1
|
Becker J, Ellerkmann CS, Schmelzer H, Hermann C, Lützel K, Gudermann T, Konrad DB, Trauner D, Storch U, Mederos Y Schnitzler M. Optical Control of TRPM8 Channels with Photoswitchable Menthol. Angew Chem Int Ed Engl 2024:e202416549. [PMID: 39660776 DOI: 10.1002/anie.202416549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Transient receptor potential melastatin 8 (TRPM8) channels are well known as sensors for cold temperatures and cooling agents such as menthol and icilin and these channels are tightly regulated by the membrane lipid phosphoinositol-4,5-bisphosphate (PIP2). Since TRPM8 channels emerged as promising drug targets for treating pain, itching, obesity, cancer, dry eye disease, and inflammation, we aimed at developing a high-precision TRPM8 channel activator, to achieve spatiotemporal control of TRPM8 activity with light. In this study, we designed, synthesized and characterized the first photoswitchable TRPM8 activator azo-menthol (AzoM). AzoM enables optical control of endogenously and heterologously expressed TRPM8 channels with UV and blue light which is demonstrated by performing patch-clamp experiments. Moreover, AzoM facilitates the reliable determination of activation, inactivation, and deactivation kinetics thereby providing further insights into the channel gating. Using AzoM, the specific roles of individual amino acids for AzoM or PIP2 binding and for sensitization by PIP2 can be elucidated. Altogether, AzoM represents as a high-precision pharmaceutical tool for reversible control of TRPM8 channel function that enhances our biophysical understanding of TRPM8 channels and holds the potential to support the development of novel pharmaceuticals.
Collapse
Affiliation(s)
- Jasmin Becker
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Clara S Ellerkmann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Hannah Schmelzer
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Christian Hermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Kyra Lützel
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, 81377, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, 80336, Munich, Germany
| | - David B Konrad
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Dirk Trauner
- Department of Chemistry College of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, United States
| | - Ursula Storch
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
- Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, 93040, Regensburg, Germany
| | - Michael Mederos Y Schnitzler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, 80336, Munich, Germany
| |
Collapse
|
2
|
Shikha D, Dalai R, Kumar S, Goswami C. Residues of TRPM8 at the Lipid-Water-Interface have Coevolved with Cholesterol Interaction and are Relevant for Diverse Health Disorders. J Membr Biol 2024; 257:345-364. [PMID: 39150496 PMCID: PMC11584472 DOI: 10.1007/s00232-024-00319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
TRPM8 is a non-selective cation channel that is expressed in several tissues and cells and also has a unique property to be activated by low-temperature. In this work, we have analyzed the conservation of amino acids that are present in the lipid-water-interface (LWI) region of TRPM8, the region which experiences a microenvironment near the membrane surface. We demonstrate that the amino acids present in the LWI region are more conserved than the transmembrane or even full-length TRPM8, suggesting strong selection pressure in these residues. TRPM8 also has several conserved cholesterol-binding motifs where cholesterol can bind in different modes and energies. We suggest that mutations and/or physiological conditions can potentially alter these TRPM8-cholesterol complexes and can lead to physiological disorders or even apparently irreversible diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Deep Shikha
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha, 752050, India
| | - Ritesh Dalai
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha, 752050, India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha, 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha, 752050, India.
| |
Collapse
|
3
|
Talyzina IA, Nadezhdin KD, Sobolevsky AI. Forty sites of TRP channel regulation. Curr Opin Chem Biol 2024; 84:102550. [PMID: 39615427 DOI: 10.1016/j.cbpa.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Transient receptor potential (TRP) channels are polymodal molecular sensors that integrate chemical, thermal, mechanical and electrical stimuli and convert them into ionic currents that regulate senses of taste, smell, vision, hearing, touch and contribute to perception of temperature and pain. TRP channels are implicated in the pathogenesis of numerous human diseases, including cancers, and represent one of the most ardently pursued drug targets. Recent advances in structural biology, particularly associated with the cryo-EM "resolution revolution", yielded numerous TRP channel structures in complex with ligands that might have therapeutic potential. In this review, we describe the recent progress in TRP channel structural biology, focusing on the description of identified binding sites for small molecules, their relationship to membrane lipids, and interaction of TRP channels with other proteins. The characterized binding sites and interfaces create a diversity of druggable targets and provide a roadmap to aid in the design of new molecules for tuning TRP channel function in disease conditions.
Collapse
Affiliation(s)
- Irina A Talyzina
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Huffer K, Denley MCS, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. eLife 2024; 13:RP99643. [PMID: 39485376 PMCID: PMC11530238 DOI: 10.7554/elife.99643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Matthew CS Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Elisabeth V Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Lewis CM, Griffith TN. Ion channels of cold transduction and transmission. J Gen Physiol 2024; 156:e202313529. [PMID: 39051992 PMCID: PMC11273221 DOI: 10.1085/jgp.202313529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Thermosensation requires the activation of a unique collection of ion channels and receptors that work in concert to transmit thermal information. It is widely accepted that transient receptor potential melastatin 8 (TRPM8) activation is required for normal cold sensing; however, recent studies have illuminated major roles for other ion channels in this important somatic sensation. In addition to TRPM8, other TRP channels have been reported to contribute to cold transduction mechanisms in diverse sensory neuron populations, with both leak- and voltage-gated channels being identified for their role in the transmission of cold signals. Whether the same channels that contribute to physiological cold sensing also mediate noxious cold signaling remains unclear; however, recent work has found a conserved role for the kainite receptor, GluK2, in noxious cold sensing across species. Additionally, cold-sensing neurons likely engage in functional crosstalk with nociceptors to give rise to cold pain. This Review will provide an update on our understanding of the relationship between various ion channels in the transduction and transmission of cold and highlight areas where further investigation is required.
Collapse
Affiliation(s)
- Cheyanne M Lewis
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Theanne N Griffith
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
6
|
Arrè V, Balestra F, Scialpi R, Dituri F, Donghia R, Coletta S, Stabile D, Bianco A, Vincenti L, Fedele S, Shen C, Pettinato G, Scavo MP, Giannelli G, Negro R. Inorganic Polyphosphate Promotes Colorectal Cancer Growth via TRPM8 Receptor Signaling Pathway. Cancers (Basel) 2024; 16:3326. [PMID: 39409946 PMCID: PMC11476407 DOI: 10.3390/cancers16193326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is characterized by a pro-inflammatory microenvironment and features high-energy-supply molecules that assure tumor growth. A still less studied macromolecule is inorganic polyphosphate (iPolyP), a high-energy linear polymer that is ubiquitous in all forms of life. Made up of hundreds of repeated orthophosphate units, iPolyP is essential for a wide variety of functions in mammalian cells, including the regulation of proliferative signaling pathways. Some evidence has suggested its involvement in carcinogenesis, although more studies need to be pursued. Moreover, iPolyP regulates several homeostatic processes in animals, spanning from energy metabolism to blood coagulation and tissue regeneration. RESULTS In this study, we tested the role of iPolyP on CRC proliferation, using in vitro and ex vivo approaches, in order to evaluate its effect on tumor growth. We found that iPolyP is significantly increased in tumor tissues, derived from affected individuals enrolled in this study, compared to the corresponding peritumoral counterparts. In addition, iPolyP signaling occurs through the TRPM8 receptor, a well-characterized Na+ and Ca2+ ion channel often overexpressed in CRC and linked with poor prognosis, thus promoting CRC cell proliferation. The pharmacological inhibition of TRPM8 or RNA interference experiments performed in established CRC cell lines, such as Caco-2 and SW620, showed that the involvement of TRPM8 is essential, greater than that of the other two known iPolyP receptors, P2Y1 and RAGE. The presence of iPolyP drives cancer cells towards the mitotic phase of the cell cycle by enhancing the expression of ccnb1, which encodes the Cyclin B protein. In vitro 2D and 3D data reflected the ex vivo results, obtained by the generation of CRC-derived organoids, which increased in size. CONCLUSIONS These results indicate that iPolyP may be considered a novel and unexpected early biomarker supporting colorectal cancer cell proliferation.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.B.); (R.S.); (F.D.); (M.P.S.)
| | - Francesco Balestra
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.B.); (R.S.); (F.D.); (M.P.S.)
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.B.); (R.S.); (F.D.); (M.P.S.)
| | - Francesco Dituri
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.B.); (R.S.); (F.D.); (M.P.S.)
| | - Rossella Donghia
- Data Science, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Sergio Coletta
- Core Facility Biobank, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (S.C.); (D.S.); (A.B.)
| | - Dolores Stabile
- Core Facility Biobank, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (S.C.); (D.S.); (A.B.)
| | - Antonia Bianco
- Core Facility Biobank, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (S.C.); (D.S.); (A.B.)
| | - Leonardo Vincenti
- Unit of Surgery, Department of Surgery Sciences, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (L.V.); (S.F.)
| | - Salvatore Fedele
- Unit of Surgery, Department of Surgery Sciences, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (L.V.); (S.F.)
| | - Chen Shen
- Division of Infectious Diseases, Washington University School in Medicine in St. Louis, 660 S Euclid Ave., St. Louis, MO 63110, USA;
| | - Giuseppe Pettinato
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA;
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.B.); (R.S.); (F.D.); (M.P.S.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.B.); (R.S.); (F.D.); (M.P.S.)
| |
Collapse
|
7
|
Arnold WR, Mancino A, Moss FR, Frost A, Julius D, Cheng Y. Structural basis of TRPV1 modulation by endogenous bioactive lipids. Nat Struct Mol Biol 2024; 31:1377-1385. [PMID: 38698206 PMCID: PMC11402599 DOI: 10.1038/s41594-024-01299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
TRP ion channels are modulated by phosphoinositide lipids, but the underlying structural mechanisms remain unclear. The capsaicin- and heat-activated receptor, TRPV1, has served as a model for deciphering lipid modulation, which is relevant to understanding how pro-algesic agents enhance channel activity in the setting of inflammatory pain. Identification of a pocket within the TRPV1 transmembrane core has provided initial clues as to how phosphoinositide lipids bind to and regulate the channel. Here we show that this regulatory pocket in rat TRPV1 can accommodate diverse lipid species, including the inflammatory lipid lysophosphatidic acid, whose actions are determined by their specific modes of binding. Furthermore, we show that an empty-pocket channel lacking an endogenous phosphoinositide lipid assumes an agonist-like state, even at low temperature, substantiating the concept that phosphoinositide lipids serve as negative TRPV1 modulators whose ejection from the binding pocket is a critical step toward activation by thermal or chemical stimuli.
Collapse
Affiliation(s)
- William R Arnold
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Adamo Mancino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Frank R Moss
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Altos Labs, Redwood City, CA, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Altos Labs, Redwood City, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Huffer K, Denley MC, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595003. [PMID: 38826484 PMCID: PMC11142142 DOI: 10.1101/2024.05.20.595003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew C.S. Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Elisabeth V. Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Present Address: Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Yin Y, Park CG, Zhang F, G. Fedor J, Feng S, Suo Y, Im W, Lee SY. Mechanisms of sensory adaptation and inhibition of the cold and menthol receptor TRPM8. SCIENCE ADVANCES 2024; 10:eadp2211. [PMID: 39093967 PMCID: PMC11296349 DOI: 10.1126/sciadv.adp2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Our sensory adaptation to cold and chemically induced coolness is mediated by the intrinsic property of TRPM8 channels to desensitize. TRPM8 is also implicated in cold-evoked pain disorders and migraine, highlighting its inhibitors as an avenue for pain relief. Despite the importance, the mechanisms of TRPM8 desensitization and inhibition remained unclear. We found, using cryo-electron microscopy, electrophysiology, and molecular dynamics simulations, that TRPM8 inhibitors bind selectively to the desensitized state of the channel. These inhibitors were used to reveal the overlapping mechanisms of desensitization and inhibition and that cold and cooling agonists share a common desensitization pathway. Furthermore, we identified the structural determinants crucial for the conformational change in TRPM8 desensitization. Our study illustrates how receptor-level conformational changes alter cold sensation, providing insights into therapeutic development.
Collapse
Affiliation(s)
- Ying Yin
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cheon-Gyu Park
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Feng Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Justin G. Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shasha Feng
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
10
|
Karuppan S, Schrag LG, Pastrano CM, Jara-Oseguera A, Zubcevic L. Structural dynamics at cytosolic interprotomer interfaces control gating of a mammalian TRPM5 channel. Proc Natl Acad Sci U S A 2024; 121:e2403333121. [PMID: 38923985 PMCID: PMC11228501 DOI: 10.1073/pnas.2403333121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The transient receptor potential melastatin (TRPM) tetrameric cation channels are involved in a wide range of biological functions, from temperature sensing and taste transduction to regulation of cardiac function, inflammatory pain, and insulin secretion. The structurally conserved TRPM cytoplasmic domains make up >70 % of the total protein. To investigate the mechanism by which the TRPM cytoplasmic domains contribute to gating, we employed electrophysiology and cryo-EM to study TRPM5-a channel that primarily relies on activation via intracellular Ca2+. Here, we show that activation of mammalian TRPM5 channels is strongly altered by Ca2+-dependent desensitization. Structures of rat TRPM5 identify a series of conformational transitions triggered by Ca2+ binding, whereby formation and dissolution of cytoplasmic interprotomer interfaces appear to control activation and desensitization of the channel. This study shows the importance of the cytoplasmic assembly in TRPM5 channel function and sets the stage for future investigations of other members of the TRPM family.
Collapse
Affiliation(s)
- Sebastian Karuppan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS66160
| | - Lynn Goss Schrag
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS66160
| | - Caroline M. Pastrano
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX78712
| | - Andrés Jara-Oseguera
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX78712
| | - Lejla Zubcevic
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
11
|
Luu DD, Ramesh N, Kazan IC, Shah KH, Lahiri G, Mana MD, Ozkan SB, Van Horn WD. Evidence that the cold- and menthol-sensing functions of the human TRPM8 channel evolved separately. SCIENCE ADVANCES 2024; 10:eadm9228. [PMID: 38905339 PMCID: PMC11192081 DOI: 10.1126/sciadv.adm9228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a temperature- and menthol-sensitive ion channel that contributes to diverse physiological roles, including cold sensing and pain perception. Clinical trials targeting TRPM8 have faced repeated setbacks predominantly due to the knowledge gap in unraveling the molecular underpinnings governing polymodal activation. A better understanding of the molecular foundations between the TRPM8 activation modes may aid the development of mode-specific, thermal-neutral therapies. Ancestral sequence reconstruction was used to explore the origins of TRPM8 activation modes. By resurrecting key TRPM8 nodes along the human evolutionary trajectory, we gained valuable insights into the trafficking, stability, and function of these ancestral forms. Notably, this approach unveiled the differential emergence of cold and menthol sensitivity over evolutionary time, providing a fresh perspective on complex polymodal behavior. These studies provide a paradigm for understanding polymodal behavior in TRPM8 and other proteins with the potential to enhance our understanding of sensory receptor biology and pave the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Dustin D. Luu
- School of Molecular Sciences and The Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nikhil Ramesh
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - I. Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Karan H. Shah
- School of Molecular Sciences and The Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Gourab Lahiri
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Miyeko D. Mana
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - S. Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Wade D. Van Horn
- School of Molecular Sciences and The Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
12
|
Burtscher V, Mount J, Huang J, Cowgill J, Chang Y, Bickel K, Chen J, Yuan P, Chanda B. Structural basis for hyperpolarization-dependent opening of human HCN1 channel. Nat Commun 2024; 15:5216. [PMID: 38890331 PMCID: PMC11189445 DOI: 10.1038/s41467-024-49599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jonathan Mount
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
13
|
Chubanov V, Köttgen M, Touyz RM, Gudermann T. TRPM channels in health and disease. Nat Rev Nephrol 2024; 20:175-187. [PMID: 37853091 DOI: 10.1038/s41581-023-00777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Different cell channels and transporters tightly regulate cytoplasmic levels and the intraorganelle distribution of cations. Perturbations in these processes lead to human diseases that are frequently associated with kidney impairment. The family of melastatin-related transient receptor potential (TRPM) channels, which has eight members in mammals (TRPM1-TRPM8), includes ion channels that are highly permeable to divalent cations, such as Ca2+, Mg2+ and Zn2+ (TRPM1, TRPM3, TRPM6 and TRPM7), non-selective cation channels (TRPM2 and TRPM8) and monovalent cation-selective channels (TRPM4 and TRPM5). Three family members contain an enzymatic protein moiety: TRPM6 and TRPM7 are fused to α-kinase domains, whereas TRPM2 is linked to an ADP-ribose-binding NUDT9 homology domain. TRPM channels also function as crucial cellular sensors involved in many physiological processes, including mineral homeostasis, blood pressure, cardiac rhythm and immunity, as well as photoreception, taste reception and thermoreception. TRPM channels are abundantly expressed in the kidney. Mutations in TRPM genes cause several inherited human diseases, and preclinical studies in animal models of human disease have highlighted TRPM channels as promising new therapeutic targets. Here, we provide an overview of this rapidly evolving research area and delineate the emerging role of TRPM channels in kidney pathophysiology.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Rhian M Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
14
|
Choi ME, Lee JH, Jung CJ, Lee WJ, Won CH, Lee MW, Chang SE. A randomized, double-blinded, vehicle-controlled clinical trial of topical cryosim-1, a synthetic TRPM8 agonist, in prurigo nodularis. J Cosmet Dermatol 2024; 23:931-937. [PMID: 38169089 DOI: 10.1111/jocd.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Prurigo nodularis (PN) is an intensively pruritic skin disease that negatively influences quality of life. Cryosim-1 (Intrinsic IB Spot) is a synthetic, selective transient receptor potential melastatin 8 agonist. AIMS To investigate the efficacy and safety of cryosim-1 in PN patients. PATIENTS/METHODS A randomized, double-blinded, placebo-controlled clinical trial including 30 patients was conducted. The numerical rating scale (NRS) of pruritus was evaluated before and 2 h after cryosim-1 application at every visit. RESULTS At week 8, the mean pruritus NRS before serum application (4.7 ± 0.4 treatment, 6.1 ± 0.5 placebo; p = 0.045) and 2 h after serum application (2.8 ± 0.4 treatment, 4.3 ± 0.5 placebo; p = 0.031) were significantly lower in the treatment group, and the mean NRS for sleep disorder was significantly lower in the treatment group (2.2 ± 0.5 treatment, 4.2 ± 0.8 placebo; p = 0.031). The mean satisfaction scales for pruritus improvement were significantly higher in the treatment group (7.2 ± 0.6) than in the placebo group (4.0 ± 0.9; p = 0.005). There was no difference in TEWL between the two groups, and no adverse reactions were reported. CONCLUSIONS Cryosim-1 is a safe and effective topical treatment for PN patients.
Collapse
Affiliation(s)
- Myoung Eun Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Hyeon Lee
- Bio-Medical Institute of Technology (BMIT), University of Ulsan, College of Medicine, Ulsan, Korea
| | - Chang Jin Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Rohacs T. Phosphoinositide Regulation of TRP Channels: A Functional Overview in the Structural Era. Annu Rev Physiol 2024; 86:329-355. [PMID: 37871124 DOI: 10.1146/annurev-physiol-042022-013956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] serves as a cofactor required for activity. Such dependence on PI(4,5)P2 has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P2. Structural studies uncovered the PI(4,5)P2 and PI(3,5)P2 binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P2 regulation of TRPV1-4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey;
| |
Collapse
|
16
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
17
|
Palchevskyi S, Czarnocki-Cieciura M, Vistoli G, Gervasoni S, Nowak E, Beccari AR, Nowotny M, Talarico C. Structure of human TRPM8 channel. Commun Biol 2023; 6:1065. [PMID: 37857704 PMCID: PMC10587237 DOI: 10.1038/s42003-023-05425-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
TRPM8 is a non-selective cation channel permeable to both monovalent and divalent cations that is activated by multiple factors, such as temperature, voltage, pressure, and changes in osmolality. It is a therapeutic target for anticancer drug development, and its modulators can be utilized for several pathological conditions. Here, we present a cryo-electron microscopy structure of a human TRPM8 channel in the closed state that was solved at 2.7 Å resolution. Our structure comprises the most complete model of the N-terminal pre-melastatin homology region. We also visualized several lipids that are bound by the protein and modeled how the human channel interacts with icilin. Analyses of pore helices in available TRPM structures showed that all these structures can be grouped into different closed, desensitized and open state conformations based on the register of the pore helix S6 which positions particular amino acid residues at the channel constriction.
Collapse
Affiliation(s)
- Sergii Palchevskyi
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
- Cell Signalling Department, Institute of Molecular Biology and Genetics NASU, 03143, Kyiv, Ukraine
| | - Mariusz Czarnocki-Cieciura
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy
- Department of Physics, University of Cagliari, I-09042, Monserrato, Italy
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131, Napoli, Italy
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland.
| | - Carmine Talarico
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131, Napoli, Italy.
| |
Collapse
|
18
|
Burtscher V, Mount J, Cowgill J, Chang Y, Bickel K, Yuan P, Chanda B. Structural Basis for Hyperpolarization-dependent Opening of the Human HCN1 Channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553623. [PMID: 37645882 PMCID: PMC10462129 DOI: 10.1101/2023.08.17.553623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hyperpolarization and cyclic-nucleotide (HCN) activated ion channels play a critical role in generating self-propagating action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN channels activate upon membrane hyperpolarization, but the structural mechanisms underlying this gating behavior remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 in Closed, Intermediate, and Open states. Our structures reveal that the inward motion of two gating charges past the charge transfer center (CTC) and concomitant tilting of the S5 helix drives the opening of the central pore. In the intermediate state structure, a single gating charge is positioned below the CTC and the pore appears closed, whereas in the open state structure, both charges move past CTC and the pore is fully open. Remarkably, the downward motion of the voltage sensor is accompanied by progressive unwinding of the inner end of S4 and S5 helices disrupting the tight gating interface that stabilizes the Closed state structure. This "melting" transition at the intracellular gating interface leads to a concerted iris-like displacement of S5 and S6 helices, resulting in pore opening. These findings reveal key structural features that are likely to underlie reversed voltage-dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Mount
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
19
|
Ben-Abu Y, Tucker SJ, Contera S. Transcending Markov: non-Markovian rate processes of thermosensitive TRP ion channels. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230984. [PMID: 37621668 PMCID: PMC10445021 DOI: 10.1098/rsos.230984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
The Markov state model (MSM) is a popular theoretical tool for describing the hierarchy of time scales involved in the function of many proteins especially ion channel gating. An MSM is a particular case of the general non-Markovian model, where the rate of transition from one state to another does not depend on the history of state occupancy within the system, i.e. it only includes reversible, non-dissipative processes. However, an MSM requires knowledge of the precise conformational state of the protein and is not predictive when those details are not known. In the case of ion channels, this simple description fails in real (non-equilibrium) situations, for example when local temperature changes, or when energy losses occur during channel gating. Here, we show it is possible to use non-Markovian equations (i.e. offer a general description that includes the MSM as a particular case) to develop a relatively simple analytical model that describes the non-equilibrium behaviour of the temperature-sensitive transient receptor potential (TRP) ion channels, TRPV1 and TRPM8. This model accurately predicts asymmetrical opening and closing rates, infinite processes and the creation of new states, as well as the effect of temperature changes throughout the process. This approach therefore overcomes the limitations of the MSM and allows us to go beyond a mere phenomenological description of the dynamics of ion channel gating towards a better understanding of the physics underlying these processes.
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Physics Unit, Sapir Academic College, Sderot, Hof Ashkelon 79165, Israel
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Sonia Contera
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
20
|
Jung JH, Seo PJ, Oh E, Kim J. Temperature perception by plants. TRENDS IN PLANT SCIENCE 2023; 28:924-940. [PMID: 37045740 DOI: 10.1016/j.tplants.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
21
|
Hu Z, Zheng X, Yang J. Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Commun 2023; 14:4284. [PMID: 37463923 DOI: 10.1038/s41467-023-39971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels transduce chemical signals into electrical signals in sensory receptors and neurons. They are activated by cGMP or cAMP, which bind to the cyclic nucleotide-binding domain (CNBD) to open a gate located 50-60 Å away in the central cavity. Structures of closed and open vertebrate CNG channels have been solved, but the conformational landscape of this allosteric gating remains to be elucidated and enriched. Here, we report structures of the cGMP-activated human cone photoreceptor CNGA3/CNGB3 channel in closed, intermediate, pre-open and open states in detergent or lipid nanodisc, all with fully bound cGMP. The pre-open and open states are obtained only in the lipid nanodisc, suggesting a critical role of lipids in tuning the energetic landscape of CNGA3/CNGB3 activation. The different states exhibit subunit-unique, incremental and distinct conformational rearrangements that originate in the CNBD, propagate through the gating ring to the transmembrane domain, and gradually open the S6 cavity gate. Our work illustrates a spatial conformational-change wave of allosteric gating of a vertebrate CNG channel by its natural ligand and provides an expanded framework for studying CNG properties and channelopathy.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
22
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
23
|
Kwon DH, Zhang F, McCray BA, Feng S, Kumar M, Sullivan JM, Im W, Sumner CJ, Lee SY. TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease. Nat Commun 2023; 14:3732. [PMID: 37353484 PMCID: PMC10290081 DOI: 10.1038/s41467-023-39345-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Crosstalk between ion channels and small GTPases is critical during homeostasis and disease, but little is known about the structural underpinnings of these interactions. TRPV4 is a polymodal, calcium-permeable cation channel that has emerged as a potential therapeutic target in multiple conditions. Gain-of-function mutations also cause hereditary neuromuscular disease. Here, we present cryo-EM structures of human TRPV4 in complex with RhoA in the ligand-free, antagonist-bound closed, and agonist-bound open states. These structures reveal the mechanism of ligand-dependent TRPV4 gating. Channel activation is associated with rigid-body rotation of the intracellular ankyrin repeat domain, but state-dependent interaction with membrane-anchored RhoA constrains this movement. Notably, many residues at the TRPV4-RhoA interface are mutated in disease and perturbing this interface by introducing mutations into either TRPV4 or RhoA increases TRPV4 channel activity. Together, these results suggest that RhoA serves as an auxiliary subunit for TRPV4, regulating TRPV4-mediated calcium homeostasis and disruption of TRPV4-RhoA interactions can lead to TRPV4-related neuromuscular disease. These insights will help facilitate TRPV4 therapeutics development.
Collapse
Affiliation(s)
- Do Hoon Kwon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Feng Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shasha Feng
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Meha Kumar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
24
|
Pertusa M, Solorza J, Madrid R. Molecular determinants of TRPM8 function: key clues for a cool modulation. Front Pharmacol 2023; 14:1213337. [PMID: 37388453 PMCID: PMC10301734 DOI: 10.3389/fphar.2023.1213337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Cold thermoreceptor neurons detect temperature drops with highly sensitive molecular machinery concentrated in their peripheral free nerve endings. The main molecular entity responsible for cold transduction in these neurons is the thermo-TRP channel TRPM8. Cold, cooling compounds such as menthol, voltage, and osmolality rises activate this polymodal ion channel. Dysregulation of TRPM8 activity underlies several physiopathological conditions, including painful cold hypersensitivity in response to axonal damage, migraine, dry-eye disease, overactive bladder, and several forms of cancer. Although TRPM8 could be an attractive target for treating these highly prevalent diseases, there is still a need for potent and specific modulators potentially suitable for future clinical trials. This goal requires a complete understanding of the molecular determinants underlying TRPM8 activation by chemical and physical agonists, inhibition by antagonists, and the modulatory mechanisms behind its function to guide future and more successful treatment strategies. This review recapitulates information obtained from different mutagenesis approaches that have allowed the identification of specific amino acids in the cavity comprised of the S1-S4 and TRP domains that determine modulation by chemical ligands. In addition, we summarize different studies revealing specific regions within the N- and C-terminus and the transmembrane domain that contribute to cold-dependent TRPM8 gating. We also highlight the latest milestone in the field: cryo-electron microscopy structures of TRPM8, which have provided a better comprehension of the 21 years of extensive research in this ion channel, shedding light on the molecular bases underlying its modulation, and promoting the future rational design of novel drugs to selectively regulate abnormal TRPM8 activity under pathophysiological conditions.
Collapse
Affiliation(s)
- María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Jocelyn Solorza
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
25
|
Nadezhdin KD, Correia L, Narangoda C, Patel DS, Neuberger A, Gudermann T, Kurnikova MG, Chubanov V, Sobolevsky AI. Structural mechanisms of TRPM7 activation and inhibition. Nat Commun 2023; 14:2639. [PMID: 37156763 PMCID: PMC10167348 DOI: 10.1038/s41467-023-38362-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
The transient receptor potential channel TRPM7 is a master regulator of the organismal balance of divalent cations that plays an essential role in embryonic development, immune responses, cell mobility, proliferation, and differentiation. TRPM7 is implicated in neuronal and cardiovascular disorders, tumor progression and has emerged as a new drug target. Here we use cryo-EM, functional analysis, and molecular dynamics simulations to uncover two distinct structural mechanisms of TRPM7 activation by a gain-of-function mutation and by the agonist naltriben, which show different conformational dynamics and domain involvement. We identify a binding site for highly potent and selective inhibitors and show that they act by stabilizing the TRPM7 closed state. The discovered structural mechanisms provide foundations for understanding the molecular basis of TRPM7 channelopathies and drug development.
Collapse
Affiliation(s)
- Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Leonor Correia
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Chamali Narangoda
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dhilon S Patel
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Feng S, Park S, Choi YK, Im W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J Chem Theory Comput 2023; 19:2161-2185. [PMID: 37014931 PMCID: PMC10174225 DOI: 10.1021/acs.jctc.2c01246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/06/2023]
Abstract
Molecular dynamics simulations of membranes and membrane proteins serve as computational microscopes, revealing coordinated events at the membrane interface. As G protein-coupled receptors, ion channels, transporters, and membrane-bound enzymes are important drug targets, understanding their drug binding and action mechanisms in a realistic membrane becomes critical. Advances in materials science and physical chemistry further demand an atomistic understanding of lipid domains and interactions between materials and membranes. Despite a wide range of membrane simulation studies, generating a complex membrane assembly remains challenging. Here, we review the capability of CHARMM-GUI Membrane Builder in the context of emerging research demands, as well as the application examples from the CHARMM-GUI user community, including membrane biophysics, membrane protein drug-binding and dynamics, protein-lipid interactions, and nano-bio interface. We also provide our perspective on future Membrane Builder development.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Soohyung Park
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yeol Kyo Choi
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
27
|
Sohn J. Cadenza ad libitum: cGAS and STING showcase their versatile virtuosities in the Ca 2+-dependent rescue of stalled replication forks. Mol Cell 2023; 83:502-503. [PMID: 36804912 DOI: 10.1016/j.molcel.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/18/2023]
Abstract
In this issue of Molecular Cell, Li et al. report that the cGAS-STING cytosolic dsDNA sensing pathway plays a crucial role in regulating the TRPV2 calcium channel to rescue replication forks.
Collapse
Affiliation(s)
- Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
29
|
Natural variation in the binding pocket of a parasitic flatworm TRPM channel resolves the basis for praziquantel sensitivity. Proc Natl Acad Sci U S A 2023; 120:e2217732120. [PMID: 36574686 PMCID: PMC9910428 DOI: 10.1073/pnas.2217732120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The drug praziquantel (PZQ) is the key clinical therapy for treating schistosomiasis and other infections caused by parasitic flatworms. A schistosome target for PZQ was recently identified- a transient receptor potential ion channel in the melastatin subfamily (TRPMPZQ)-however, little is known about the properties of TRPMPZQ in other parasitic flatworms. Here, TRPMPZQ orthologs were scrutinized from all currently available parasitic flatworm genomes. TRPMPZQ is present in all parasitic flatworms, and the consensus PZQ binding site was well conserved. Functional profiling of trematode, cestode, and a free-living flatworm TRPMPZQ ortholog revealed differing sensitives (~300-fold) of these TRPMPZQ channels toward PZQ, which matched the varied sensitivities of these different flatworms to PZQ. Three loci of variation were defined across the parasitic flatworm TRPMPZQ pocketome with the identity of an acidic residue in the TRP domain acting as a gatekeeper residue impacting PZQ residency within the TRPMPZQ ligand binding pocket. In trematodes and cyclophyllidean cestodes, which display high sensitivity to PZQ, this TRP domain residue is an aspartic acid which is permissive for potent activation by PZQ. However, the presence of a glutamic acid residue found in other parasitic and free-living flatworm TRPMPZQ was associated with lower sensitivity to PZQ. The definition of these different binding pocket architectures explains why PZQ shows high therapeutic effectiveness against specific fluke and tapeworm infections and will help the development of better tailored therapies toward other parasitic infections of humans, livestock, and fish.
Collapse
|
30
|
Progress in the Structural Basis of thermoTRP Channel Polymodal Gating. Int J Mol Sci 2023; 24:ijms24010743. [PMID: 36614186 PMCID: PMC9821180 DOI: 10.3390/ijms24010743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The thermosensory transient receptor potential (thermoTRP) family of ion channels is constituted by several nonselective cation channels that are activated by physical and chemical stimuli functioning as paradigmatic polymodal receptors. Gating of these ion channels is achieved through changes in temperature, osmolarity, voltage, pH, pressure, and by natural or synthetic chemical compounds that directly bind to these proteins to regulate their activity. Given that thermoTRP channels integrate diverse physical and chemical stimuli, a thorough understanding of the molecular mechanisms underlying polymodal gating has been pursued, including the interplay between stimuli and differences between family members. Despite its complexity, recent advances in cryo-electron microscopy techniques are facilitating this endeavor by providing high-resolution structures of these channels in different conformational states induced by ligand binding or temperature that, along with structure-function and molecular dynamics, are starting to shed light on the underlying allosteric gating mechanisms. Because dysfunctional thermoTRP channels play a pivotal role in human diseases such as chronic pain, unveiling the intricacies of allosteric channel gating should facilitate the development of novel drug-based resolving therapies for these disorders.
Collapse
|