1
|
Suresh S, Athira BS, Akhila NS, Vijaya L, Chandran A, Gowd EB. Anisotropic Poly(vinylidene fluoride- co-trifluoroethylene)/MXene Aerogel-Based Piezoelectric Nanogenerator for Efficient Kinetic Energy Harvesting and Self-Powered Force Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39874211 DOI: 10.1021/acsami.4c19733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task. Herein, anisotropic poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE)/MXene aerogel-based piezoelectric generators with highly oriented MXene fillers are fabricated. The unidirectional freezing of a hybrid solution facilitates the strain-induced alignment of MXene nanosheets and polymer chains along the solvent crystal growth direction due to the robust interactions between the MXene nanosheets (O-H/F groups) and PVDF-TrFE chains (F-C/C-H groups). Consequently, this process fosters the development of abundant electroactive β crystals with preferred alignment characteristics, leading to the formation of intrinsic self-oriented dipoles within the PVDF-TrFE aerogel. As a result, the piezoelectric properties of PVDF-TrFE are fully harnessed without any complex poling process, resulting in an open-circuit voltage of around 40 V with MXene loading of 3 wt % in anisotropic aerogel, which is 2-fold higher than that of the corresponding isotropic aerogel where the MXene nanosheets and polymer chains are randomly aligned. Furthermore, the developed piezoelectric nanogenerator was demonstrated as a tactile sensor which showed a high sensitivity of 9.6 V/N for lower forces (less than 2 N) and a sensitivity of 1.3 V/N in the higher force regime (2 N < force < 10 N). The strategy adopted here not only provides the enhancement of the piezoelectric crystalline form for self-poling but also paves an avenue toward developing self-powered energy harvesters using piezoelectric polymers.
Collapse
Affiliation(s)
- Sruthi Suresh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - B S Athira
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - N S Akhila
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Lakshmi Vijaya
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| | - Achu Chandran
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - E Bhoje Gowd
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
2
|
Wang Z, Duan Y, Liu C, Wang L, Zhang Z, Zhao W, Zhang X, Zhang Y, Fu P, Cai H, Cui Z, Pang X, Dong ZL, Liu M. High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39862161 DOI: 10.1021/acsami.4c19568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments. We elucidate the evolution of morphology and the ferroelectric phase in the submicron/nanoscale fibers during post processing as well as the corresponding changes in performance. The drawing process primarily enhances the orientation of the crystalline phase and reduces the fiber diameter, while the annealing process more effectively promotes the crystal size and crystallinity. Afterward, we propose an optimal postdrawing and annealing assisted-electrostatic spinning process. Under the synergistic effects of these post-treatments, the remanent polarization (Pr) of nylon-11,11 textile increased to 4.7 times that of the untreated textile, resulting in amplified piezoelectric outputs. The output voltage, current, and power density of the prepared PENG reached 21.5 V, 800 nA, and 1.88 mW·m-2 (80 MΩ), respectively. Notably, at pressures exceeding 8 kPa, the mechano-voltage and current sensitivity reached as high as 266 mV/kPa and 13.99 nA/kPa, respectively, which is extraordinary compared to other piezoelectric NGs and comparable to the performance of nylon-based triboelectric NGs. Furthermore, we investigated the potential application of the prepared PENG in biomechanical energy harvesting and human movement monitoring. Experiments demonstrated its effectiveness in powering light bulbs, tracking walking status, and monitoring finger/hand/wrist gestures.
Collapse
Affiliation(s)
- Zhixiao Wang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Yubo Duan
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Chongyang Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Lihua Wang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoyang Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zhao
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Yuancheng Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Hongling Cai
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Zhe Cui
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Li Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Minying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Huang YZ, Liu Z, Li LW, He HZ, Wang ZL, Qu JP, Chen X, Huang ZX. Giant Piezoelectric Coefficient of Polyvinylidene Fluoride with Rationally Engineered Ultrafine Domains Achieved by Rapid Freezing Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412344. [PMID: 39538983 DOI: 10.1002/adma.202412344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Domains play an essential role in determining the piezoelectric properties of polymers. The conventional method for achieving ultrafine piezoelectric domain structures for polymers is multiphase polymerization, which is not the primary choice for industrial-scale applications because of its complex synthesis and weak mechanical properties. In this study, it is demonstrated for the first time that a nanoscale domain design can be achieved in a commercially available polyvinylidene fluoride (PVDF) homopolymer through a simple fabrication method involving cyclic compression and rapid freezing. The domain-engineered PVDF exhibits largely enhanced piezoelectric output with a record-breaking piezoelectric coefficient (d33) of 191.4 picocoulombs per Newton (8.9 times higher than that of PVDF without engineered domain structure) and electromechanical coupling factor (k33) of 77.1%. Moreover, nanoscale domain-induced ferroelectric and dielectric evolutions are revealed. A smaller domain is found to be beneficial for domain switching. An in-depth understanding of the interplay between the domain structure and piezoelectric properties reveals a simple, low-cost method for fabricating high-performance polymeric piezoelectric.
Collapse
Affiliation(s)
- Yun-Zhi Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhaoqi Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lan-Wei Li
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| | - He-Zhi He
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiangyu Chen
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Xia Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
4
|
Xu T, Jin L, Ao Y, Zhang J, Sun Y, Wang S, Qu Y, Huang L, Yang T, Deng W, Yang W. All-polymer piezo-ionic-electric electronics. Nat Commun 2024; 15:10876. [PMID: 39738024 DOI: 10.1038/s41467-024-55177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-polymer piezo-ionic-electric electronics with PVDF/Nafion/PVDF (polyvinylidene difluoride) sandwich structure and regularized ion-electron interfaces. The piezoelectric effect and piezoionic effect mutually couple based on such ion-electron interfaces, endowing this electronics with the unique piezo-ionic-electric working mechanism. Further, owing to the massive interfacial accumulation of ion and electron charges, the electronics obtains a remarkable force-electric coupling enhancement. Experiments show that the electronics presents a high d33 of ~80.70 pC N-1, a pressure sensitivity of 51.50 mV kPa-1 and a maximum peak power of 34.66 mW m-2. It is applicable to be a transducer to light LEDs, and a sensor to detect weak physiological signals or mechanical vibration. This work shows the piezo-ionic-electric electronics as a paradigm of highly-optimized all-polymer piezo-generators.
Collapse
Affiliation(s)
- Tianpei Xu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Long Jin
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yong Ao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jieling Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yue Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shenglong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanxiao Qu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Longchao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tao Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
5
|
Li L, Xu W, Rui G, Zhang S, Zhang QM, Wang Q. Dilute nanocomposites for capacitive energy storage: progress, challenges and prospects. Chem Sci 2024; 15:19651-19668. [PMID: 39568947 PMCID: PMC11575606 DOI: 10.1039/d4sc05437g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Electrostatic capacitors (ECs) are critical components in advanced electronics and electric power systems due to their rapid charge-discharge rate and high power density. While polymers are ideal for ECs due to their high voltage tolerance and mechanical flexibility, their low dielectric constants (K) and limited energy density remain significant limitations. Traditional polymer nanocomposites, which incorporate high-K ceramic fillers, have shown promise in enhancing dielectric properties but often at the cost of electric breakdown strength and scalability. In this perspective, we explore a pioneering approach that utilizes ultralow loadings of small-sized inorganic nanofillers to significantly improve dielectric constants without compromising other key properties. We delve into the unconventional effects observed in these polymer nanocomposites, including dielectric enhancements, charge trapping, mechanical reinforcements, and microstructural changes, and highlight the impressive energy storage performance achieved with minimal filler contents. We discuss innovative design strategies from viewpoints of polymer and filler structures and showcase recent advancements in nanoscale characterization and theoretical modelling for understanding the crucial role of polymer-filler interfaces. Finally, we stress fundamental challenges and prospects, providing insights into the transformative potential of these nanocomposites for next-generation energy storage applications.
Collapse
Affiliation(s)
- Li Li
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802 USA
| | - Wenhan Xu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802 USA
| | - Guanchun Rui
- Arkema Inc. 900 First Avenue, King of Prussia PA 19406 USA
| | - Shixian Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802 USA
| | - Q M Zhang
- School of Electrical Engineering and Computer Science, Materials Research Institute, The Pennsylvania State University, University Park PA 16802 USA
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802 USA
| |
Collapse
|
6
|
Zhang Y, Lin Y, Ma Y, Yuan Q, Yang H. Enhanced Energy Storage Properties of Four-Layer Composite Films via Strategic Macrointerface Modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60967-60976. [PMID: 39436994 DOI: 10.1021/acsami.4c12142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dielectric capacitors play a crucial role in the field of energy storage; however, the low discharged energy density (Ue) of existing commercial dielectrics limits their future applications. Currently, further improvement in the Ue of dielectrics is constrained by the challenge of simultaneously achieving high permittivity (εr) and high breakdown electric field strength (Eb). To address this issue, we designed a series of four-layer poly(vinylidene fluoride) (PVDF)-based composite films comprising three functional layers: a sodium bismuth titanate (NBT) plus PVDF composite (NBT&PVDF) layer to achieve high εr values and a pure PVDF layer and a boron nitride (BN) plus PVDF composite (BN&PVDF) layer to achieve high Eb values. This design synergistically enhanced the εr and Eb values of the composite films by exploiting low-loss macrointerface polarization via adjustment of the functional layer stacking order, as supported by simulation analyses. Ultimately, the composite film with a topmost layer of pure PVDF, followed by an NBT&PVDF layer, another pure PVDF layer, and a BN&PVDF layer achieved an enhanced Ue value of 26.42 J·cm-3 and excellent efficiency of 80.03% at an ultrahigh Eb value of 770 MV·m-1. This approach offers an innovative pathway for developing advanced energy storage composite dielectrics via macrointerface manipulation.
Collapse
Affiliation(s)
- Yongjing Zhang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ying Lin
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yanlong Ma
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Qibin Yuan
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Haibo Yang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
7
|
Li F, Wang L, Gao L, Zu D, Zhang D, Xu T, Hu Q, Zhu R, Liu Y, Hu BL. Reducing Dielectric Loss of High-Dielectric-Constant Elastomer via Rigid Short-Chain Crosslinking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411082. [PMID: 39380411 DOI: 10.1002/adma.202411082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Indexed: 10/10/2024]
Abstract
High-dielectric-constant elastomers have broad applications in wearable electronics, which can be achieved by the elastification of relaxor ferroelectric polymers. However, the introduction of soft long chains, with their high mobility under strong electric fields, leads to high dielectric loss. Given the relatively low modulus of relaxor ferroelectric polymers, elastification can be realized by introducing short-chain crosslinkers. In this work, a molecular engineering design is employed, utilizing a rigid short-chain crosslinker to create crosslinks with relaxor ferroelectric polymer, resulting in intrinsic elastomers characterized by a high dielectric constant but low dielectric loss. The obtained intrinsic ferroelectric elastomer possesses a high dielectric constant (35 at 1 kHz and 25 °C) and a low dielectric loss (0.09). Furthermore, this elastomer exhibits stable ferroelectric response and relaxor characteristics even under strains up to 80%. The study supplies a simple but effective method to reduce the dielectric loss of high-dielectric-constant intrinsic elastomers, thereby expanding their application fields in wearable electronics.
Collapse
Affiliation(s)
- Fangzhou Li
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linping Wang
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Liang Gao
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Zu
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Dongyang Zhang
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tianhua Xu
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Qiuyue Hu
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ren Zhu
- Oxford Instruments Asylum Research, Shanghai, 200233, China
| | - Yunya Liu
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Ben-Lin Hu
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Li F, Wang C, Shan L. Anomalous electrocaloric behaviors in (anti)ferroelectrics: a mini-review. Front Chem 2024; 12:1476273. [PMID: 39508033 PMCID: PMC11537919 DOI: 10.3389/fchem.2024.1476273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Solid-state cooling, represented by the electrocaloric effect (ECE) in (anti)ferroelectric materials, has emerged as an alternative green refrigeration technology by virtue of its high efficiency and miniaturization and is expected to substitute conventional vapor-compression. Significant progress has been made in developing high-performance EC materials since its revival. However, anomalous EC behaviors are frequently observed, including asymmetric and negative EC profiles, and the physical mechanism behind this is still under debate. Its rationalization is of great importance since full utilization of anomalous EC behaviors could enhance EC strength and/or cooling capacity. This mini-review gives a brief overview of research advances in EC anomalies in (anti)ferroelectrics with the hope of provoking thought on the design of reconstructed refrigeration cycles and superior EC materials for application in solid-state cooling devices.
Collapse
Affiliation(s)
- Feng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei, China
| | - Chunchang Wang
- Laboratory of Dielectric Functional Materials, School of Materials Science and Engineering, Anhui University, Hefei, China
| | - Lei Shan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei, China
| |
Collapse
|
9
|
Zhang J, Liu Y, Wu P. An elastic piezoelectric nanomembrane with double noise reduction for high-quality bandpass acoustics. Nat Commun 2024; 15:8920. [PMID: 39414797 PMCID: PMC11484958 DOI: 10.1038/s41467-024-52787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024] Open
Abstract
Polymer piezoelectrics with high electromechanical energy conversion (HEEC) are very promising for flexible acoustoelectric devices. However, reducing thickness and improving ordered polarization and ferroelectricity while maintaining high mechanical strength pose enormous fabrication challenges for polymer piezoelectric membranes-additionally, noise management in the acoustoelectric conversion remains an open issue. Here, we present a hydro-levitation superspreading approach for fabricating polymer nanomembranes with ordered crystalline phases and sub-nanostructures on the water surface. The elastic piezoelectric nanomembrane (EPN) is only 335 nanometers thick and consists of a conductance-stable piezoelectric layer sandwiched between two elastic damping layers. Such an all-in-one EPN can reduce background noise with low autocorrelation in the environment, suppress spurious noise caused by poor circuit contact, and achieve bandpass filtering of acoustic signals at human voice frequencies. This nanomembrane holds promise in repairing the auditory system of patients with tympanic membrane perforation and in a wide range of other acoustoelectric conversion fields.
Collapse
Affiliation(s)
- Jialin Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yanjun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| |
Collapse
|
10
|
Yang Y, Sai H, Egner SA, Qiu R, Palmer LC, Stupp SI. Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 2024; 634:833-841. [PMID: 39385033 DOI: 10.1038/s41586-024-08041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Ferroelectric structures have spontaneous macroscopic polarization that can be inverted using external electric fields and have potential applications including information storage, energy transduction, ultralow-power nanoelectronics1,2 and biomedical devices3. These functions would benefit from nanoscale control of ferroelectric structure, the ability to switch polarization with lower applied fields (low coercive field) and biocompatibility. Soft ferroelectrics based on poly(vinylidene fluoride) (PVDF)4-6 have a thermodynamically unstable ferroelectric phase in the homopolymer, complex semi-crystalline structures, and high coercive fields. Here we report on ferroelectric materials formed by water-soluble molecules containing only six VDF repeating units covalently conjugated to a tetrapeptide, with the propensity to assemble into the β-sheet structures that are ubiquitous in proteins. This led to the discovery of ribbon-shaped ferroelectric supramolecular assemblies that are thermodynamically stable with their long axes parallel to both the preferred hydrogen-bonding direction of β-sheets and the bistable polar axes of VDF hexamers. Relative to a commonly used ferroelectric copolymer, the biomolecular assemblies exhibit a coercive field that is two orders of magnitude lower, as the result of supramolecular dynamics, and a similar level of remnant polarization, despite having a peptide content of 49 wt%. Furthermore, the Curie temperature of the assemblies is about 40 °C higher than that of a copolymer containing a similar amount of VDF. This supramolecular system was created using a biologically inspired strategy that is attractive in terms of sustainability and that could lead to new functions for soft ferroelectrics.
Collapse
Affiliation(s)
- Yang Yang
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Simon A Egner
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Bio-inspired Energy Science, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
11
|
Lee MC, Pan CT, Juan SY, Wen ZH, Xu JH, Janesha UGS, Lin FM. Graphene-Doped Piezoelectric Transducers by Kriging Optimal Model for Detecting Various Types of Laryngeal Movements. MICROMACHINES 2024; 15:1213. [PMID: 39459087 PMCID: PMC11509151 DOI: 10.3390/mi15101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
This study fabricated piezoelectric fibers of polyvinylidene fluoride (PVDF) with graphene using near-field electrospinning (NFES) technology. A uniform experimental design table U*774 was applied, considering weight percentage (1-13 wt%), the distance between needle and disk collector (2.1-3.9 mm), and applied voltage (14.5-17.5 kV). We optimized the parameters using electrical property measurements and the Kriging response surface method. Adding 13 wt% graphene significantly improved electrical conductivity, increasing from 17.7 µS/cm for pure PVDF to 187.5 µS/cm. The fiber diameter decreased from 21.4 µm in PVDF/1% graphene to 9.1 µm in PVDF/13% graphene. Adding 5 wt% graphene increased the β-phase content by 6.9%, reaching 65.4% compared to pure PVDF fibers. Material characteristics were investigated using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), contact angle measurements, and tensile testing. Optimal parameters included 3.47 wt% graphene, yielding 15.82 mV voltage at 5 Hz and 5 N force (2.04 times pure PVDF). Force testing showed a sensitivity (S) of 7.67 log(mV/N). Fibers were attached to electrodes for piezoelectric sensor applications. The results affirmed enhanced electrical conductivity, piezoelectric performance, and mechanical strength. The optimized piezoelectric sensor could be applied to measure physiological signals, such as attaching it to the throat under different conditions to measure the output voltage. The force-to-voltage conversion facilitated subsequent analysis.
Collapse
Affiliation(s)
- Ming-Chan Lee
- Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan;
| | - Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (C.-T.P.); (S.-Y.J.)
- Institute of Advanced Semiconductor Packaging and Testing, College of Semiconductor and Advanced Technology Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu City 300, Taiwan
| | - Shuo-Yu Juan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (C.-T.P.); (S.-Y.J.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Jin-Hao Xu
- Division of Pulmonary Medicine, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Uyanahewa Gamage Shashini Janesha
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle 80000, Sri Lanka
| | - Fan-Min Lin
- Division of Pulmonary Medicine, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
12
|
Cui J, Du L, Meng Z, Gao J, Tan A, Jin X, Zhu X. Ingenious Structure Engineering to Enhance Piezoelectricity in Poly(vinylidene fluoride) for Biomedical Applications. Biomacromolecules 2024; 25:5541-5591. [PMID: 39129463 DOI: 10.1021/acs.biomac.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The future development of wearable/implantable sensing and medical devices relies on substrates with excellent flexibility, stability, biocompatibility, and self-powered capabilities. Enhancing the energy efficiency and convenience is crucial, and converting external mechanical energy into electrical energy is a promising strategy for long-term advancement. Poly(vinylidene fluoride) (PVDF), known for its piezoelectricity, is an outstanding representative of an electroactive polymer. Ingeniously designed PVDF-based polymers have been fabricated as piezoelectric devices for various applications. Notably, the piezoelectric performance of PVDF-based platforms is determined by their structural characteristics at different scales. This Review highlights how researchers can strategically engineer structures on microscopic, mesoscopic, and macroscopic scales. We discuss advanced research on PVDF-based piezoelectric platforms with diverse structural designs in biomedical sensing, disease diagnosis, and treatment. Ultimately, we try to give perspectives for future development trends of PVDF-based piezoelectric platforms in biomedicine, providing valuable insights for further research.
Collapse
Affiliation(s)
- Jiwei Cui
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| | - Lijun Du
- Shanghai Huayi 3F New Materials Co., Ltd., No. 560 Xujiahui Road, Shanghai 200025, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| | - Zhiheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiayin Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Anning Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
13
|
Xie Z, Zhu J, Dou Z, Zhang Y, Wang K, Wu K, Fu Q. Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film. Nat Commun 2024; 15:7817. [PMID: 39242564 PMCID: PMC11379682 DOI: 10.1038/s41467-024-52234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Dielectric polymer composites for film capacitors have advanced significantly in recent decades, yet their practical implementation in industrial-scale, thin-film processing faces challenges, particularly due to limited biaxial stretchability. Here, we introduce a mechanochemical solution that applies liquid metal onto rigid dielectric fillers (e.g. boron nitride), dramatically transforming polymer-filler interface characteristics. This approach significantly reduces modulus mismatch and stress concentration at the interface region, enabling polypropylene composites to achieve biaxial stretching ratio up to 450 × 450%. Furthermore, liquid metal integration enhances boron nitride's dielectric polarization while maintaining inherent insulation, producing high-dielectric-constant, low-loss films. These films, only microns thick yet quasi square meters in area, achieve a 55% increase in energy density over commercial biaxially-oriented polypropylene (from 2.9 to 4.5 J cm-3 at 550 MV/m), keeping 90% discharge efficiency. Coupled with improved thermal conductivity, durability, and device capacitance, this distinctive interface engineering approach makes these composites promising for high-performance film capacitors.
Collapse
Affiliation(s)
- Zilong Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianan Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengli Dou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ke Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
14
|
Gao L, Wang L, Hu BL. Highly elastic relaxor ferroelectric via peroxide crosslinking. Chem Sci 2024:d4sc04641b. [PMID: 39246340 PMCID: PMC11376081 DOI: 10.1039/d4sc04641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Relaxor ferroelectrics are well-known for their high dielectric constants, low dielectric losses, and excellent electromechanical properties, making them valuable for various electronic devices. Despite recent efforts to enhance the durability of ferroelectrics through chemical cross-linking, achieving elasticity in relaxor ferroelectric materials remains a significant challenge. These materials inherently possess traits such as low crystallinity and small crystal size, while chemical crosslinking tends to diminish polymer crystallinity considerably. Thus, a key obstacle to making relaxor ferroelectric polymers elastic lies in safeguarding their crystalline regions from the effects of slight crosslinking. To tackle this issue, we selected P(VDF-CTFE-DB) with highly reactive C[double bond, length as m-dash]C double bonds as crosslinking sites, reducing the amount of cross-linking agents added and thereby lessening their impact on crystallinity. Through peroxide crosslinking, we transformed linear P(VDF-CTFE-DB) into a network structure, successfully producing a resilient relaxor ferroelectric material with maintained polarization intensity for ferroelectricity. Notably, this elastic relaxor ferroelectric was synthesized at relatively low temperatures, exhibiting a remarkable dielectric constant, superior resilience, fatigue resistance, and a stable ferroelectric response even under strains of up to 80%. Our approach paves the way for developing low-cost, high-dielectric-constant elastomers suitable for wearable electronics and related applications.
Collapse
Affiliation(s)
- Liang Gao
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Linping Wang
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Ben-Lin Hu
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Dai C, Li F, Long M, Tan DQ, Shan L, Wang C, Wang J, Cheng Z. Synergy of Oxygen Octahedra Distortion and Polar Nanodomains Induced Emergent Electrocaloric Effect in NaNbO 3-Based Ceramics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42435-42447. [PMID: 39078614 DOI: 10.1021/acsami.4c06592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
High-performance electrocaloric materials are essential for the development of solid-state cooling technologies; however, the contradiction of the electrocaloric effect (ECE) and temperature span in ferroelectrics frustrates practical applications. In this work, through modulating oxygen octahedra distortion and short-range polar nanodomains with moderate coupling strength, an EC value of ΔT ∼ 0.30 K with an ultrawide temperature span of 85 K is obtained in the x = 0.04 composition [(0.88 - x)NaNbO3-0.12BaTiO3-xLiSbO3 (x = 0-0.06)]. The LiSbO3 dopant induces a P4bm-to-R3cH phase transition and intensifies the oxygen octahedra distortion degree, accompanied by the ferroelectric domain smashing into polar nanodomains. Also, LiSbO3 addition enhances the relaxation degree with a downshift of Tfd (ferroelectric-to-diffuse phase transition temperature) and TJ (temperature of the maximal current density value), and Tfd is shifted to near room temperature with an absence of TJ in x = 0.04. Local energy barriers induced by oxygen octahedra distortion inhibit the phase transition in conjunction with activation of short-range polar order switching under thermal stimuli, which is the underlying mechanism for an excellent EC performance for x = 0.04. This work not only clarifies that ferroelectrics with oxygen octahedra distortion and short-range polar order are expected to achieve remarkable EC performances but also provides a design strategy to seek emergent EC behaviors in complex oxygen-octahedra-distortion materials.
Collapse
Affiliation(s)
- Changshun Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Feng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Daniel Q Tan
- MSE and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Lei Shan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Chunchang Wang
- Laboratory of Dielectric Functional Materials, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Jianli Wang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong 2500, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong 2500, Australia
| |
Collapse
|
16
|
Hua Y, Li X, Li J, Luo X, Li Y, Qin W, Zhang L, Xiao J, Xia W, Song P, Yue M, Zhang HT, Zhang X. Fast fabrication of a hierarchical nanostructured multifunctional ferromagnet. Science 2024; 385:634-641. [PMID: 39116216 DOI: 10.1126/science.adp2328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024]
Abstract
Materials with multifunctionality affect society enormously. However, the inability to surmount multiple functionality trade-offs limits the discovery of next-generation multifunctional materials. Departing from conventional alloying design philosophy, we present a hierarchical nanostructure (HNS) strategy to simultaneously break multiple performance trade-offs in a material. Using a praseodymium-cobalt (PrCo5) ferromagnet as a proof of concept, the resulting HNS outperforms contemporary high-temperature ferromagnets with a 50 to 138% increase in electrical resistivity while achieving their highest energy density. Our strategy also enables an exceptional thermal stability of coercivity (-0.148%/°C)-a key characteristic for device accuracy and reliability-surpassing that of existing commercial rare-earth magnets. The multifunctionality stems from the deliberately introduced nanohierarchical structure, which activates multiple micromechanisms to resist domain wall movement and electron transport, offering an advanced design concept for multifunctional materials.
Collapse
Affiliation(s)
- Yingxin Hua
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Xiaohong Li
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jiaxu Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiang Luo
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yuqing Li
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China
| | - Wenyue Qin
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Liqiang Zhang
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jianwei Xiao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Weixing Xia
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ping Song
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Ming Yue
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China
| | - Hai-Tian Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiangyi Zhang
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
17
|
Xu T, Wang L, Gao L, Li F, Hu B, Li B, Shen H, Liu Z, Hu BL. Intrinsic Elastomer with Remarkable Dielectric Constant via Elastification of Relaxor Ferroelectric Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404001. [PMID: 38838735 DOI: 10.1002/adma.202404001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Indexed: 06/07/2024]
Abstract
High-dielectric-constant elastomers always play a critical role in the development of wearable electronics for actuation, energy storage, and sensing; therefore, there is an urgent need for effective strategies to enhance dielectric constants. The present methods mainly involve adding inorganic or conductive fillers to the polymer elastomers, however, the addition of fillers causes a series of problems, such as large dielectric loss, increased modulus, and deteriorating interface conditions. Here, the elastification of relaxor ferroelectric polymers is investigated through slight cross-linking, aiming to obtain intrinsic elastomers with high-dielectric constants. By cross-linking of the relaxor ferroelectric polymer poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorofluoroethylene) with a long soft chain cross-linker, a relaxor ferroelectric elastomer with an enhanced dielectric constant is obtained, twice that of the pristine relaxor ferroelectric polymer and surpassing all reported intrinsic elastomers. This elastomer maintains its high-dielectric constant over a wide temperature range and exhibits robust mechanical fatigue resistance, chemical stability, and thermal stability. Moreover, the ferroelectricity of the elastomer remains stable under strains up to 80%. This study offers a simple and effective way to enhance the dielectric constant of intrinsic elastomers, thus facilitating advancements in soft robots, biosensors, and wearable electronics.
Collapse
Affiliation(s)
- Tianhua Xu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Liang Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Fangzhou Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Bowen Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Haoyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwen Liu
- Oxford Instruments Technology China, Beijing, 100034, P. R. China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Honaker LW, Gao T, de Graaf KR, Bogaardt TV, Vink P, Stürzer T, Kociok‐Köhn G, Zuilhof H, Miloserdov FM, Deshpande S. 2D and 3D Self-Assembly of Fluorine-Free Pillar-[5]-Arenes and Perfluorinated Diacids at All-Aqueous Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401807. [PMID: 38790132 PMCID: PMC11304270 DOI: 10.1002/advs.202401807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 05/26/2024]
Abstract
The interaction of perfluorinated molecules, also known as "forever chemicals" due to their pervasiveness, with their environment remains an important yet poorly understood topic. In this work, the self-assembly of perfluorinated molecules with multivalent hosts, pillar-[5]-arenes, is investigated. It is found that perfluoroalkyl diacids and pillar-[5]-arenes rapidly and strongly complex with each other at aqueous interfaces, forming solid interfacially templated films. Their complexation is shown to be driven primarily by fluorophilic aggregation and assisted by electrostatic interactions, as supported by the crystal structure of the complexes, and leads to the formation of quasi-2D phase-separated films. This self-assembly process can be further manipulated using aqueous two-phase system microdroplets, enabling the controlled formation of 3D micro-scaffolds.
Collapse
Affiliation(s)
- Lawrence W. Honaker
- Laboratory of Physical Chemistry and Soft MatterWageningen University & ResearchWageningen6708 WEThe Netherlands
| | - Tu‐Nan Gao
- Laboratory of Organic ChemistryWageningen University & ResearchWageningen6708 WEThe Netherlands
- Biobased Chemistry and TechnologyWageningen University & ResearchWageningen6708 WGThe Netherlands
| | - Kelsey R. de Graaf
- Laboratory of Physical Chemistry and Soft MatterWageningen University & ResearchWageningen6708 WEThe Netherlands
- Laboratory of Organic ChemistryWageningen University & ResearchWageningen6708 WEThe Netherlands
| | - Tessa V.M. Bogaardt
- Laboratory of Physical Chemistry and Soft MatterWageningen University & ResearchWageningen6708 WEThe Netherlands
| | - Pim Vink
- Laboratory of Physical Chemistry and Soft MatterWageningen University & ResearchWageningen6708 WEThe Netherlands
| | | | | | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University & ResearchWageningen6708 WEThe Netherlands
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- China–Australia Institute for Advanced Materials and ManufacturingJiaxing UniversityJiaxing314001P. R. China
| | - Fedor M. Miloserdov
- Laboratory of Organic ChemistryWageningen University & ResearchWageningen6708 WEThe Netherlands
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft MatterWageningen University & ResearchWageningen6708 WEThe Netherlands
| |
Collapse
|
19
|
Zhou S, Zhang Y, Li X, Xu C, Halim J, Cao S, Rosen J, Strömme M. A mechanically robust spiral fiber with ionic-electronic coupling for multimodal energy harvesting. MATERIALS HORIZONS 2024; 11:3643-3650. [PMID: 38764435 DOI: 10.1039/d4mh00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Wearable electronics are some of the most promising technologies with the potential to transform many aspects of human life such as smart healthcare and intelligent communication. The design of self-powered fabrics with the ability to efficiently harvest energy from the ambient environment would not only be beneficial for their integration with textiles, but would also reduce the environmental impact of wearable technologies by eliminating their need for disposable batteries. Herein, inspired by classical Archimedean spirals, we report a metastructured fiber fabricated by scrolling followed by cold drawing of a bilayer thin film of an MXene and a solid polymer electrolyte. The obtained composite fibers with a typical spiral metastructure (SMFs) exhibit high efficiency for dispersing external stress, resulting in simultaneously high specific mechanical strength and toughness. Furthermore, the alternating layers of the MXene and polymer electrolyte form a unique, tandem ionic-electronic coupling device, enabling SMFs to generate electricity from diverse environmental parameters, such as mechanical vibrations, moisture gradients, and temperature differences. This work presents a design rule for assembling planar architectures into robust fibrous metastructures, and introduces the concept of ionic-electronic coupling fibers for efficient multimodal energy harvesting, which have great potential in the field of self-powered wearable electronics.
Collapse
Affiliation(s)
- Shengyang Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala 751 03, Sweden
| | - Yilin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Xuan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Chao Xu
- Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala 751 03, Sweden
| | - Joseph Halim
- Materials Design, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
| | - Shuai Cao
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis 138632, Singapore
| | - Johanna Rosen
- Materials Design, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
| | - Maria Strömme
- Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala 751 03, Sweden
| |
Collapse
|
20
|
Zhang Y, Zhu Q, Tian B, Duan C. New-Generation Ferroelectric AlScN Materials. NANO-MICRO LETTERS 2024; 16:227. [PMID: 38918252 PMCID: PMC11199478 DOI: 10.1007/s40820-024-01441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner. However, complementary metal oxide semiconductor compatibility and uniformity of ferroelectric performance after size scaling have always been two thorny issues hindering practical application of ferroelectric memory devices. The emerging ferroelectricity of wurtzite structure nitride offers opportunities to circumvent the dilemma. This review covers the mechanism of ferroelectricity and domain dynamics in ferroelectric AlScN films. The performance optimization of AlScN films grown by different techniques is summarized and their applications for memories and emerging in-memory computing are illustrated. Finally, the challenges and perspectives regarding the commercial avenue of ferroelectric AlScN are discussed.
Collapse
Affiliation(s)
- Yalong Zhang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Qiuxiang Zhu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Chungang Duan
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China
| |
Collapse
|
21
|
Tian G, Deng W, Yang T, Zhang J, Xu T, Xiong D, Lan B, Wang S, Sun Y, Ao Y, Huang L, Liu Y, Li X, Jin L, Yang W. Hierarchical Piezoelectric Composites for Noninvasive Continuous Cardiovascular Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313612. [PMID: 38574762 DOI: 10.1002/adma.202313612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Continuous monitoring of blood pressure (BP) and multiparametric analysis of cardiac functions are crucial for the early diagnosis and therapy of cardiovascular diseases. However, existing monitoring approaches often suffer from bulky and intrusive apparatus, cumbersome testing procedures, and challenging data processing, hampering their applications in continuous monitoring. Here, a heterogeneously hierarchical piezoelectric composite is introduced for wearable continuous BP and cardiac function monitoring, overcoming the rigidity of ceramic and the insensitivity of polymer. By optimizing the hierarchical structure and components of the composite, the developed piezoelectric sensor delivers impressive performances, ensuring continuous and accurate monitoring of BP at Grade A level. Furthermore, the hemodynamic parameters are extracted from the detected signals, such as local pulse wave velocity, cardiac output, and stroke volume, all of which are in alignment with clinical results. Finally, the all-day tracking of cardiac function parameters validates the reliability and stability of the developed sensor, highlighting its potential for personalized healthcare systems, particularly in early diagnosis and timely intervention of cardiovascular disease.
Collapse
Affiliation(s)
- Guo Tian
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tao Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jieling Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianpei Xu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Da Xiong
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Boling Lan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shenglong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yue Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yong Ao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Longchao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yang Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xuelan Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Long Jin
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
22
|
Ge S, Wu J, Wang R, Zhang L, Liu S, Ma X, Fu K, Yan J, Yu J, Ding B. Tailoring Practical Solid Electrolyte Composites Containing Ferroelectric Ceramic Nanofibers and All-Trans Block Copolymers for All-Solid-State Lithium Metal Batteries. ACS NANO 2024; 18:13818-13828. [PMID: 38748457 DOI: 10.1021/acsnano.4c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ion transport efficiency, the key to determining the cycling stability and rate capability of all-solid-state lithium metal batteries (ASSLMBs), is constrained by ionic conductivity and Li+-migration ability across the multicomponent phases and interfaces in ASSLMBs. Here, we report a robust strategy for the large-scale fabrication of a practical solid electrolyte composite with high-throughput linear Li+-transport channels by compositing an all-trans block copolymer PVDF-b-PTFE matrix with ferroelectric BaTiO3-TiO2 nanofiber films. The electrolyte shows a sustainable electromechanical-coupled deformability that enables the rapid dissociation of anions with Li+ to create more movable Li+ ions and spontaneously transform the battery internal strain into Li+-ion migration kinetic energy. The ceramic framework homogenizes the interfacial potential with electrodes, endowing the electrolyte with a high conductivity of 0.782 mS·cm-1 and stable ion transport ability in ASSLMBs at room temperature. The batteries of LiFePO4/Li can stably cycle 1000 times at 0.5 C with a high capacity retention of 96.1%, and Ah-grade pouch or high-voltage Li(Ni0.8Mn0.1Co0.1)O2/Li batteries also exhibit excellent rate capability and cycling performance.
Collapse
Affiliation(s)
- Shuhui Ge
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiawei Wu
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Rui Wang
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liang Zhang
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shujie Liu
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xianda Ma
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kelvin Fu
- Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jianhua Yan
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
23
|
Yang S, Li J, Zhang S, Li F. Perspectives on textured perovskite ferroelectric ceramics. Sci Bull (Beijing) 2024; 69:1188-1191. [PMID: 38503647 DOI: 10.1016/j.scib.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Affiliation(s)
- Shuai Yang
- Electronic Materials Research Laboratory (Key Laboratory of Ministry of Education), State Key Laboratory for Mechanical Behavior of Materials and School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinglei Li
- Electronic Materials Research Laboratory (Key Laboratory of Ministry of Education), State Key Laboratory for Mechanical Behavior of Materials and School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shujun Zhang
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong 2522, Australia
| | - Fei Li
- Electronic Materials Research Laboratory (Key Laboratory of Ministry of Education), State Key Laboratory for Mechanical Behavior of Materials and School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
24
|
Yao H, Xia Z, Wang J, Lin H, Yang H, Zhang Q. Porous, Self-Polarized Ferroelectric Polymer Films Exhibiting Behavior Reminiscent of Morphotropic Phase Boundary Induced by Size-Dependent Interface Effect for Self-Powered Sensing. ACS NANO 2024; 18:9470-9485. [PMID: 38506224 DOI: 10.1021/acsnano.3c11185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Piezoelectric poly(vinylidene fluoride) (PVDF) and its copolymer, poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)), have attracted considerable attention due to their potential in flexible, biocompatible energy harvesting and sensing devices. However, their limited piezoelectric performance hinders their widespread application. Inspired by the concept of morphotropic phase boundary (MPB) prevalent in high-performance piezoelectric ceramics, we successfully constructed MPB in the piezoelectric polymer P(VDF-TrFE) through size-dependent interface effects. We provided direct structural evidence using atomic force microscopy-infrared spectroscopy (AFM-IR) and significantly improved the piezoelectric performance of P(VDF-TrFE). The emergence of MPB is attributed to the interface effect induced by electrostatic interactions between ZnO fillers and the -CH2, -CF2, and -CHF groups in P(VDF-TrFE). This interaction drives a concomitant competition between the all-trans β phase (normal ferroelectric) and the 3/1 helical phase (relaxor), resulting in enhanced piezoelectric responses in the transition region. By coupling the MPB effect with a porous structure, we developed a piezoelectric nanogenerator (PENG) that surpasses the electrical output limitation of current P(VDF-TrFE)-based PENGs. The fabricated PENG exhibits superior piezoelectric outputs (6.9 μW/cm2), impressive pressure sensitivity (2.3038 V/kPa), ultrafast response time (4.3 ms), and recovery time (46.4 ms)─notably, without the need for additional poling treatment. In practical applications, the constructed PENG can efficiently generate characteristic signals in response to various human movements and harvest biomechanical energy. This work offers insight into utilizing interface-induced MPB and proposes a simple, scalable approach for developing high-performance self-polarized piezoelectric polymer films for self-powered sensing systems toward human-machine interaction.
Collapse
Affiliation(s)
- Heng Yao
- School of Materials Science and Engineering, State Key Lab of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhaoyue Xia
- School of Materials Science and Engineering, State Key Lab of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jing Wang
- School of Materials Science and Engineering, State Key Lab of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huang Lin
- School of Materials Science and Engineering, State Key Lab of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hui Yang
- School of Materials Science and Engineering, State Key Lab of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Qilong Zhang
- School of Materials Science and Engineering, State Key Lab of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
25
|
Zhang HY, Tang YY, Gu ZX, Wang P, Chen XG, Lv HP, Li PF, Jiang Q, Gu N, Ren S, Xiong RG. Biodegradable ferroelectric molecular crystal with large piezoelectric response. Science 2024; 383:1492-1498. [PMID: 38547269 DOI: 10.1126/science.adj1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/07/2024] [Indexed: 04/02/2024]
Abstract
Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.
Collapse
Affiliation(s)
- Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Zhu-Xiao Gu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Peng Wang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
26
|
Huang QS, Ma Y, Luo YL, Li DP, Li CH, Li YX, Zuo JL. Mechanically Robust, Durable, and Multifunctional Hyper-Crosslinked Elastomer Based on Metal-Organic-Cluster Crosslinker: The Role of Topological Structure. SMALL METHODS 2024:e2301705. [PMID: 38530062 DOI: 10.1002/smtd.202301705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Indexed: 03/27/2024]
Abstract
Polymer materials formed by conventional metal-ligand bonds have very low branch functionality, the crosslinker of such polymer usually consists of 2-4 polymer chains and a single metal ion. Thus, these materials are weak, soft, humidity-sensitive, and unable to withstand their shape under long-term service. In this work, a new hyperbranched metal-organic cluster (MOC) crosslinker containing up to 16 vinyl groups is prepared by a straightforward coordination reaction. Compared with the current typical synthesis of metal-organic cages (MOCs) or metal-organic-polyhedra (MOP) crosslinkers with complex operations and low yield, the preparation of the MOC is simple and gram-scale. Thus, MOC can serve as a high-connectivity crosslinker to construct hyper-crosslinked polymer networks. The as-prepared elastomer exhibits mechanical robustness, creep-resistance, and humidity-stability. Besides, the elastomer possesses self-healing and recyclability at mild condition as well as fluorescence stability. These impressive comprehensive properties are proven to originate from the hyper-crosslinked topological structure and microphase-separated morphology. The MOC-driven hyper-crosslinked elastomers provide a new solution for the construction of mechanically robust, durable, and multifunctional polymers.
Collapse
Affiliation(s)
- Qi-Sheng Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yan Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yan-Long Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Dong-Ping Li
- Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong-Xiu Li
- Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
27
|
Wang L, Gao L, Li B, Hu B, Xu T, Lin H, Zhu R, Hu BL, Li RW. High-Curie-Temperature Elastic Polymer Ferroelectric by Carbene Cross-Linking. J Am Chem Soc 2024; 146:5614-5621. [PMID: 38354217 DOI: 10.1021/jacs.3c14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
With the emergence of wearable electronics, ferroelectrics are poised to serve as key components for numerous potential applications. Currently, intrinsically elastic ferroelectrics featuring a network structure through a precise "slight cross-linking" approach have been realized. The resulting elastic ferroelectrics demonstrate a combination of stable ferroelectric properties and remarkable resilience under various strains. However, challenges arose as the cross-linking temperature was too high when integrating ferroelectrics with other functional materials, and the Curie temperature of this elastic ferroelectric was comparatively low. Addressing these challenges, we strategically chose a poly(vinylidene fluoride)-based copolymer with high vinylidene fluoride content to obtain a high Curie temperature while synthesizing a cross-linker with carbene intermediate for high reactivity to reduce the cross-linking temperature. At a relatively low temperature, we successfully fabricated elastic ferroelectrics through carbene cross-linking. The resulting elastic polymer ferroelectrics exhibit a higher Curie temperature and show a stable ferroelectric response under strains up to 50%. These materials hold significant potential for integration into wearable electronics.
Collapse
Affiliation(s)
- Linping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liang Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Bowen Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bing Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Tianhua Xu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huang Lin
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Ren Zhu
- Oxford Instruments Asylum Research, Shanghai 200233, China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Huang ZX, Li LW, Huang YZ, Rao WX, Jiang HW, Wang J, Zhang HH, He HZ, Qu JP. Self-poled piezoelectric polymer composites via melt-state energy implantation. Nat Commun 2024; 15:819. [PMID: 38280902 PMCID: PMC10821934 DOI: 10.1038/s41467-024-45184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Lightweight flexible piezoelectric polymers are demanded for various applications. However, the low instinctively piezoelectric coefficient (i.e. d33) and complex poling process greatly resist their applications. Herein, we show that introducing dynamic pressure during fabrication is capable for poling polyvinylidene difluoride/barium titanate (PVDF/BTO) composites with d33 of ~51.20 pC/N at low density of ~0.64 g/cm3. The melt-state dynamic pressure driven energy implantation induces structure evolutions of both PVDF and BTO are demonstrated as reasons for self-poling. Then, the porous material is employed as pressure sensor with a high output of ~20.0 V and sensitivity of ~132.87 mV/kPa. Besides, the energy harvesting experiment suggests power density of ~58.7 mW/m2 can be achieved for 10 N pressure with a long-term durability. In summary, we not only provide a high performance lightweight, flexible piezoelectric polymer composite towards sustainable self-powered sensing and energy harvesting, but also pave an avenue for electrical-free fabrication of piezoelectric polymers.
Collapse
Affiliation(s)
- Zhao-Xia Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China.
| | - Lan-Wei Li
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Yun-Zhi Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Wen-Xu Rao
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Hao-Wei Jiang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Jin Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Huan-Huan Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - He-Zhi He
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China.
| |
Collapse
|
29
|
Zhao Q, Ren Y, Yang F, Li J, Wei F, Li Y, Deng C, Xiao B, Huang C, Chen J, Li L, Hu W. Frequency-Dependent Multistep Ferroelectric Polarization Switching Mechanism in P(VDF-TrFE)-Based Capacitors Induced by Polystyrene Electret-like Modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2573-2582. [PMID: 38179924 DOI: 10.1021/acsami.3c16189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this work, we investigate multistep ferroelectric polarization switching dynamics of a series of poly(vinylidene fluoride-trifluoroethylene)/polystyrene, P(VDF-TrFE)/PS, as active layers in ferroelectric capacitors with variable P(VDF-TrFE)/PS thickness ratios and a wide range of driving voltage frequencies (1-1000 Hz). The PS electret-like modulation effects on the depolarized field fluctuation are proven to be responsible for this multistep ferroelectric polarization switching process. To be specific, the switching current density peak splits into two peaks in both positive and negative voltage ranges according to the stimulus-response (S-R) data from the metal-ferroelectric-electret-metal capacitor driven by a periodic triangular voltage wave. The double-peak current trough appears when the transitorily suppressed ferroelectric polarization switching occurs while the discharge and recharge of the PS electret by external voltage brings a specific dynamic change in the electric field across ferroelectric (EFE). We also propose a theoretical model to simulate the ferroelectric polarization switching process at a current trough zone. This phenomenon provides new concepts on the electret-modulated multistep ferroelectric switching dynamics, and such switching mechanisms are critical for realizing reliable nonvolatile memory applications in flexible electronics.
Collapse
Affiliation(s)
- Qiang Zhao
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Yiwen Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Fangxu Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Jie Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Fang Wei
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Yan Li
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Chenxi Deng
- Beijing Hua Ce Testing Instrument Co., Ltd, Beijing 100094, China
| | - Bo Xiao
- Beijing Hua Ce Testing Instrument Co., Ltd, Beijing 100094, China
| | - Congcong Huang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Jinhao Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Ringgaard E, Levassort F, Wang K, Vaitekunas J, Nagata H. Lead-Free Piezoelectric Transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:3-15. [PMID: 38060358 DOI: 10.1109/tuffc.2023.3340950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Research activities on lead-free piezoelectric materials have been ongoing for over 20 years. Generally, the applicability of the main material families is less universal than that of lead-based compositions such as lead zirconate titanate, but in some cases, the corresponding applications have already been identified. Due to the extensive research, it is now possible to manufacture demonstrators and prototypes for different applications and the authors propose in this article to take stock of these advances. For this, we have chosen to first recall briefly the main new material systems using a simplistic "soft" and "hard" classification for approaching the various resonant transducer applications. Medical imaging applications that represent one of the most important fields are presented in a second step together with other low-power transducers. Then, a variety of applications are merged under the heading of high-power transducers. In addition, we mention two points that are important to consider when manufacturing at a larger scale. For the design of transducers, complete datasets must be available, especially if modeling tools are used. Finally, the commercialization of these lead-free materials imposes essential secondary requirements in terms of availability, reproducibility, sample size, and so on.
Collapse
|
31
|
Zheng S, Du F, Zheng L, Han D, Li Q, Shi J, Chen J, Shi X, Huang H, Luo Y, Yang Y, O'Reilly P, Wei L, de Souza N, Hong L, Qian X. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science 2023; 382:1020-1026. [PMID: 38033074 DOI: 10.1126/science.adi7812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The electrocaloric effect demands the maximized degree of freedom (DOF) of polar domains and the lowest energy barrier to facilitate the transition of polarization. However, optimization of the DOF and energy barrier-including domain size, crystallinity, multiconformation coexistence, polar correlation, and other factors in bulk ferroelectrics-has reached a limit. We used organic crystal dimethylhexynediol (DMHD) as a three-dimensional sacrificial master to assemble polar conformations at the heterogeneous interface in poly(vinylidene fluoride)-based terpolymer. DMHD was evaporated, and the epitaxy-like process induced an ultrafinely distributed, multiconformation-coexisting polar interface exhibiting a giant conformational entropy. Under a low electric field, the interface-augmented terpolymer had a high entropy change of 100 J/(kg·K). This interface polarization strategy is generally applicable to dielectric capacitors, supercapacitors, and other related applications.
Collapse
Affiliation(s)
- Shanyu Zheng
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feihong Du
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lirong Zheng
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Donglin Han
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Li
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junye Shi
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Chen
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoming Shi
- School of Materials Science and Engineering and Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Houbing Huang
- School of Materials Science and Engineering and Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yaorong Luo
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | | | - Linlin Wei
- Bruker (Beijing) Scientific Technology, Beijing 100192, China
| | - Nicolas de Souza
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, NSW 2232, Australia
| | - Liang Hong
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshi Qian
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University ZhongGuanCun Research Institute, Liyang 213300, China
| |
Collapse
|
32
|
Chen K, Guo X, Chen M. Controlled Radical Copolymerization toward Well-Defined Fluoropolymers. Angew Chem Int Ed Engl 2023; 62:e202310636. [PMID: 37581580 DOI: 10.1002/anie.202310636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/16/2023]
Abstract
In the past 80 years, fluoropolymers have found broad applications in both industrial and academic settings, owing to their unique physicochemical properties. Copolymerizations of fluoroalkene feedstocks present an important avenue to obtain high-performance materials by merging intrinsic attributes of fluorocarbons and great versatility of comonomers. Recently, while massive investigations have disclosed the great potentials of precisely synthesized polymers, researchers have made considerable efforts to approach well-defined fluorinated copolymers. This minireview discusses challenges in controlled radical copolymerizations (CRCPs) of fluoroalkenes and provides a concise perspective on recent progress in CRCPs of fluoroalkenes (e.g., tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropene, perfluoroalkyl vinyl ethers) with non-fluorinated vinyl comonomers, which have enabled on-demand preparations of various main-chain fluoropolymers with predefined molar masses, low dispersities, as well as regulable chemical compositions and sequences. The synthetic advantages of CRCPs will promote controlled and facile access to customized fluoropolymers for high-tech applications such as batteries, coatings and so on.
Collapse
Affiliation(s)
- Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xing Guo
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
33
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
34
|
Améduri B. Fluoropolymers as Unique and Irreplaceable Materials: Challenges and Future Trends in These Specific Per or Poly-Fluoroalkyl Substances. Molecules 2023; 28:7564. [PMID: 38005292 PMCID: PMC10675016 DOI: 10.3390/molecules28227564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
In contrast to some low-molar-mass per- and polyfluoroalkyl substances (PFASs), which are well established to be toxic, persistent, bioaccumulative, and mobile, fluoropolymers (FPs) are water-insoluble, safe, bioinert, and durable. These niche high-performance polymers fulfil the 13 polymer-of-low-concern (PLC) criteria in their recommended conditions of use. In addition, more recent innovations (e.g., the use of non-fluorinated surfactants in aqueous radical (co)polymerization of fluoroalkenes) from industrial manufacturers of FPs are highlighted. This review also aims to show how these specialty polymers endowed with outstanding properties are essential (even irreplaceable, since hydrocarbon polymer alternatives used in similar conditions fail) for our daily life (electronics, energy, optics, internet of things, transportation, etc.) and constitute a special family separate from other "conventional" C1-C10 PFASs found everywhere on Earth and its oceans. Furthermore, some information reports on their recycling (e.g., the unzipping depolymerization of polytetrafluoroethylene, PTFE, into TFE), end-of-life FPs, and their risk assessment, circular economy, and regulations. Various studies are devoted to environments involving FPs, though they present a niche volume (with a yearly production of 330,300 t) compared to all plastics (with 460 million t). Complementary to other reviews on PFASs, which lack of such above data, this review presents both fundamental and applied strategies as evidenced by major FP producers.
Collapse
Affiliation(s)
- Bruno Améduri
- Institute Charles Gerhardt, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
35
|
Abstract
Chemical modification opens new applications for polymers in wearables.
Collapse
Affiliation(s)
- Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
- Ordered Matter Science Research Center, Nanchang University, Nanchang, P. R. China
| |
Collapse
|