1
|
Zhang Y, Li Y, Xu Z, Xu L, Wang Y, Li N, Solek NC, Wang Y, Li B, Liu H. PPS-TLR7/8 agonist nanoparticles equip robust anticancer immunity by selectively prolonged activation of dendritic cells. Biomaterials 2025; 316:123032. [PMID: 39705927 DOI: 10.1016/j.biomaterials.2024.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Checkpoint inhibitor therapies do not benefit all patients, and adjuvants play a critical role in boosting immune responses for effective cancer immunotherapy. However, their systemic toxicity and suboptimal activation kinetics pose significant challenges. Here, this study presented a linker-based strategy to modulate the activation kinetics of Toll-like receptor 7/8 (TLR7/8) agonists delivered via poly (propylene sulfide) nanoparticles (PPS NPs). By covalently binding small molecule TLR7/8 agonists to PPS NPs with different linkers, enhanced therapeutic efficacy is achieved while abrogating systemic toxicity. These results showed that an alkyl linker selectively prolong the activation of DCs. It avoided the extensive activation of other APCs, favoring the limitation of immune-related toxicities. This strategy exhibited significant anti-tumor activity in alkyl linked nano-TLR7/8 agonists treatment alone, and cytokine and immune cell profiling provided evidence of prolonged immune cell activation in the tumor microenvironment, with evidence of an increase in the frequency of tumor antigen-specific CD8+ T cells. This linker-based approach offers a promising strategy to optimize the delivery of nano-TLR7/8 agonists for cancer immunotherapy, potentially advancing the field toward improved clinical outcomes.
Collapse
Affiliation(s)
- Yingxi Zhang
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Yicheng Li
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Zhaochu Xu
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Linyi Xu
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Yue Wang
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Ning Li
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Nicholas C Solek
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Yongjun Wang
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada.
| | - Hongzhuo Liu
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
Yan Y, Huang X, Yuan L, Ngai T, Ma G, Xia Y. Dictating the spatial-temporal delivery of molecular adjuvant and antigen for the enhanced vaccination. Biomaterials 2024; 311:122697. [PMID: 38968687 DOI: 10.1016/j.biomaterials.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
The incorporation of molecular adjuvants has revolutionized vaccine by boosting overall immune efficacy. While traditional efforts have been concentrated on the quality and quantity of vaccine components, the impact of adjuvant and antigen delivery kinetics on immunity remains to be fully understood. Here, we employed poly (lactic-co-glycolic acid) nanoparticle (PLGA NP) -stabilized Pickering emulsion (PPE) to refine the delivery kinetics of molecular adjuvant CpG and antigen, aiming to optimize immune responses. The hierarchical structure of PPE enabled spatially differential loading of CpG and antigen. The component inserted on the oil-water interphase exhibited a rapid release profile, while the one encapsulated in the PLGA NPs demonstrated a sustained release. This led to distinct intracellular spatial-temporal release kinetics. Compared to the PPE with sustained CpG release and burst release of antigen, we found that the PPE with rapid CpG release and sustained antigen release triggered an early and robust activation of Toll-like receptor 9 (TLR9) in direct way. This fostered a more immunogenic microenvironment, significantly outperforming the inverted delivery profile in dendritic cells (DCs) activation, resulting in higher CD40 expression, elevated proinflammatory cytokine levels, sustained antigen cross-presentation, an enhanced Th1 response, and increased CD8+ T cells. Moreover, prior exposure of CpG led to suppressed tumor growth and enhanced efficacy in Varicella-zoster virus (VZV) vaccine. Our findings underscore the importance of tuning adjuvant and antigen delivery kinetics in vaccine design, proposing a novel path for enhancing vaccination outcomes.
Collapse
Affiliation(s)
- Yumeng Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiaonan Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China; Sinovac Biotech Ltd., Beijing, 100085, PR China
| | - Lili Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Shatin, N.T., PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
3
|
Iijima N, Yamaguchi M, Hayashi T, Rui Y, Ohira Y, Miyamoto Y, Niino M, Okuno T, Suzuki O, Oka M, Ishii KJ. miR-147-3p in pathogenic CD4 T cells controls chemokine receptor expression for the development of experimental autoimmune diseases. J Autoimmun 2024; 149:103319. [PMID: 39395343 DOI: 10.1016/j.jaut.2024.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024]
Abstract
Incomplete Freund's adjuvant (IFA) has long been used to trigger autoimmune diseases in animal models, such as experimental autoimmune encephalitis and collagen-induced arthritis. However, the molecular mechanisms that control CD4 T cell effector functions and lead to the development of autoimmune diseases are not well understood. A self-antigen and heat-killed Mycobacterium tuberculosis emulsified in IFA augmented the activation of CD4 T cells, leading to the differentiation of pathogenic CD4 T cells in the draining lymph nodes. In contrast, IFA emulsification did not elicit Foxp3+ regulatory T cell expansion. We found that pathogenic Th1 cells expressed miR-147-3p, which targets multiple genes to affect T cell function. Finally, miR-147-3p expressed in CXCR6+SLAMF6- Th1 cells was required for the onset of neurological symptoms through the control of CXCR3 expression. Our findings demonstrate that miR-147-3p expressed in pathogenic CD4 T cells regulates the migratory potential in peripheral tissues and impacts the development of autoimmune diseases.
Collapse
MESH Headings
- Animals
- MicroRNAs/genetics
- Mice
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Disease Models, Animal
- Gene Expression Regulation
- Autoimmune Diseases/immunology
- Autoimmune Diseases/genetics
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/genetics
- Th1 Cells/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice, Inbred C57BL
- Lymphocyte Activation/immunology
- Lymphocyte Activation/genetics
Collapse
Affiliation(s)
- Norifumi Iijima
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan.
| | - Masaya Yamaguchi
- Bioinformatics Research Unit, Osaka University Graduate School of Dentistry, Suita Osaka, Japan; Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Department of Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan; Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
| | - Tomoya Hayashi
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuxiang Rui
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan
| | - Yuta Ohira
- Central Research Laboratories, Zeria Pharmaceutical Co, Ltd, Kumagaya-shi, Saitama, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Hokkaido, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Osamu Suzuki
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki, Osaka, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; WPI Immunology Frontier Research Center (IFReC), Osaka Univerisity, Suita, Osaka, Japan.
| |
Collapse
|
4
|
Liu Q, Wu P, Lei J, Bai P, Zhong P, Yang M, Wei P. Old concepts, new tricks: How peptide vaccines are reshaping cancer immunotherapy? Int J Biol Macromol 2024; 279:135541. [PMID: 39270889 DOI: 10.1016/j.ijbiomac.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Over the past few decades, research on cancer immunotherapy has firmly established immune cells as key players in effective cancer treatment. Peptide vaccines directly targeting immune cells have demonstrated immense potential due to their specificity and applicability. However, developing peptide vaccines to generate tumor-reactive T cells remains challenging, primarily due to suboptimal immunogenicity and overcoming the immunosuppressive tumor microenvironment (TME). In this review, we discuss various elements of effective peptide vaccines, including antigen selection, peptide epitope optimization, vaccine adjuvants, and the combination of multiple immunotherapies, in addition to recent advances in tumor neoantigens as well as epitopes bound by non-classical human leukocyte antigen (HLA) molecules, to increase the understanding of cancer peptide vaccines and provide multiple references for the design of subsequent T cell-based peptide vaccines.
Collapse
Affiliation(s)
- Qingyang Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peihua Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jun Lei
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Peng Bai
- In Vivo Pharmacology Unit, WuXi AppTec, Nantong, Jiangsu, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Kedmi R, Littman DR. Antigen-presenting cells as specialized drivers of intestinal T cell functions. Immunity 2024; 57:2269-2279. [PMID: 39383844 DOI: 10.1016/j.immuni.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
The immune system recognizes a multitude of innocuous antigens from food and intestinal commensal microbes toward which it orchestrates appropriate, non-inflammatory responses. This process requires antigen-presenting cells (APCs) that induce T cells with either regulatory or effector functions. Compromised APC function disrupts the T cell balance, leading to inflammation and dysbiosis. Although their precise identities continue to be debated, it has become clear that multiple APC lineages direct the differentiation of distinct microbiota-specific CD4+ T cell programs. Here, we review how unique APC subsets instruct T cell differentiation and function in response to microbiota and dietary antigens. These discoveries provide new opportunities to investigate T cell-APC regulatory networks controlling immune homeostasis and perturbations associated with inflammatory and allergic diseases.
Collapse
Affiliation(s)
- Ranit Kedmi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Dan R Littman
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA.
| |
Collapse
|
6
|
Michelson DA, Mathis D. Thymic Mimetic Cells: Ontogeny as Immunology. Annu Rev Cell Dev Biol 2024; 40:283-300. [PMID: 38608315 PMCID: PMC11446667 DOI: 10.1146/annurev-cellbio-112122-023316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Medullary thymic epithelial cells (mTECs) generate immunological self-tolerance by ectopically expressing peripheral-tissue antigens (PTAs) within the thymus to preview the peripheral self to maturing T cells. Recent work, drawing inspiration from old histological observations, has shown that subtypes of mTECs, collectively termed mimetic cells, co-opt developmental programs from throughout the organism to express biologically coherent groups of PTAs. Here, we review key aspects of mimetic cells, especially as they relate to the larger contexts of molecular, cellular, developmental, and evolutionary biology. We highlight lineage-defining transcription factors as key regulators of mimetic cells and speculate as to what other factors, including Aire and the chromatin potential of mTECs, permit mimetic cell differentiation and function. Last, we consider what mimetic cells can teach us about not only the thymus but also other tissues.
Collapse
Affiliation(s)
- Daniel A Michelson
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
7
|
Bosteels V, Janssens S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol 2024:10.1038/s41577-024-01079-5. [PMID: 39289483 DOI: 10.1038/s41577-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Dendritic cells (DCs) are crucial gatekeepers of the balance between immunity and tolerance. They exist in two functional states, immature or mature, that refer to an information-sensing versus an information-transmitting state, respectively. Historically, the term DC maturation was used to describe the acquisition of immunostimulatory capacity by DCs following their triggering by pathogens or tissue damage signals. As such, immature DCs were proposed to mediate tolerance, whereas mature DCs were associated with the induction of protective T cell immunity. Later studies have challenged this view and unequivocally demonstrated that two distinct modes of DC maturation exist, homeostatic and immunogenic DC maturation, each with a distinct functional outcome. Therefore, the mere expression of maturation markers cannot be used to predict immunogenicity. How DCs become activated in homeostatic conditions and maintain tolerance remains an area of intense debate. Several recent studies have shed light on the signals driving the homeostatic maturation programme, especially in the conventional type 1 DC (cDC1) compartment. Here, we highlight our growing understanding of homeostatic DC maturation and the relevance of this process for immune tolerance.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Cecchi N, Romanelli R, Ricevuti F, Carbone MG, Dinardo M, Cesarano E, De Michele A, Messere G, Morra S, Scognamiglio A, Spagnuolo MI. Bioactives in Oral Nutritional Supplementation: A Pediatric Point of View. Nutrients 2024; 16:2067. [PMID: 38999815 PMCID: PMC11243142 DOI: 10.3390/nu16132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Oral nutritional supplements (ONSs) are crucial for supporting the nutritional needs of pediatric populations, particularly those with medical conditions or dietary deficiencies. Bioactive compounds within ONSs play a pivotal role in enhancing health outcomes by exerting various physiological effects beyond basic nutrition. However, the comprehensive understanding of these bioactives in pediatric ONSs remains elusive. OBJECTIVE This systematic narrative review aims to critically evaluate the existing literature concerning bioactive compounds present in oral nutritional supplements from a pediatric standpoint, focusing on their types, sources, bioavailability, physiological effects, and clinical implications. METHODS A systematic search was conducted across the major academic databases, including PubMed, Scopus, and Web of Science, employing predefined search terms related to oral nutritional supplements, bioactives, and pediatrics. Studies published between 2013 and 2024 were considered eligible for inclusion. Data extraction and synthesis were performed according to the PRISMA guidelines. RESULTS The initial search yielded 558 of articles, of which 72 met the inclusion criteria. The included studies encompassed a diverse range of bioactive compounds present in pediatric ONS formulations, including, but not limited to, vitamins, minerals, amino acids, prebiotics, probiotics, and phytonutrients. These bioactives were sourced from various natural and synthetic origins and were found to exert beneficial effects on growth, development, immune function, gastrointestinal health, cognitive function, and overall well-being in pediatric populations. However, variations in bioavailability, dosing, and clinical efficacy were noted across different compounds and formulations. CONCLUSIONS Bioactive compounds in oral nutritional supplements offer promising avenues for addressing the unique nutritional requirements and health challenges faced by pediatric populations. However, further research is warranted to elucidate the optimal composition, dosage, and clinical applications of these bioactives in pediatric ONS formulations. A deeper understanding of these bioactive compounds and their interplay with pediatric health may pave the way for personalized and effective nutritional interventions in pediatric clinical practice.
Collapse
Affiliation(s)
- Nicola Cecchi
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Roberta Romanelli
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Flavia Ricevuti
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Maria Grazia Carbone
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Michele Dinardo
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Elisabetta Cesarano
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Alfredo De Michele
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Giovanni Messere
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Salvatore Morra
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Armando Scognamiglio
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | | |
Collapse
|
9
|
Paucar Iza YA, Brown CC. Early life imprinting of intestinal immune tolerance and tissue homeostasis. Immunol Rev 2024; 323:303-315. [PMID: 38501766 PMCID: PMC11102293 DOI: 10.1111/imr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Besides its canonical role in protecting the host from pathogens, the immune system plays an arguably equally important role in maintaining tissue homeostasis. Within barrier tissues that interface with the external microenvironment, induction of immune tolerance to innocuous antigens, such as commensal, dietary, and environmental antigens, is key to establishing immune homeostasis. The early postnatal period represents a critical window of opportunity in which parallel development of the tissue, immune cells, and microbiota allows for reciprocal regulation that shapes the long-term immunological tone of the tissue and subsequent risk of immune-mediated diseases. During early infancy, the immune system appears to sacrifice pro-inflammatory functions, prioritizing the establishment of tissue tolerance. In this review, we discuss mechanisms underlying early life windows for intestinal tolerance with a focus on newly identified RORγt+ antigen-presenting cells-Thetis cells-and highlight the role of the intestinal microenvironment in shaping intestinal immune system development and tolerance.
Collapse
Affiliation(s)
- Yoselin A. Paucar Iza
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chrysothemis C. Brown
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
10
|
Kenison JE, Stevens NA, Quintana FJ. Therapeutic induction of antigen-specific immune tolerance. Nat Rev Immunol 2024; 24:338-357. [PMID: 38086932 PMCID: PMC11145724 DOI: 10.1038/s41577-023-00970-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 05/04/2024]
Abstract
The development of therapeutic approaches for the induction of robust, long-lasting and antigen-specific immune tolerance remains an important unmet clinical need for the management of autoimmunity, allergy, organ transplantation and gene therapy. Recent breakthroughs in our understanding of immune tolerance mechanisms have opened new research avenues and therapeutic opportunities in this area. Here, we review mechanisms of immune tolerance and novel methods for its therapeutic induction.
Collapse
Affiliation(s)
- Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolas A Stevens
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
11
|
Chi H, Pepper M, Thomas PG. Principles and therapeutic applications of adaptive immunity. Cell 2024; 187:2052-2078. [PMID: 38670065 PMCID: PMC11177542 DOI: 10.1016/j.cell.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Adaptive immunity provides protection against infectious and malignant diseases. These effects are mediated by lymphocytes that sense and respond with targeted precision to perturbations induced by pathogens and tissue damage. Here, we review key principles underlying adaptive immunity orchestrated by distinct T cell and B cell populations and their extensions to disease therapies. We discuss the intracellular and intercellular processes shaping antigen specificity and recognition in immune activation and lymphocyte functions in mediating effector and memory responses. We also describe how lymphocytes balance protective immunity against autoimmunity and immunopathology, including during immune tolerance, response to chronic antigen stimulation, and adaptation to non-lymphoid tissues in coordinating tissue immunity and homeostasis. Finally, we discuss extracellular signals and cell-intrinsic programs underpinning adaptive immunity and conclude by summarizing key advances in vaccination and engineering adaptive immune responses for therapeutic interventions. A deeper understanding of these principles holds promise for uncovering new means to improve human health.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Paul G Thomas
- Department of Host-Microbe Interactions and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Carbone F, Russo C, Colamatteo A, La Rocca C, Fusco C, Matarese A, Procaccini C, Matarese G. Cellular and molecular signaling towards T cell immunological self-tolerance. J Biol Chem 2024; 300:107134. [PMID: 38432631 PMCID: PMC10981134 DOI: 10.1016/j.jbc.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II", Napoli, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy.
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
13
|
Jordan CKI, Clarke TB. How does the microbiota control systemic innate immunity? Trends Immunol 2024; 45:94-102. [PMID: 38216387 DOI: 10.1016/j.it.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
The intestinal microbiota has a pervasive influence on mammalian innate immunity fortifying defenses to infection in tissues throughout the host. How intestinal microbes control innate defenses in systemic tissues is, however, poorly defined. In our opinion, there are three core challenges that need addressing to advance our understanding of how the intestinal microbiota controls innate immunity systemically: first, deciphering how signals from intestinal microbes are transmitted to distal tissues; second, unraveling how intestinal microbes prime systemic innate immunity without inducing widespread immunopathology; and third, identifying which intestinal microbes control systemic immunity. Here, we propose answers to these problems which provide a framework for understanding how microbes in the intestine can regulate innate immunity systemically.
Collapse
Affiliation(s)
- Christine K I Jordan
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London, UK; Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
14
|
Klug N, Burke J, Scott E. Rational Engineering of Islet Tolerance via Biomaterial-Mediated Immune Modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:216-224. [PMID: 38166244 PMCID: PMC10766078 DOI: 10.4049/jimmunol.2300527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 01/04/2024]
Abstract
Type 1 diabetes (T1D) onset is characterized by an autoimmune attack on β islet cells within the pancreas, preventing the insulin secretion required to maintain glucose homeostasis. Targeted modulation of key immunoregulatory cell populations is a promising strategy to restore tolerance to β cells. This strategy can be used to prevent T1D onset or reverse T1D with transplanted islets. To this end, drug delivery systems can be employed to transport immunomodulatory cargo to specific cell populations that inhibit autoreactive T cell-mediated destruction of the β cell mass. The rational engineering of biomaterials into nanoscale and microscale drug carriers can facilitate targeted interactions with immune cells. The physicochemical properties of the biomaterial, the delivered immunomodulatory agent, and the target cell populations are critical variables in the design of these delivery systems. In this review, we discuss recent biomaterials-based drug delivery approaches to induce islet tolerance and the need to consider both immune and metabolic markers of disease progression.
Collapse
Affiliation(s)
- Natalie Klug
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL
| | - Jacqueline Burke
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL
| | - Evan Scott
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
15
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell 2023; 186:4007-4037. [PMID: 37714133 PMCID: PMC10772989 DOI: 10.1016/j.cell.2023.07.036] [Citation(s) in RCA: 191] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
The TGF-β regulatory system plays crucial roles in the preservation of organismal integrity. TGF-β signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-β signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-β coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-β system.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|