; Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
5
|
Li T, Chao TC, Tsai KL. Structures and compositional dynamics of Mediator in transcription regulation. Curr Opin Struct Biol 2024; 88:102892. [PMID: 39067114 DOI: 10.1016/j.sbi.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), functions as a critical coregulator during RNA polymerase II (RNAPII) transcription. cMED recruits RNAPII and facilitates the assembly of the pre-initiation complex (PIC) at promoters. In contrast, CKM prevents RNAPII binding to cMED while simultaneously exerting positive or negative influence on gene transcription through its kinase function. Recent structural studies on cMED and CKM have revealed their intricate architectures and subunit interactions. Here, we explore these structures, providing a comprehensive insight into Mediator (cMED-CKM) architecture and its potential mechanism in regulating RNAPII transcription. Additionally, we discuss the remaining puzzles that require further investigation to fully understand how cMED coordinates with CKM to regulate transcription in various events.
Collapse
Affiliation(s)
- Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX, USA
| | - Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX, USA.
| |
Collapse
|
6
|
Szczurek AT, Dimitrova E, Kelley JR, Blackledge NP, Klose RJ. The Polycomb system sustains promoters in a deep OFF state by limiting pre-initiation complex formation to counteract transcription. Nat Cell Biol 2024; 26:1700-1711. [PMID: 39261718 PMCID: PMC11469961 DOI: 10.1038/s41556-024-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/23/2024] [Indexed: 09/13/2024]
Abstract
The Polycomb system has fundamental roles in regulating gene expression during mammalian development. However, how it controls transcription to enable gene repression has remained enigmatic. Here, using rapid degron-based depletion coupled with live-cell transcription imaging and single-particle tracking, we show how the Polycomb system controls transcription in single cells. We discover that the Polycomb system is not a constitutive block to transcription but instead sustains a long-lived deep promoter OFF state, which limits the frequency with which the promoter can enter into a transcribing state. We demonstrate that Polycomb sustains this deep promoter OFF state by counteracting the binding of factors that enable early transcription pre-initiation complex formation and show that this is necessary for gene repression. Together, these important discoveries provide a rationale for how the Polycomb system controls transcription and suggests a universal mechanism that could enable the Polycomb system to constrain transcription across diverse cellular contexts.
Collapse
Affiliation(s)
| | | | | | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Fisher MJ, Luse DS. Defining a chromatin architecture that supports transcription at RNA polymerase II promoters. J Biol Chem 2024; 300:107515. [PMID: 38945447 PMCID: PMC11298586 DOI: 10.1016/j.jbc.2024.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
Mammalian RNA polymerase II preinitiation complexes assemble adjacent to a nucleosome whose proximal edge (NPE) is typically 40 to 50 bp downstream of the transcription start site. At active promoters, that +1 nucleosome is universally modified by trimethylation on lysine 4 of histone H3 (H3K4me3). The Pol II preinitiation complex only extends 35 bp beyond the transcription start site, but nucleosomal templates with an NPE at +51 are nearly inactive in vitro with promoters that lack a TATA element and thus depend on TFIID for promoter recognition. Significantly, this inhibition is relieved when the +1 nucleosome contains H3K4me3, which can interact with TFIID subunits. Here, we show that H3K4me3 templates with both TATA and TATA-less promoters are active with +35 NPEs when transcription is driven by TFIID. Templates with +20 NPE are also active but at reduced levels compared to +35 and +51 NPEs, consistent with a general inhibition of promoter function when the proximal nucleosome encroaches on the preinitiation complex. Remarkably, dinucleosome templates support transcription when H3K4me3 is only present in the distal nucleosome, suggesting that TFIID-H3K4me3 interaction does not require modification of the +1 nucleosome. Transcription reactions performed with an alternative protocol retaining most nuclear factors results primarily in early termination, with a minority of complexes successfully traversing the first nucleosome. In such reactions, the +1 nucleosome does not substantially affect the level of termination even with an NPE of +20, indicating that a nucleosome barrier is not a major driver of early termination by Pol II.
Collapse
Affiliation(s)
- Michael J Fisher
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
8
|
Nemsick S, Hansen AS. Molecular models of bidirectional promoter regulation. Curr Opin Struct Biol 2024; 87:102865. [PMID: 38905929 PMCID: PMC11550790 DOI: 10.1016/j.sbi.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
Approximately 11% of human genes are transcribed by a bidirectional promoter (BDP), defined as two genes with <1 kb between their transcription start sites. Despite their evolutionary conservation and enrichment for housekeeping genes and oncogenes, the regulatory role of BDPs remains unclear. BDPs have been suggested to facilitate gene coregulation and/or decrease expression noise. This review discusses these potential regulatory functions through the context of six prospective underlying mechanistic models: a single nucleosome free region, shared transcription factor/regulator binding, cooperative negative supercoiling, bimodal histone marks, joint activation by enhancer(s), and RNA-mediated recruitment of regulators. These molecular mechanisms may act independently and/or cooperatively to facilitate the coregulation and/or decreased expression noise predicted of BDPs.
Collapse
Affiliation(s)
- Sarah Nemsick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Uckelmann M, Levina V, Taveneau C, Ng XH, Pandey V, Martinez J, Mendiratta S, Houx J, Boudes M, Venugopal H, Trépout S, Zhang Q, Flanigan S, Li M, Sierecki E, Gambin Y, Das PP, Bell O, de Marco A, Davidovich C. Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.08.539931. [PMID: 38405976 PMCID: PMC10888862 DOI: 10.1101/2023.05.08.539931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organisation and dynamics of chromatin compacted by gene-repressing factors are unknown. Using cryo-electron tomography, we solved the three-dimensional structure of chromatin condensed by the Polycomb Repressive Complex 1 (PRC1) in a complex with CBX8. PRC1-condensed chromatin is porous and stabilised through multivalent dynamic interactions of PRC1 with chromatin. Mechanistically, positively charged residues on the internally disordered regions (IDRs) of CBX8 mask negative charges on the DNA to stabilize the condensed state of chromatin. Within condensates, PRC1 remains dynamic while maintaining a static chromatin structure. In differentiated mouse embryonic stem cells, CBX8-bound chromatin remains accessible. These findings challenge the idea of rigidly compacted polycomb domains and instead provides a mechanistic framework for dynamic and accessible PRC1-chromatin condensates.
Collapse
|
10
|
Chen SF, Chao TC, Kim HJ, Tang HC, Khadka S, Li T, Lee DF, Murakami K, Boyer TG, Tsai KL. Structural basis of the human transcriptional Mediator complex modulated by its dissociable Kinase module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601608. [PMID: 39005267 PMCID: PMC11244988 DOI: 10.1101/2024.07.01.601608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), regulates RNA Polymerase II (Pol II)-dependent transcription. cMED recruits Pol II and promotes pre-initiation complex (PIC) formation in a manner inhibited by the CKM, which is also implicated in post-initiation control of gene expression. Herein we report cryo-electron microscopy structures of the human complete Mediator and its CKM, which explains the basis for CKM inhibition of cMED-activated transcription. The CKM binds to cMED through an intrinsically disordered region (IDR) in MED13 and HEAT repeats in MED12. The CKM inhibits transcription by allocating its MED13 IDR to occlude binding of Pol II and MED26 to cMED and further obstructing cMED-PIC assembly through steric hindrance with TFIIH and the +1 nucleosome. Notably, MED12 binds to the cMED Hook, positioning CDK8 downstream of the transcription start site, which sheds new light on its stimulatory function in post-initiation events.
Collapse
|
11
|
Zurita M. Does TFIIH move nucleosomes? Trends Genet 2024; 40:560-563. [PMID: 38789376 DOI: 10.1016/j.tig.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Transcription factor (TF) IIH is a factor involved in transcription, DNA repair, mitosis, and telomere stability. These functions stem from its helicase/ATPase and kinase activities. Recent reports on the structure and function of the transcription machinery, as well as chromosome compaction during mitosis, suggest that TFIIH also influences nucleosome movement, are explored here.
Collapse
Affiliation(s)
- Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Col. Chamilpa, 62250, México.
| |
Collapse
|
12
|
Prescott NA, Mansisidor A, Bram Y, Biaco T, Rendleman J, Faulkner SC, Lemmon AA, Lim C, Hamard PJ, Koche RP, Risca VI, Schwartz RE, David Y. A nucleosome switch primes Hepatitis B Virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.03.531011. [PMID: 38915612 PMCID: PMC11195122 DOI: 10.1101/2023.03.03.531011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is an incurable global health threat responsible for causing liver disease and hepatocellular carcinoma. During the genesis of infection, HBV establishes an independent minichromosome consisting of the viral covalently closed circular DNA (cccDNA) genome and host histones. The viral X gene must be expressed immediately upon infection to induce degradation of the host silencing factor, Smc5/6. However, the relationship between cccDNA chromatinization and X gene transcription remains poorly understood. Establishing a reconstituted viral minichromosome platform, we found that nucleosome occupancy in cccDNA drives X transcription. We corroborated these findings in cells and further showed that the chromatin destabilizing molecule CBL137 inhibits X transcription and HBV infection in hepatocytes. Our results shed light on a long-standing paradox and represent a potential new therapeutic avenue for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Nicholas A. Prescott
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Andrés Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
- These authors contributed equally
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Justin Rendleman
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Sarah C. Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Abigail A. Lemmon
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Pierre-Jacques Hamard
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Richard P. Koche
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
13
|
Nogales E. Building up complexity in structural biology studies. Nat Struct Mol Biol 2024; 31:847-848. [PMID: 38816465 DOI: 10.1038/s41594-024-01324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
14
|
Passmore LA, Zhang S. Mechanisms of transcription and RNA processing. Nat Struct Mol Biol 2024; 31:730-731. [PMID: 38744993 DOI: 10.1038/s41594-024-01312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
15
|
Shang XY, Xu C, Chen FX. From snapshots to a movie: Capturing eukaryotic transcription initiation at single-nucleotide resolution. Sci Bull (Beijing) 2024; 69:853-855. [PMID: 38320900 DOI: 10.1016/j.scib.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Xue-Ying Shang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Congling Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Nogales E, Mahamid J. Bridging structural and cell biology with cryo-electron microscopy. Nature 2024; 628:47-56. [PMID: 38570716 PMCID: PMC11211576 DOI: 10.1038/s41586-024-07198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Most life scientists would agree that understanding how cellular processes work requires structural knowledge about the macromolecules involved. For example, deciphering the double-helical nature of DNA revealed essential aspects of how genetic information is stored, copied and repaired. Yet, being reductionist in nature, structural biology requires the purification of large amounts of macromolecules, often trimmed off larger functional units. The advent of cryogenic electron microscopy (cryo-EM) greatly facilitated the study of large, functional complexes and generally of samples that are hard to express, purify and/or crystallize. Nevertheless, cryo-EM still requires purification and thus visualization outside of the natural context in which macromolecules operate and coexist. Conversely, cell biologists have been imaging cells using a number of fast-evolving techniques that keep expanding their spatial and temporal reach, but always far from the resolution at which chemistry can be understood. Thus, structural and cell biology provide complementary, yet unconnected visions of the inner workings of cells. Here we discuss how the interplay between cryo-EM and cryo-electron tomography, as a connecting bridge to visualize macromolecules in situ, holds great promise to create comprehensive structural depictions of macromolecules as they interact in complex mixtures or, ultimately, inside the cell itself.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department, Institute for Quantitative Biomedicine, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, Berkeley, CA, USA.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
17
|
Wu Y, Fu Y, Zhu Z, Hu Q, Sheng F, Du X. The Mediator Subunit OsMED16 Interacts with the WRKY Transcription Factor OsWRKY45 to Enhance Rice Resistance Against Magnaporthe oryzae. RICE (NEW YORK, N.Y.) 2024; 17:23. [PMID: 38558163 PMCID: PMC10984912 DOI: 10.1186/s12284-024-00698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/03/2024] [Indexed: 04/04/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most common and damaging diseases of rice that limits rice yield and quality. The mediator complex plays a vital role in promoting transcription by bridging specific transcription factors and RNA polymerase II. Here, we show that the rice mediator subunit OsMED16 is essential for full induction of the diterpenoid phytoalexin biosynthesis genes and resistance to the ascomycetous fungus M. oryzae. Mutants of Osmed16 show reduced expression of the DP biosynthesis genes and are markedly more susceptible to M. oryzae, while transgenic plants overexpressing OsMED16 increased the expression of the DP biosynthesis genes and significantly enhanced resistance to M. oryzae. Interestingly, OsMED16 is physically associated with the WRKY family transcription factor OsWRKY45, which interacts with the phytoalexin synthesis key regulator transcription factor OsWRKY62. Further, OsMED16-OsWRKY45-OsWRKY62 complex could bind to the promoter regions of phytoalexin synthesis-related genes and activate their gene expression. Our results show that OsMED16 may enhance rice tolerance to M. oryzae via directly manipulating phytoalexin de novo biosynthesis.
Collapse
Affiliation(s)
- Yanfei Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuquan Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhonglin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China.
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
18
|
Greber BJ. High-resolution cryo-EM of a small protein complex: The structure of the human CDK-activating kinase. Structure 2024:S0969-2126(24)00085-6. [PMID: 38565138 DOI: 10.1016/j.str.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The human CDK-activating kinase (CAK) is a multifunctional protein complex and key regulator of cell growth and division. Because of its critical functions in regulating the cell cycle and transcription initiation, it is a key target for multiple cancer drug discovery programs. However, the structure of the active human CAK, insights into its regulation, and its interactions with cellular substrates and inhibitors remained elusive until recently due to the lack of high-resolution structures of the intact complex. This review covers the progress in structure determination of the human CAK by cryogenic electron microscopy (cryo-EM), from early efforts to recent near-atomic resolution maps routinely resolved at 2Å or better. These results were enabled by the latest cryo-EM technologies introduced after the initial phase of the "resolution revolution" and allowed the application of high-resolution methods to new classes of molecular targets, including small protein complexes that were intractable using earlier technology.
Collapse
Affiliation(s)
- Basil J Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
19
|
Sekine SI, Ehara H, Kujirai T, Kurumizaka H. Structural perspectives on transcription in chromatin. Trends Cell Biol 2024; 34:211-224. [PMID: 37596139 DOI: 10.1016/j.tcb.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
In eukaryotes, all genetic processes take place in the cell nucleus, where DNA is packaged as chromatin in 'beads-on-a-string' nucleosome arrays. RNA polymerase II (RNAPII) transcribes protein-coding and many non-coding genes in this chromatin environment. RNAPII elongates RNA while passing through multiple nucleosomes and maintaining the integrity of the chromatin structure. Recent structural studies have shed light on the detailed mechanisms of this process, including how transcribing RNAPII progresses through a nucleosome and reassembles it afterwards, and how transcription elongation factors, chromatin remodelers, and histone chaperones participate in these processes. Other studies have also illuminated the crucial role of nucleosomes in preinitiation complex assembly and transcription initiation. In this review we outline these advances and discuss future perspectives.
Collapse
Affiliation(s)
- Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoya Kujirai
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
20
|
Chen X, Xu Y. Interplay between the transcription preinitiation complex and the +1 nucleosome. Trends Biochem Sci 2024; 49:145-155. [PMID: 38218671 DOI: 10.1016/j.tibs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
Eukaryotic transcription starts with the assembly of a preinitiation complex (PIC) on core promoters. Flanking this region is the +1 nucleosome, the first nucleosome downstream of the core promoter. While this nucleosome is rich in epigenetic marks and plays a key role in transcription regulation, how the +1 nucleosome interacts with the transcription machinery has been a long-standing question. Here, we summarize recent structural and functional studies of the +1 nucleosome in complex with the PIC. We specifically focus on how differently organized promoter-nucleosome templates affect the assembly of the PIC and PIC-Mediator on chromatin and result in distinct transcription initiation.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
Hardtke HA, Zhang YJ. Collaborators or competitors: the communication between RNA polymerase II and the nucleosome during eukaryotic transcription. Crit Rev Biochem Mol Biol 2024; 59:1-19. [PMID: 38288999 PMCID: PMC11209794 DOI: 10.1080/10409238.2024.2306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 04/22/2024]
Abstract
Decades of scientific research have been devoted to unraveling the intricacies of eukaryotic transcription since the groundbreaking discovery of eukaryotic RNA polymerases in the late 1960s. RNA polymerase II, the polymerase responsible for mRNA synthesis, has always attracted the most attention. Despite its structural resemblance to its bacterial counterpart, eukaryotic RNA polymerase II faces a unique challenge in progressing transcription due to the presence of nucleosomes that package DNA in the nuclei. In this review, we delve into the impact of RNA polymerase II and histone signaling on the progression of eukaryotic transcription. We explore the pivotal points of interactions that bridge the RNA polymerase II and histone signaling systems. Finally, we present an analysis of recent cryo-electron microscopy structures, which captured RNA polymerase II-nucleosome complexes at different stages of the transcription cycle. The combination of the signaling crosstalk and the direct visualization of RNA polymerase II-nucleosome complexes provides a deeper understanding of the communication between these two major players in eukaryotic transcription.
Collapse
Affiliation(s)
- Haley A. Hardtke
- Department of Molecular Biosciences, University of Texas, Austin
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin
| |
Collapse
|
22
|
Crawford T, Siebler L, Sulkowska A, Nowack B, Jiang L, Pan Y, Lämke J, Kappel C, Bäurle I. The Mediator kinase module enhances polymerase activity to regulate transcriptional memory after heat stress in Arabidopsis. EMBO J 2024; 43:437-461. [PMID: 38228917 PMCID: PMC10897291 DOI: 10.1038/s44318-023-00024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.
Collapse
Affiliation(s)
- Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Lara Siebler
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Bryan Nowack
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Yufeng Pan
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
23
|
Nishimura M, Fujii T, Tanaka H, Maehara K, Morishima K, Shimizu M, Kobayashi Y, Nozawa K, Takizawa Y, Sugiyama M, Ohkawa Y, Kurumizaka H. Genome-wide mapping and cryo-EM structural analyses of the overlapping tri-nucleosome composed of hexasome-hexasome-octasome moieties. Commun Biol 2024; 7:61. [PMID: 38191828 PMCID: PMC10774305 DOI: 10.1038/s42003-023-05694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The nucleosome is a fundamental unit of chromatin in which about 150 base pairs of DNA are wrapped around a histone octamer. The overlapping di-nucleosome has been proposed as a product of chromatin remodeling around the transcription start site, and previously found as a chromatin unit, in which about 250 base pairs of DNA continuously bind to the histone core composed of a hexamer and an octamer. In the present study, our genome-wide analysis of human cells suggests another higher nucleosome stacking structure, the overlapping tri-nucleosome, which wraps about 300-350 base-pairs of DNA in the region downstream of certain transcription start sites of actively transcribed genes. We determine the cryo-electron microscopy (cryo-EM) structure of the overlapping tri-nucleosome, in which three subnucleosome moieties, hexasome, hexasome, and octasome, are associated by short connecting DNA segments. Small angle X-ray scattering and coarse-grained molecular dynamics simulation analyses reveal that the cryo-EM structure of the overlapping tri-nucleosome may reflect its structure in solution. Our findings suggest that nucleosome stacking structures composed of hexasome and octasome moieties may be formed by nucleosome remodeling factors around transcription start sites for gene regulation.
Collapse
Affiliation(s)
- Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, 111 TW, Alexander Drive, Research Triangle Park, NC, 27707, USA
| | - Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yuki Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
24
|
Chen X, Liu W, Wang Q, Wang X, Ren Y, Qu X, Li W, Xu Y. Structural visualization of transcription initiation in action. Science 2023; 382:eadi5120. [PMID: 38127763 DOI: 10.1126/science.adi5120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Transcription initiation is a complex process, and its mechanism is incompletely understood. We determined the structures of de novo transcribing complexes TC2 to TC17 with RNA polymerase II halted on G-less promoters when nascent RNAs reach 2 to 17 nucleotides in length, respectively. Connecting these structures generated a movie and a working model. As initially synthesized RNA grows, general transcription factors (GTFs) remain bound to the promoter and the transcription bubble expands. Nucleoside triphosphate (NTP)-driven RNA-DNA translocation and template-strand accumulation in a nearly sealed channel may promote the transition from initially transcribing complexes (ITCs) (TC2 to TC9) to early elongation complexes (EECs) (TC10 to TC17). Our study shows dynamic processes of transcription initiation and reveals why ITCs require GTFs and bubble expansion for initial RNA synthesis, whereas EECs need GTF dissociation from the promoter and bubble collapse for promoter escape.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuechun Qu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wanjun Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
25
|
Li T, Tang HC, Tsai KL. Unveiling the noncanonical activation mechanism of CDKs: insights from recent structural studies. Front Mol Biosci 2023; 10:1290631. [PMID: 38028546 PMCID: PMC10666765 DOI: 10.3389/fmolb.2023.1290631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The Cyclin-dependent kinases (CDKs) play crucial roles in a range of essential cellular processes. While the classical two-step activation mechanism is generally applicable to cell cycle-related CDKs, both CDK7 and CDK8, involved in transcriptional regulation, adopt distinct mechanisms for kinase activation. In both cases, binding to their respective cyclin partners results in only partial activity, while their full activation requires the presence of an additional subunit. Recent structural studies of these two noncanonical kinases have provided unprecedented insights into their activation mechanisms, enabling us to understand how the third subunit coordinates the T-loop stabilization and enhances kinase activity. In this review, we summarize the structure and function of CDK7 and CDK8 within their respective functional complexes, while also describing their noncanonical activation mechanisms. These insights open new avenues for targeted drug discovery and potential therapeutic interventions in various diseases related to CDK7 and CDK8.
Collapse
Affiliation(s)
- Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
26
|
Malik S, Roeder RG. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Nat Rev Genet 2023; 24:767-782. [PMID: 37532915 PMCID: PMC11088444 DOI: 10.1038/s41576-023-00630-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
The RNA polymerase II (Pol II) pre-initiation complex (PIC) is a critical node in eukaryotic transcription regulation, and its formation is the major rate-limiting step in transcriptional activation. Diverse cellular signals borne by transcriptional activators converge on this large, multiprotein assembly and are transduced via intermediary factors termed coactivators. Cryogenic electron microscopy, multi-omics and single-molecule approaches have recently offered unprecedented insights into both the structure and cellular functions of the PIC and two key PIC-associated coactivators, Mediator and TFIID. Here, we review advances in our understanding of how Mediator and TFIID interact with activators and affect PIC formation and function. We also discuss how their functions are influenced by their chromatin environment and selected cofactors. We consider how, through its multifarious interactions and functionalities, a Mediator-containing and TFIID-containing PIC can yield an integrated signal processing system with the flexibility to determine the unique temporal and spatial expression pattern of a given gene.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry & Molecular Biology, The Rockefeller University, New York, NY, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry & Molecular Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
27
|
Bernardini A, Hollinger C, Willgenss D, Müller F, Devys D, Tora L. Transcription factor IID parks and drives preinitiation complexes at sharp or broad promoters. Trends Biochem Sci 2023; 48:839-848. [PMID: 37574371 PMCID: PMC10529448 DOI: 10.1016/j.tibs.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Core promoters are sites where transcriptional regulatory inputs of a gene are integrated to direct the assembly of the preinitiation complex (PIC) and RNA polymerase II (Pol II) transcription output. Until now, core promoter functions have been investigated by distinct methods, including Pol II transcription initiation site mappings and structural characterization of PICs on distinct promoters. Here, we bring together these previously unconnected observations and hypothesize how, on metazoan TATA promoters, the precisely structured building up of transcription factor (TF) IID-based PICs results in sharp transcription start site (TSS) selection; or, in contrast, how the less strictly controlled positioning of the TATA-less promoter DNA relative to TFIID-core PIC components results in alternative broad TSS selections by Pol II.
Collapse
Affiliation(s)
- Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | | | | | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
28
|
Farnung L. Nucleosomes unwrapped: Structural perspectives on transcription through chromatin. Curr Opin Struct Biol 2023; 82:102690. [PMID: 37633188 DOI: 10.1016/j.sbi.2023.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Transcription of most protein-coding genes requires the passage of RNA polymerase II through chromatin. Chromatin with its fundamental unit, the nucleosome, represents a barrier to transcription. How RNA polymerase II and associated factors traverse through nucleosomes and how chromatin architecture is maintained have remained largely enigmatic. Only recently, cryo-EM structures have visualized the transcription process through chromatin. These structures have elucidated how transcription initiation and transcription elongation influence and are influenced by a chromatinized DNA substrate. This review provides a summary of our current structural understanding of transcription through chromatin, highlighting common mechanisms during nucleosomal traversal and novel regulatory mechanisms that have emerged in the last five years.
Collapse
Affiliation(s)
- Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Fields JK, Hicks CW, Wolberger C. Diverse modes of regulating methyltransferase activity by histone ubiquitination. Curr Opin Struct Biol 2023; 82:102649. [PMID: 37429149 PMCID: PMC10527252 DOI: 10.1016/j.sbi.2023.102649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
Post-translational modification of histones plays a central role in regulating transcription. Methylation of histone H3 at lysines 4 (H3K4) and 79 (H3K79) play roles in activating transcription whereas methylation of H3K27 is a repressive mark. These modifications, in turn, depend upon prior monoubiquitination of specific histone residues in a phenomenon known as histone crosstalk. Earlier work had provided insights into the mechanism by which monoubiquitination histone H2BK120 stimulates H3K4 methylation by COMPASS/MLL1 and H3K79 methylation by DOT1L, and monoubiquitinated H2AK119 stimulates methylation of H3K27 by the PRC2 complex. Recent studies have shed new light on the role of individual subunits and paralogs in regulating the activity of PRC2 and how additional post-translational modifications regulate yeast Dot1 and human DOT1L, as well as provided new insights into the regulation of MLL1 by H2BK120ub.
Collapse
Affiliation(s)
- James K Fields
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Chad W Hicks
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Rengachari S, Schilbach S, Cramer P. Mediator structure and function in transcription initiation. Biol Chem 2023; 404:829-837. [PMID: 37078249 DOI: 10.1515/hsz-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Recent advances in cryo-electron microscopy have led to multiple structures of Mediator in complex with the RNA polymerase II (Pol II) transcription initiation machinery. As a result we now hold in hands near-complete structures of both yeast and human Mediator complexes and have a better understanding of their interactions with the Pol II pre-initiation complex (PIC). Herein, we provide a summary of recent achievements and discuss their implications for future studies of Mediator and its role in gene regulation.
Collapse
Affiliation(s)
- Srinivasan Rengachari
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
31
|
Lushpinskaia IP, Flores-Solis D, Zweckstetter M. Structure and phase separation of the C-terminal domain of RNA polymerase II. Biol Chem 2023; 404:839-844. [PMID: 37331973 DOI: 10.1515/hsz-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
The repetitive heptads in the C-terminal domain (CTD) of RPB1, the largest subunit of RNA Polymerase II (Pol II), play a critical role in the regulation of Pol II-based transcription. Recent findings on the structure of the CTD in the pre-initiation complex determined by cryo-EM and the novel phase separation properties of key transcription components offers an expanded mechanistic interpretation of the spatiotemporal distribution of Pol II during transcription. Current experimental evidence further suggests an exquisite balance between CTD's local structure and an array of multivalent interactions that drive phase separation of Pol II and thus shape its transcriptional activity.
Collapse
Affiliation(s)
- Irina P Lushpinskaia
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
| | - David Flores-Solis
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
32
|
Fisher MJ, Luse DS. Promoter-proximal nucleosomes attenuate RNA polymerase II transcription through TFIID. J Biol Chem 2023; 299:104928. [PMID: 37330174 PMCID: PMC10404688 DOI: 10.1016/j.jbc.2023.104928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023] Open
Abstract
A nucleosome is typically positioned with its proximal edge (NPE) ∼50 bp downstream from the transcription start site of metazoan RNA polymerase II promoters. This +1 nucleosome has distinctive characteristics, including the presence of variant histone types and trimethylation of histone H3 at lysine 4. To address the role of these features in transcription complex assembly, we generated templates with four different promoters and nucleosomes located at a variety of downstream positions, which were transcribed in vitro using HeLa nuclear extracts. Two promoters lacked TATA elements, but all supported strong initiation from a single transcription start site. In contrast to results with minimal in vitro systems based on the TATA-binding protein (TBP), TATA promoter templates with a +51 NPE were transcriptionally inhibited in extracts; activity continuously increased as the nucleosome was moved downstream to +100. Inhibition was much more pronounced for the TATA-less promoters: +51 NPE templates were inactive, and substantial activity was only seen with the +100 NPE templates. Substituting the histone variants H2A.Z, H3.3, or both did not eliminate the inhibition. However, addition of excess TBP restored activity on nucleosomal templates with TATA promoters, even with an NPE at +20. Remarkably, nucleosomal templates with histone H3 trimethylated at lysine 4 are active with an NPE at +51 for both TATA and TATA-less promoters. Our results strongly suggest that the +1 nucleosome interferes with promoter recognition by TFIID. This inhibition can be overcome with TBP alone at TATA promoters or through positive interactions with histone modifications and TFIID.
Collapse
Affiliation(s)
- Michael J Fisher
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
33
|
Robert F. When the +1 nucleosome gets in the way, TFIIH fails but does not fall. Mol Cell 2023; 83:1763-1764. [PMID: 37267901 DOI: 10.1016/j.molcel.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
In this issue of Molecular Cell, Abril-Garrido et al.1 used cryo-EM to uncover that the +1 nucleosome inhibits transcription by interfering with the function of the TFIIH translocase via mechanisms that depend on its position relative to the transcription start site.
Collapse
Affiliation(s)
- François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
34
|
Abril-Garrido J, Dienemann C, Grabbe F, Velychko T, Lidschreiber M, Wang H, Cramer P. Structural basis of transcription reduction by a promoter-proximal +1 nucleosome. Mol Cell 2023:S1097-2765(23)00255-1. [PMID: 37148879 DOI: 10.1016/j.molcel.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
At active human genes, the +1 nucleosome is located downstream of the RNA polymerase II (RNA Pol II) pre-initiation complex (PIC). However, at inactive genes, the +1 nucleosome is found further upstream, at a promoter-proximal location. Here, we establish a model system to show that a promoter-proximal +1 nucleosome can reduce RNA synthesis in vivo and in vitro, and we analyze its structural basis. We find that the PIC assembles normally when the edge of the +1 nucleosome is located 18 base pairs (bp) downstream of the transcription start site (TSS). However, when the nucleosome edge is located further upstream, only 10 bp downstream of the TSS, the PIC adopts an inhibited state. The transcription factor IIH (TFIIH) shows a closed conformation and its subunit XPB contacts DNA with only one of its two ATPase lobes, inconsistent with DNA opening. These results provide a mechanism for nucleosome-dependent regulation of transcription initiation.
Collapse
Affiliation(s)
- Julio Abril-Garrido
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Taras Velychko
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Haibo Wang
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
35
|
When transcription initiation meets chromatin. Nat Struct Mol Biol 2023; 30:131-133. [PMID: 36725911 DOI: 10.1038/s41594-022-00916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Zhu X, Huang Q, Luo J, Kong D, Zhang Y. Mini-review: Gene regulatory network benefits from three-dimensional chromatin conformation and structural biology. Comput Struct Biotechnol J 2023; 21:1728-1737. [PMID: 36890880 PMCID: PMC9986247 DOI: 10.1016/j.csbj.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Gene regulatory networks are now at the forefront of precision biology, which can help researchers better understand how genes and regulatory elements interact to control cellular gene expression, offering a more promising molecular mechanism in biological research. Interactions between the genes and regulatory elements involve different promoters, enhancers, transcription factors, silencers, insulators, and long-range regulatory elements, which occur at a ∼10 µm nucleus in a spatiotemporal manner. In this way, three-dimensional chromatin conformation and structural biology are critical for interpreting the biological effects and the gene regulatory networks. In the review, we have briefly summarized the latest processes in three-dimensional chromatin conformation, microscopic imaging, and bioinformatics, and we have presented the outlook and future directions for these three aspects.
Collapse
Affiliation(s)
- Xiusheng Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qitong Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708PB, the Netherlands
| | - Jing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dashuai Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yubo Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
37
|
Chuntonov L. Using mirrors to control molecular dynamics. Science 2022; 378:712. [DOI: 10.1126/science.ade9815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An optical cavity mixes molecular vibrations with light and changes chemical reactivity
Collapse
Affiliation(s)
- Lev Chuntonov
- Schulich Faculty of Chemistry and Solid-State Institute, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|