1
|
Kim JY, Mayatepek E, Seyfarth J, Jacobsen M. High common-γ cytokine receptor levels promote expression of Interleukin-2/Interleukin-7 receptor α-chains with implications on T-cell differentiation and function. Immunology 2024; 173:93-105. [PMID: 38778445 DOI: 10.1111/imm.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Cytokines of the common-γ receptor chain (γc) family are crucial for T-cell differentiation and dysregulation of γc cytokine pathways is involved in the pathogenesis of autoimmune diseases. There is increasing evidence that the availability of the γc receptor (CD132) for the associated receptor chains has implications for T-cell functions. Here we studied the influence of differential γc expression on the expression of the IL-2Rα (CD25), the IL-7Rα (CD127) and the differentiation of activated naïve T cells. We fine-tuned the regulation of γc expression in human primary naïve T cells by lentiviral transduction using small hairpin (sh)RNAs and γc cDNA. Differential γc levels were then analysed for effects on T-cell phenotype and function after activation. Differential γc expression markedly affected IL-2Rα and IL-7Rα expression on activated naïve T cells. High γc expression (γc-high) induced significantly higher expression of IL-2Rα and re-expression of IL-7Rα after activation. Inhibition of γc caused lower IL-2Rα/IL-7Rα expression and impaired proliferation of activated naïve T cells. In contrast, γc-high T cells secreted significantly higher concentrations of effector cytokines (i.e., IFN-γ, IL-6) and showed higher cytokine-receptor induced STAT5 phosphorylation during initial stages as well as persistently higher pSTAT1 and pSTAT3 levels after activation. Finally, accelerated transition towards a CD45RO expressing effector/memory phenotype was seen especially for CD4+ γc-high naïve T cells. These results suggested that high expression of γc promotes expression of IL-2Rα and IL-7Rα on activated naïve T cells with significant effects on differentiation and effector cytokine expression.
Collapse
Affiliation(s)
- Ju-Young Kim
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
2
|
Ming K, Xing B, Ren X, Hu Y, Wei L, Wang Z, Mei M, Weng J, Wei Z. De novo design of mini-binder proteins against IL-2 receptor β chain. Int J Biol Macromol 2024; 276:133834. [PMID: 39002899 DOI: 10.1016/j.ijbiomac.2024.133834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
IL-2 regulates the immune response by interacting with different IL-2 receptor (IL-2R) subunits. High dose of IL-2 binds to IL-2Rβγc heterodimer, which induce various side effects while activating immune function. Disrupting IL-2 and IL-2R interactions can block IL-2 mediated immune response. Here, we used a computational approach to de novo design mini-binder proteins against IL-2R β chain (IL-2Rβ) to block IL-2 signaling. The hydrophobic region where IL-2 binds to IL-2Rβ was selected and the promising binding mode was broadly explored. Three mini-binders with amino acid numbers ranging from 55 to 65 were obtained and binder 1 showed the best effects in inhibiting CTLL-2 cells proliferation and STAT5 phosphorylation. Molecular dynamics simulation showed that the binding of binder 1 to IL-2Rβ was stable; the free energy of binder1/IL-2Rβ complex was lower, indicating that the affinity of binder 1 to IL-2Rβ was higher than that of IL-2. Free energy decomposition suggested that the ARG35 and ARG131 of IL-2Rβ might be the key to improve the affinity of binder. Our efforts provided new insights in developing of IL-2R blocker, offering a potential strategy for ameliorating the side effects of IL-2 treatment.
Collapse
Affiliation(s)
- Ke Ming
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Banbin Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Xinyi Ren
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Yang Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Lin Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Zhizheng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Jun Weng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zigong Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China; Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life sciences, Hubei University, Wuhan, Hubei, PR China.
| |
Collapse
|
3
|
Lu B, Liao SM, Liang SJ, Li JX, Liu XH, Huang RB, Zhou GP. NMR Studies of the Interactions between Sialyllactoses and the Polysialytransferase Domain for Polysialylation Inhibition. Curr Issues Mol Biol 2024; 46:5682-5700. [PMID: 38921011 PMCID: PMC11201969 DOI: 10.3390/cimb46060340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.
Collapse
Affiliation(s)
- Bo Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
| | - Si-Ming Liao
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
| | - Shi-Jie Liang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
| | - Jian-Xiu Li
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Ri-Bo Huang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
- Life Science and Technology College, Guangxi University, Nanning 530004, China
- Rocky Mount Life Science Institute, Rocky Mount, NC 27804, USA
| | - Guo-Ping Zhou
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
- Rocky Mount Life Science Institute, Rocky Mount, NC 27804, USA
| |
Collapse
|
4
|
Gardner S, Jin Y, Fyfe PK, Voisin TB, Bellón JS, Pohler E, Piehler J, Moraga I, Bubeck D. Structural insights into IL-11-mediated signalling and human IL6ST variant-associated immunodeficiency. Nat Commun 2024; 15:2071. [PMID: 38453915 PMCID: PMC10920896 DOI: 10.1038/s41467-024-46235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
IL-11 and IL-6 activate signalling via assembly of the cell surface receptor gp130; however, it is unclear how signals are transmitted across the membrane to instruct cellular responses. Here we solve the cryoEM structure of the IL-11 receptor recognition complex to discover how differences in gp130-binding interfaces may drive signalling outcomes. We explore how mutations in the IL6ST gene encoding for gp130, which cause severe immune deficiencies in humans, impair signalling without blocking cytokine binding. We use cryoEM to solve structures of both IL-11 and IL-6 complexes with a mutant form of gp130 associated with human disease. Together with molecular dynamics simulations, we show that the disease-associated variant led to an increase in flexibility including motion within the cytokine-binding core and increased distance between extracellular domains. However, these distances are minimized as the transmembrane helix exits the membrane, suggesting a stringency in geometry for signalling and dimmer switch mode of action.
Collapse
Affiliation(s)
- Scott Gardner
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Yibo Jin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Paul K Fyfe
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tomas B Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Centre for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Elizabeth Pohler
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jacob Piehler
- Department of Biology/Chemistry and Centre for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Li X, Wu M, Lu J, Yu J, Chen D. Interleukin-21 as an adjuvant in cancer immunotherapy: Current advances and future directions. Biochim Biophys Acta Rev Cancer 2024; 1879:189084. [PMID: 38354828 DOI: 10.1016/j.bbcan.2024.189084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Immunotherapy has revolutionized cancer treatment. However, it's well-recognized that a considerable proportion of patients fail to benefit from immunotherapy, and to improve immunotherapy response is clinically urgent. Insufficient immune infiltration and immunosuppressive tumor microenvironments (TME) are main contributors to immunotherapy resistance. Thus sustaining functional self-renewal capacity for immune cells and subverting immune-suppressive signals are potential strategies for boosting the efficacy of immunotherapy. Interleukin-21 (IL-21), a crucial cytokine, which could enhance cytotoxic function of immune cells and reduces immunosuppressive cells enrichment in TME, shows promising orientations as an immunoadjuvant in tumor immunotherapy. This review focuses on IL-21 in cancer treatment, including function and mechanisms of IL-21, preclinical and clinical studies, and future directions for IL-21-assisted therapies.
Collapse
Affiliation(s)
- Xinyang Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|