1
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2024:S1673-8527(24)00252-2. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
4
|
Wang W, Ding M, Wang Q, Song Y, Huo K, Chen X, Xiang Z, Liu L. Advances in Foxp3+ regulatory T cells (Foxp3+ Treg) and key factors in digestive malignancies. Front Immunol 2024; 15:1404974. [PMID: 38919615 PMCID: PMC11196412 DOI: 10.3389/fimmu.2024.1404974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Foxp3+ regulatory T cells (Foxp3+ Treg) play a role in regulating various types of tumors, but uncertainty still exists regarding the exact mechanism underlying Foxp3+ Treg activation in gastrointestinal malignancies. As of now, research has shown that Foxp3+ Treg expression, altered glucose metabolism, or a hypoxic tumor microenvironment all affect Foxp3+ Treg function in the bodies of tumor patients. Furthermore, it has been demonstrated that post-translational modifications are essential for mature Foxp3 to function properly. Additionally, a considerable number of non-coding RNAs (ncRNAs) have been implicated in the activation of the Foxp3 signaling pathway. These mechanisms regulating Foxp3 may one day serve as potential therapeutic targets for gastrointestinal malignancies. This review primarily focuses on the properties and capabilities of Foxp3 and Foxp3+Treg. It emphasizes the advancement of research on the regulatory mechanisms of Foxp3 in different malignant tumors of the digestive system, providing new insights for the exploration of anticancer treatments.
Collapse
Affiliation(s)
- Wanyao Wang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Minglu Ding
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuhong Wang
- Mudanjiang Hospital for Cardiovascular Diseases, Department of Anesthesiology, Mudanjiang, Heilongjiang, China
| | - Yidan Song
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Keyuan Huo
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaojie Chen
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zihan Xiang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lantao Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
5
|
Wang Y, Liu Q, Deng L, Ma X, Gong Y, Wang Y, Zhou F. The roles of epigenetic regulation in graft-versus-host disease. Biomed Pharmacother 2024; 175:116652. [PMID: 38692061 DOI: 10.1016/j.biopha.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Deng
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Xiting Ma
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuling Gong
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Fang Zhou
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China.
| |
Collapse
|
6
|
Borna S, Meffre E, Bacchetta R. FOXP3 deficiency, from the mechanisms of the disease to curative strategies. Immunol Rev 2024; 322:244-258. [PMID: 37994657 DOI: 10.1111/imr.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
FOXP3 gene is a key transcription factor driving immune tolerance and its deficiency causes immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome (IPEX), a prototypic primary immune regulatory disorder (PIRD) with defective regulatory T (Treg) cells. Although life-threatening, the increased awareness and early diagnosis have contributed to improved control of the disease. IPEX currently comprises a broad spectrum of clinical autoimmune manifestations from severe early onset organ involvement to moderate, recurrent manifestations. This review focuses on the mechanistic advancements that, since the IPEX discovery in early 2000, have informed the role of the human FOXP3+ Treg cells in controlling peripheral tolerance and shaping the overall immune landscape of IPEX patients and carrier mothers, contributing to defining new treatments.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Meffre
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
White J, Derheimer FA, Jensen-Pergakes K, O'Connell S, Sharma S, Spiegel N, Paul TA. Histone lysine acetyltransferase inhibitors: an emerging class of drugs for cancer therapy. Trends Pharmacol Sci 2024; 45:243-254. [PMID: 38383216 DOI: 10.1016/j.tips.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Lysine acetyltransferases (KATs) are a family of epigenetic enzymes involved in the regulation of gene expression; they represent a promising class of emerging drug targets. The frequent molecular dysregulation of these enzymes, as well as their mechanistic links to biological functions that are crucial to cancer, have led to exploration around the development of small-molecule inhibitors against KATs. Despite early challenges, recent advances have led to the development of potent and selective enzymatic and bromodomain (BRD) KAT inhibitors. In this review we discuss the discovery and development of new KAT inhibitors and their application as oncology therapeutics. Additionally, new chemically induced proximity approaches are presented, offering opportunities for unique target selectivity profiles and tissue-specific targeting of KATs. Emerging clinical data for CREB binding protein (CREBBP)/EP300 BRD inhibitors and KAT6 catalytic inhibitors indicate the promise of this target class in cancer therapeutics.
Collapse
Affiliation(s)
- Jeffrey White
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA
| | | | | | - Shawn O'Connell
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA
| | - Shikhar Sharma
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA
| | - Noah Spiegel
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA
| | - Thomas A Paul
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA.
| |
Collapse
|
8
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Zhang Z, Guo J, Jia R. Treg plasticity and human diseases. Inflamm Res 2023; 72:2181-2197. [PMID: 37878023 DOI: 10.1007/s00011-023-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION As a subset of CD4+ T cells, regulatory T cells (Tregs) with the characteristic expression of transcription factor FOXP3 play a key role in maintaining self-tolerance and regulating immune responses. However, in some inflammatory circumstances, Tregs can express cytokines of other T help (Th) cells by internal reprogramming, which is called Treg plasticity. These reprogrammed Tregs with impaired suppressive ability contribute to the progression of diseases by secreting pro-inflammatory cytokines. However, in the tumor microenvironment (TME), such changes in phenotype rarely occur in Tregs, on the contrary, Tregs usually display a stronger suppressive function and inhibit anti-tumor immunity. It is important to understand the mechanisms of Treg plasticity in inflammatory diseases and cancers. OBJECTIVES In this review, we summarize the characteristics of different Th-like Tregs and discuss the potential mechanisms of these changes in phenotype. Furthermore, we summarize the Treg plasticity in human diseases and discuss the effects of these changes in phenotype on disease progression, as well as the potential application of drugs or reagents that regulate Treg plasticity in human diseases. CONCLUSIONS Treg plasticity is associated with inflammatory diseases and cancers. Regulating Treg plasticity is a promising direction for the treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Riaz F, Huang Z, Pan F. Targeting post-translational modifications of Foxp3: a new paradigm for regulatory T cell-specific therapy. Front Immunol 2023; 14:1280741. [PMID: 37936703 PMCID: PMC10626496 DOI: 10.3389/fimmu.2023.1280741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
A healthy immune system is pivotal for the hosts to resist external pathogens and maintain homeostasis; however, the immunosuppressive tumor microenvironment (TME) damages the anti-tumor immunity and promotes tumor progression, invasion, and metastasis. Recently, many studies have found that Foxp3+ regulatory T (Treg) cells are the major immunosuppressive cells that facilitate the formation of TME by promoting the development of various tumor-associated cells and suppressing the activity of effector immune cells. Considering the role of Tregs in tumor progression, it is pivotal to identify new therapeutic drugs to target and deplete Tregs in tumors. Although several studies have developed strategies for targeted deletion of Treg to reduce the TME and support the accumulation of effector T cells in tumors, Treg-targeted therapy systematically affects the Treg population and may lead to the progression of autoimmune diseases. It has been understood that, nevertheless, in disease conditions, Foxp3 undergoes several definite post-translational modifications (PTMs), including acetylation, glycosylation, phosphorylation, ubiquitylation, and methylation. These PTMs not only elevate or mitigate the transcriptional activity of Foxp3 but also affect the stability and immunosuppressive function of Tregs. Various studies have shown that pharmacological targeting of enzymes involved in PTMs can significantly influence the PTMs of Foxp3; thus, it may influence the progression of cancers and/or autoimmune diseases. Overall, this review will help researchers to understand the advances in the immune-suppressive mechanisms of Tregs, the post-translational regulations of Foxp3, and the potential therapeutic targets and strategies to target the Tregs in TME to improve anti-tumor immunity.
Collapse
Affiliation(s)
| | | | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
11
|
Nakajima A, Murakami R, Hori S. Functional Analysis of Foxp3 and Its Mutants by Retroviral Transduction of Murine Primary CD4 + T Cells. Methods Mol Biol 2023; 2559:79-94. [PMID: 36180628 DOI: 10.1007/978-1-0716-2647-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The transcription factor Foxp3/FOXP3 orchestrates regulatory T (Treg) cell development and function by interacting with numerous target genes and partner proteins. Functional analysis of naturally occurring or engineered Foxp3/FOXP3 mutations has provided important insights into how the complex Foxp3/FOXP3-centered molecular network operates. Here, we describe detailed protocols for retroviral transduction of murine primary conventional CD4+ T cells to determine the impacts of Foxp3 mutations on the Treg-cell-like phenotype and function conferred by Foxp3.
Collapse
Affiliation(s)
- Akira Nakajima
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Murakami
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Qiu Y, Ke S, Chen J, Qin Z, Zhang W, Yuan Y, Meng D, Zhao G, Wu K, Li B, Li D. FOXP3+ regulatory T cells and the immune escape in solid tumours. Front Immunol 2022; 13:982986. [PMID: 36569832 PMCID: PMC9774953 DOI: 10.3389/fimmu.2022.982986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 01/15/2023] Open
Abstract
FOXP3+ regulatory T (Treg) cells play critical roles in establishing the immunosuppressive tumour microenvironment, which is achieved and dynamically maintained with the contribution of various stromal and immune cell subsets. However, the dynamics of non-lymphoid FOXP3+ Treg cells and the mutual regulation of Treg cells and other cell types in solid tumour microenvironment remains largely unclear. In this review, we summarize the latest findings on the dynamic connections and reciprocal regulations of non-lymphoid Treg cell subsets in accordance with well-established and new emerging hallmarks of cancer, especially on the immune escape of tumour cells in solid tumours. Our comprehension of the interplay between FOXP3+ Treg cells and key hallmarks of cancer may provide new insights into the development of next-generation engineered T cell-based immune treatments for solid tumours.
Collapse
Affiliation(s)
- Yiran Qiu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University School of Medicine, Shanghai, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouyu Ke
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqiong Chen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhizhen Qin
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenle Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqin Yuan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dehua Meng
- Department of Orthopedics, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Gang Zhao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Integrated TCM & Western Medicine at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Christensen LM, Hancock WW. Nuclear Coregulatory Complexes in Tregs as Targets to Promote Anticancer Immune Responses. Front Immunol 2022; 13:909816. [PMID: 35795673 PMCID: PMC9251111 DOI: 10.3389/fimmu.2022.909816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022] Open
Abstract
T-regulatory (Treg) cells display considerable heterogeneity in their responses to various cancers. The functional differences among this cell type are heavily influenced by multiprotein nuclear complexes that control their gene expression. Many such complexes act mechanistically by altering epigenetic profiles of genes important to Treg function, including the forkhead P3 (Foxp3) transcription factor. Complexes that form with certain members of the histone/protein deacetylase (HDAC) class of enzymes, like HDACs 1, 2, and 3, along with histone methyltransferase complexes, are important in the induction and stabilization of Foxp3 and Treg identity. The functional behavior of both circulating and intratumoral Tregs greatly impacts the antitumor immune response and can be predictive of patient outcome. Thus, targeting these regulatory complexes within Tregs may have therapeutic potential, especially in personalized immunotherapies.
Collapse
Affiliation(s)
- Lanette M. Christensen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Wayne W. Hancock,
| |
Collapse
|
14
|
Jin K, Parreau S, Warrington KJ, Koster MJ, Berry GJ, Goronzy JJ, Weyand CM. Regulatory T Cells in Autoimmune Vasculitis. Front Immunol 2022; 13:844300. [PMID: 35296082 PMCID: PMC8918523 DOI: 10.3389/fimmu.2022.844300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are indispensable for host survival and are protected from inappropriate inflammation by immune privilege. This protection is lost in patients with autoimmune vasculitides, a heterogeneous group of diseases causing damage to arteries, arterioles, and capillaries. Vasculitis leads to vascular wall destruction and/or luminal occlusion, resulting in hemorrhage and tissue ischemia. Failure in the quantity and quality of immunosuppressive regulatory T cells (Treg) has been implicated in the breakdown of the vascular immune privilege. Emerging data suggest that Treg deficiencies are disease-specific, affecting distinct pathways in distinct vasculitides. Mechanistic studies have identified faulty CD8+ Tregs in Giant Cell Arteritis (GCA), a vasculitis of the aorta and the large aortic branch vessels. Specifically, aberrant signaling through the NOTCH4 receptor expressed on CD8+ Treg cells leads to rerouting of intracellular vesicle trafficking and failure in the release of immunosuppressive exosomes, ultimately boosting inflammatory attack to medium and large arteries. In Kawasaki’s disease, a medium vessel vasculitis targeting the coronary arteries, aberrant expression of miR-155 and dysregulated STAT5 signaling have been implicated in undermining CD4+ Treg function. Explorations of mechanisms leading to insufficient immunosuppression and uncontrolled vascular inflammation hold the promise to discover novel therapeutic interventions that could potentially restore the immune privilege of blood vessels and pave the way for urgently needed innovations in vasculitis management.
Collapse
Affiliation(s)
- Ke Jin
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Simon Parreau
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Kenneth J. Warrington
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Matthew J. Koster
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Gerald J. Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J. Goronzy
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M. Weyand
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Cornelia M. Weyand,
| |
Collapse
|
15
|
Mertowska P, Mertowski S, Podgajna M, Grywalska E. The Importance of the Transcription Factor Foxp3 in the Development of Primary Immunodeficiencies. J Clin Med 2022; 11:947. [PMID: 35207219 PMCID: PMC8874698 DOI: 10.3390/jcm11040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Transcription factors are an extremely important group of proteins that are responsible for the process of selective activation or deactivation of other cellular proteins, usually at the last stage of signal transmission in the cell. An important family of transcription factors that regulate the body's response is the FOX family which plays an important role in regulating the expression of genes involved in cell growth, proliferation, and differentiation. The members of this family include the intracellular protein Foxp3, which regulates the process of differentiation of the T lymphocyte subpopulation, and more precisely, is responsible for the development of regulatory T lymphocytes. This protein influences several cellular processes both directly and indirectly. In the process of cytokine production regulation, the Foxp3 protein interacts with numerous proteins and transcription factors such as NFAT, nuclear factor kappa B, and Runx1/AML1 and is involved in the process of histone acetylation in condensed chromatin. Malfunctioning of transcription factor Foxp3 caused by the mutagenesis process affects the development of disorders of the immune response and autoimmune diseases. This applies to the impairment or inability of the immune system to fight infections due to a disruption of the mechanisms supporting immune homeostasis which in turn leads to the development of a special group of disorders called primary immunodeficiencies (PID). The aim of this review is to provide information on the role of the Foxp3 protein in the human body and its involvement in the development of two types of primary immunodeficiency diseases: IPEX (Immunodysregulation Polyendocrinopathy Enteropathy X-linked syndrome) and CVID (Common Variable Immunodeficiency).
Collapse
Affiliation(s)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.M.); (M.P.); (E.G.)
| | | | | |
Collapse
|
16
|
Grover P, Goel PN, Greene MI. Regulatory T Cells: Regulation of Identity and Function. Front Immunol 2021; 12:750542. [PMID: 34675933 PMCID: PMC8524049 DOI: 10.3389/fimmu.2021.750542] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
T regulatory cells suppress a variety of immune responses to self-antigens and play a role in peripheral tolerance maintenance by limiting autoimmune disorders, and other pathological immune responses such as limiting immune reactivity to oncoprotein encoded antigens. Forkhead box P3 (FOXP3) expression is required for Treg stability and affects functional activity. Mutations in the master regulator FOXP3 and related components have been linked to autoimmune diseases in humans, such as IPEX, and a scurfy-like phenotype in mice. Several lines of evidence indicate that Treg use a variety of immunosuppressive mechanisms to limit an immune response by targeting effector cells, including secretion of immunoregulatory cytokines, granzyme/perforin-mediated cell cytolysis, metabolic perturbation, directing the maturation and function of antigen-presenting cells (APC) and secretion of extracellular vesicles for the development of immunological tolerance. In this review, several regulatory mechanisms have been highlighted and discussed.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Zhang W, Liu X, Zhu Y, Liu X, Gu Y, Dai X, Li B. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. Eur J Immunol 2021; 51:2137-2150. [PMID: 34322865 DOI: 10.1002/eji.202048794] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
Regulatory T (Treg) cells and T helper type 17 (Th17) cells play important roles in adaptive immune responses, antagonizing each other in immune disorders. Th17/Treg balance is critical to maintaining the immune homeostasis of human bodies and is tightly regulated under healthy conditions. The transcription factors that are required for driving Th17 and Treg cell lineages differentiation respectively, RORγt and FOXP3 are tightly regulated under different tissue microenvironment, especially the transcriptional induction, posttranslational modifications, and dynamic enzymatic cofactors binding. The imbalance caused by alteration of the quantity or properties of RORγt+ Th17 or FOXP3+ Treg can contribute to inflammatory disorders in humans. Restoring Th17/Treg balance by modifying the enzymatic activities of RORγt and FOXP3 binding partners may be therapeutically applied to treat severe immune disorders. In this review, we focus on the transcriptional and posttranslational regulations of Th17/Treg balance, immune disorders caused by Th17/Treg imbalance, and new therapeutic strategies for restoring immune homeostasis.
Collapse
Affiliation(s)
- Weiqi Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Zhu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinnan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunting Gu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyu Dai
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Dong Y, Yang C, Pan F. Post-Translational Regulations of Foxp3 in Treg Cells and Their Therapeutic Applications. Front Immunol 2021; 12:626172. [PMID: 33912156 PMCID: PMC8071870 DOI: 10.3389/fimmu.2021.626172] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory T (Treg) cells are indispensable for immune homeostasis due to their roles in peripheral tolerance. As the master transcription factor of Treg cells, Forkhead box P3 (Foxp3) strongly regulates Treg function and plasticity. Because of this, considerable research efforts have been directed at elucidating the mechanisms controlling Foxp3 and its co-regulators. Such work is not only advancing our understanding on Treg cell biology, but also uncovering novel targets for clinical manipulation in autoimmune diseases, organ transplantation, and tumor therapies. Recently, many studies have explored the post-translational regulation of Foxp3, which have shown that acetylation, phosphorylation, glycosylation, methylation, and ubiquitination are important for determining Foxp3 function and plasticity. Additionally, some of these targets have been implicated to have great therapeutic values. In this review, we will discuss emerging evidence of post-translational regulations on Foxp3 in Treg cells and their exciting therapeutic applications.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| |
Collapse
|
19
|
Consonni F, Ciullini Mannurita S, Gambineri E. Atypical Presentations of IPEX: Expect the Unexpected. Front Pediatr 2021; 9:643094. [PMID: 33614561 PMCID: PMC7892580 DOI: 10.3389/fped.2021.643094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immune dysregulation, polyendocrinopathy, and enteropathy, X-linked (IPEX) syndrome is a rare disorder that has become a model of monogenic autoimmunity. IPEX is caused by mutations in FOXP3 gene, a master regulator of regulatory T cells (Treg). Cases reported in the last 20 years demonstrate that IPEX clinical spectrum encompasses more than the classical triad of early-onset intractable diarrhea, type 1 diabetes (T1D) and eczema. Atypical cases of IPEX include patients with late-onset of symptoms, single-organ involvement, mild disease phenotypes or rare clinical features (e.g., atrophic gastritis, interstitial lung disease, nephropathy etc.). Several atypical presentations have recently been reported, suggesting that IPEX incidence might be underestimated. Immunosuppression (IS) treatment strategies can control the disease, however at the moment allogeneic hematopoietic stem cell transplantation (HSCT) is the only available definitive cure, therefore it is important to achieve a prompt diagnosis. This review aims to describe unusual clinical phenotypes, beyond classical IPEX. Overall, our analysis contributes to increase awareness and finally improve diagnosis and treatment intervention in IPEX in order to ensure a good quality of life.
Collapse
Affiliation(s)
- Filippo Consonni
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
20
|
Barzaghi F, Passerini L. IPEX Syndrome: Improved Knowledge of Immune Pathogenesis Empowers Diagnosis. Front Pediatr 2021; 9:612760. [PMID: 33692972 PMCID: PMC7937806 DOI: 10.3389/fped.2021.612760] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare monogenic autoimmune disease with variable clinical manifestations, ranging from early-onset severe autoimmunity, including enteropathy, eczema, and type 1 diabetes, to late-onset or atypical symptoms. Despite the clinical heterogeneity, the unifying feature of IPEX is mutation of the FOXP3 gene, which encodes a transcription factor essential for maintenance of thymus-derived regulatory T cells (Tregs). In IPEX patients, Tregs can be present, although unstable and impaired in function, unable to inhibit proliferation and cytokine production of effector T (Teff) cells. Mutated FOXP3 can also disrupt other compartments: FOXP3-deficient Teff cells proliferate more than the wild-type counterpart, display altered T-cell-receptor signaling response, a reduced T-naïve compartment and a skew toward a Th2 profile. Due to FOXP3 mutations, the frequency of autoreactive B cells is increased and the IgA and IgE production is altered, together with early emergence of tissue-specific autoantibodies. Recently, the awareness of the wide clinical spectrum of IPEX improved the diagnostic tools. In cases presenting with enteropathy, histological evaluation is helpful, although there are no pathognomonic signs of disease. On the other hand, the study of FOXP3 expression and in vitro Treg function, as well as the detection of specific circulating autoantibodies, is recommended to narrow the differential diagnosis. Nowadays, Sanger sequencing should be limited to cases presenting with the classical triad of symptoms; otherwise, next-generation sequencing is recommended, given the cost-effectiveness and the advantage of excluding IPEX-like syndromes. The latter approach could be time spearing in children with severe phenotypes and candidate to advanced therapies.
Collapse
Affiliation(s)
- Federica Barzaghi
- Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Grover P, Goel PN, Piccirillo CA, Greene MI. FOXP3 and Tip60 Structural Interactions Relevant to IPEX Development Lead to Potential Therapeutics to Increase FOXP3 Dependent Suppressor T Cell Functions. Front Pediatr 2021; 9:607292. [PMID: 33614551 PMCID: PMC7888439 DOI: 10.3389/fped.2021.607292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Regulatory T (Treg) cells play a role in the maintenance of immune homeostasis and are critical mediators of immune tolerance. The Forkhead box P3 (FOXP3) protein acts as a regulator for Treg development and function. Mutations in the FOXP3 gene can lead to autoimmune diseases such as Immunodysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome in humans, often resulting in death within the first 2 years of life and a scurfy like phenotype in Foxp3 mutant mice. We discuss biochemical features of the FOXP3 ensemble including its regulation at various levels (epigenetic, transcriptional, and post-translational modifications) and molecular functions. The studies also highlight the interactions of FOXP3 and Tat-interacting protein 60 (Tip60), a principal histone acetylase enzyme that acetylates FOXP3 and functions as an essential subunit of the FOXP3 repression ensemble complex. Lastly, we have emphasized the role of allosteric modifiers that help stabilize FOXP3:Tip60 interactions and discuss targeting this interaction for the therapeutic manipulation of Treg activity.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Piccirillo CA. Transcriptional and translational control of Foxp3+ regulatory T cell functional adaptation to inflammation. Curr Opin Immunol 2020; 67:27-35. [DOI: 10.1016/j.coi.2020.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023]
|
23
|
Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov 2020; 19:776-800. [PMID: 32929243 DOI: 10.1038/s41573-020-0077-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
Dysregulation of the epigenome drives aberrant transcriptional programmes that promote cancer onset and progression. Although defective gene regulation often affects oncogenic and tumour-suppressor networks, tumour immunogenicity and immune cells involved in antitumour responses may also be affected by epigenomic alterations. This could have important implications for the development and application of both epigenetic therapies and cancer immunotherapies, and combinations thereof. Here, we review the role of key aberrant epigenetic processes - DNA methylation and post-translational modification of histones - in tumour immunogenicity, as well as the effects of epigenetic modulation on antitumour immune cell function. We emphasize opportunities for small-molecule inhibitors of epigenetic regulators to enhance antitumour immune responses, and discuss the challenges of exploiting the complex interplay between cancer epigenetics and cancer immunology to develop treatment regimens combining epigenetic therapies with immunotherapies.
Collapse
|
24
|
Ozay EI, Shanthalingam S, Torres JA, Osborne BA, Tew GN, Minter LM. Protein Kinase C Theta Modulates PCMT1 through hnRNPL to Regulate FOXP3 Stability in Regulatory T Cells. Mol Ther 2020; 28:2220-2236. [PMID: 32592691 DOI: 10.1016/j.ymthe.2020.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022] Open
Abstract
T cell receptor signaling, together with cytokine-induced signals, can differentially regulate RNA processing to influence T helper versus regulatory T cell fate. Protein kinase C family members have been shown to function in alternative splicing and RNA processing in various cell types. T cell-specific protein kinase C theta, a molecular regulator of T cell receptor downstream signaling, has been shown to phosphorylate splicing factors and affect post-transcriptional control of T cell gene expression. In this study, we explored how using a synthetic cell-penetrating peptide mimic for intracellular anti-protein kinase C theta delivery fine-tunes differentiation of induced regulatory T cells through its differential effects on RNA processing. We identified protein kinase C theta signaling as a critical modulator of two key RNA regulatory factors, heterogeneous nuclear ribonucleoprotein L (hnRNPL) and protein-l-isoaspartate O-methyltransferase-1 (PCMT1), and loss of protein kinase C theta function initiated a "switch" in post-transcriptional organization in induced regulatory T cells. More interestingly, we discovered that protein-l-isoaspartate O- methyltransferase-1 acts as an instability factor in induced regulatory T cells, by methylating the forkhead box P3 (FOXP3) promoter. Targeting protein-l-isoaspartate O-methyltransferase-1 using a cell-penetrating antibody revealed an efficient means of modulating RNA processing to confer a stable regulatory T cell phenotype.
Collapse
Affiliation(s)
- E Ilker Ozay
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joe A Torres
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Barbara A Osborne
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory N Tew
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Lisa M Minter
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
25
|
Amarnath S, Brown ML. Harnessing proteases for T regulatory cell immunotherapy. Eur J Immunol 2020; 50:770-778. [PMID: 32383480 DOI: 10.1002/eji.201948270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/08/2020] [Accepted: 05/06/2020] [Indexed: 12/27/2022]
Abstract
The immune system is tightly regulated by a subset of T cells defined as regulatory T cells (Tregs). Tregs maintain immune homeostasis by restraining unwarranted immune cell activation and effector function. Here, we discuss an important but underappreciated role of proteases in controlling Treg function. Proteases regulate a number of vital processes that determine T cell immune responses and some of them such as furin, ADAM (through regulating LAG receptor), MALT, and asparaginyl endopeptidase are implicated in Treg immunobiology. Targeted protease inhibition, using either small molecule inhibitors or gene deficient mice has demonstrated their specificity in modulating Treg function in experimental murine models. These data further highlight the ability of proteases to specifically regulate Tregs but no other T effector lineages. Taken together, it is apparent that incorporating proteases as targets within Treg cell engineering protocols may enable generation of robust Treg cellular therapeutics. These engineered Tregs may possess enhanced regulatory function along with resistance to lineage deviation in inflammatory disease such as colitis and graft versus host disease. Within this review, we summarize research on the role of proteases in regulating Treg function and discuss the translational potential of harnessing Treg function by targeting protease driven regulatory pathways.
Collapse
Affiliation(s)
- Shoba Amarnath
- NUTranslational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Marnie L Brown
- NUTranslational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
26
|
Ono M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 2020; 160:24-37. [PMID: 32022254 DOI: 10.1111/imm.13178] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor Foxp3 controls the differentiation and function of regulatory T-cells (Treg). Studies in the past decades identified numerous Foxp3-interacting protein partners. However, it is still not clear how Foxp3 produces the Treg-type transcriptomic landscape through cooperating with its partners. Here I show the current understanding of how Foxp3 transcription factor complexes regulate the differentiation, maintenance and functional maturation of Treg. Importantly, T-cell receptor (TCR) signalling plays central roles in Treg differentiation and Foxp3-mediated gene regulation. Differentiating Treg will have recognized their cognate antigens and received TCR signals before initiating Foxp3 transcription, which is triggered by TCR-induced transcription factors including NFAT, AP-1 and NF-κB. Once expressed, Foxp3 seizes TCR signal-induced transcriptional and epigenetic mechanisms through interacting with AML1/Runx1 and NFAT. Thus, Foxp3 modifies gene expression dynamics of TCR-induced genes, which constitute cardinal mechanisms for Treg-mediated immune suppression. Next, I discuss the following key topics, proposing new mechanistic models for Foxp3-mediated gene regulation: (i) how Foxp3 transcription is induced and maintained by the Foxp3-inducing enhanceosome and the Foxp3 autoregulatory transcription factor complex; (ii) molecular mechanisms for effector Treg differentiation (i.e. Treg maturation); (iii) how Foxp3 activates or represses its target genes through recruiting coactivators and corepressors; (iv) the 'decision-making' Foxp3-containing transcription factor complex for Th17 and Treg differentiation; and (v) the roles of post-translational modification in Foxp3 regulation. Thus, this article provides cutting-edge understanding of molecular biology of Foxp3 and Treg, integrating findings by biochemical and genomic studies.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
27
|
Abstract
Lysine (or histone) acetyltransferases plays a key role in genome maintenance and gene regulation and dysregulation of acetylation is a recognized feature of many diseases, including several cancers. Here, the patent landscape surrounding lysine acetyltransferase inhibitors (KATi or HATi), with a focus on small-molecule compounds, is outlined and assessed. Overall, the 36 KATi-specific patents found were categorized into two distinct groups: specific small-molecule inhibitors (compounds and molecules) and patents applying KATi for targeted disease treatment. These patents recognize the emergent potential of KATi to significantly impact on the management of many diseases (including multiple cancer types, neurological disorders and immunological syndromes), improving the range of treatments (and drug classes) available for personalized medicine.
Collapse
|
28
|
Colamatteo A, Carbone F, Bruzzaniti S, Galgani M, Fusco C, Maniscalco GT, Di Rella F, de Candia P, De Rosa V. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. Front Immunol 2020; 10:3136. [PMID: 32117202 PMCID: PMC7008726 DOI: 10.3389/fimmu.2019.03136] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the transcription factor Forkhead box-p3 (Foxp3) has shed fundamental insights into the understanding of the molecular determinants leading to generation and maintenance of T regulatory (Treg) cells, a cell population with a key immunoregulatory role. Work over the past few years has shown that fine-tuned transcriptional and epigenetic events are required to ensure stable expression of Foxp3 in Treg cells. The equilibrium between phenotypic plasticity and stability of Treg cells is controlled at the molecular level by networks of transcription factors that bind regulatory sequences, such as enhancers and promoters, to regulate Foxp3 expression. Recent reports have suggested that specific modifications of DNA and histones are required for the establishment of the chromatin structure in conventional CD4+ T (Tconv) cells for their future differentiation into the Treg cell lineage. In this review, we discuss the molecular events that control Foxp3 gene expression and address the associated alterations observed in human diseases. Also, we explore how Foxp3 influences the gene expression programs in Treg cells and how unique properties of Treg cell subsets are defined by other transcription factors.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mario Galgani
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Francesca Di Rella
- Clinical and Experimental Senology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | | | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
29
|
Huang Q, Liu X, Zhang Y, Huang J, Li D, Li B. Molecular feature and therapeutic perspectives of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. J Genet Genomics 2020; 47:17-26. [PMID: 32081609 DOI: 10.1016/j.jgg.2019.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/02/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023]
Abstract
Regulatory T (Treg) cells, a subtype of immunosuppressive CD4+ T cells, are vital for maintaining immune homeostasis in healthy people. Forkhead box protein P3 (FOXP3), a member of the forkhead-winged-helix family, is the pivotal transcriptional factor of Treg cells. The expression, post-translational modifications, and protein complex of FOXP3 present a great impact on the functional stability and immune plasticity of Treg cells in vivo. In particular, the mutation of FOXP3 can result in immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, which is a rare genetic disease mostly diagnosed in early childhood and can soon be fatal. IPEX syndrome is related to several manifestations, including dermatitis, enteropathy, type 1 diabetes, thyroiditis, and so on. Here, we summarize some recent findings on FOXP3 regulation and Treg cell function. We also review the current knowledge about the underlying mechanism of FOXP3 mutant-induced IPEX syndrome and some latest clinical prospects. At last, this review offers a novel insight into the role played by the FOXP3 complex in potential therapeutic applications in IPEX syndrome.
Collapse
Affiliation(s)
- Qianru Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xu Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yujia Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jingyao Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
30
|
Huang J, Wang S, Jia Y, Zhang Y, Dai X, Li B. Targeting FOXP3 complex ensemble in drug discovery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:143-168. [PMID: 32312420 DOI: 10.1016/bs.apcsb.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Forkhead Box P3 (FOXP3) is a key transcriptional regulator of regulatory T cells (Tregs), especially for its function of immune suppression. The special immune suppression function of Tregs plays an important role in maintaining immune homeostasis, and is related to several diseases including cancer, and autoimmune diseases. At the same time, FOXP3 takes a place in a large transcriptional complex, whose stability and functions can be controlled by various post-translational modification. More and more researches have suggested that targeting FOXP3 or its partners might be a feasible solution to immunotherapy. In this review, we focus on the transcription factor FOXP3 in Tregs, Treg functions in diseases and the FOXP3 targets.
Collapse
Affiliation(s)
- Jingyao Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuoyang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxin Jia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujia Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyu Dai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Deng G, Song X, Fujimoto S, Piccirillo CA, Nagai Y, Greene MI. Foxp3 Post-translational Modifications and Treg Suppressive Activity. Front Immunol 2019; 10:2486. [PMID: 31681337 PMCID: PMC6813729 DOI: 10.3389/fimmu.2019.02486] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) are engaged in maintaining immune homeostasis and preventing autoimmunity. Treg cells include thymic Treg cells and peripheral Treg cells, both of which can suppress the immune response via multiple distinct mechanisms. The differentiation, proliferation, suppressive function and survival of Treg cells are affected by distinct energy metabolic programs. Tissue-resident Treg cells hold unique features in comparison with the lymphoid organ Treg cells. Foxp3 transcription factor is a lineage master regulator for Treg cell development and suppressive activity. Accumulating evidence indicates that the activity of Foxp3 protein is modulated by various post-translational modifications (PTMs), including phosphorylation, O-GlcNAcylation, acetylation, ubiquitylation and methylation. These modifications affect multiple aspects of Foxp3 function. In this review, we define features of Treg cells and roles of Foxp3 in Treg biology, and summarize current research in PTMs of Foxp3 protein involved in modulating Treg function. This review also attempts to define Foxp3 dimer modifications relevant to mediating Foxp3 activity and Treg suppression. Understanding Foxp3 protein features and modulation mechanisms may help in the design of rational therapies for immune diseases and cancer.
Collapse
Affiliation(s)
- Guoping Deng
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | | | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Horwitz DA, Fahmy TM, Piccirillo CA, La Cava A. Rebalancing Immune Homeostasis to Treat Autoimmune Diseases. Trends Immunol 2019; 40:888-908. [PMID: 31601519 DOI: 10.1016/j.it.2019.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
During homeostasis, interactions between tolerogenic dendritic cells (DCs), self-reactive T cells, and T regulatory cells (Tregs) contribute to maintaining mammalian immune tolerance. In response to infection, immunogenic DCs promote the generation of proinflammatory effector T cell subsets. When complex homeostatic mechanisms maintaining the balance between regulatory and effector functions become impaired, autoimmune diseases can develop. We discuss some of the newest advances on the mechanisms of physiopathologic homeostasis that can be employed to develop strategies to restore a dysregulated immune equilibrium. Some of these designs are based on selectively activating regulators of immunity and inflammation instead of broadly suppressing these processes. Promising approaches include the use of nanoparticles (NPs) to restore Treg control over self-reactive cells, aiming to achieve long-term disease remission, and potentially to prevent autoimmunity in susceptible individuals.
Collapse
Affiliation(s)
- David A Horwitz
- General Nanotherapeutics, LLC, Santa Monica, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Tarek M Fahmy
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Centre of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Antonio La Cava
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Istomine R, Alvarez F, Almadani Y, Philip A, Piccirillo CA. The Deubiquitinating Enzyme Ubiquitin-Specific Peptidase 11 Potentiates TGF-β Signaling in CD4 + T Cells to Facilitate Foxp3 + Regulatory T and T H17 Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2019; 203:2388-2400. [PMID: 31554694 DOI: 10.4049/jimmunol.1801689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
Foxp3+ regulatory T (TREG) cells are central mediators in the control of peripheral immune responses. Genome-wide transcriptional profiles show canonical signatures for Foxp3+ TREG cells, distinguishing them from Foxp3- effector T (TEFF) cells. We previously uncovered distinct mRNA translational signatures differentiating CD4+ TEFF and TREG cells through parallel measurements of cytosolic (global) and polysome-associated (translationally enhanced) mRNA levels in both subsets. We show that the mRNA encoding for the ubiquitin-specific peptidase 11 (USP11), a known modulator of TGF-β signaling, was preferentially translated in TCR-activated TREG cells compared with conventional, murine CD4+ T cells. TGF-β is a key cytokine driving the induction and maintenance of Foxp3 expression in T cells. We hypothesized that differential translation of USP11 mRNA endows TREG cells with an advantage to respond to TGF-β signals. In an in vivo mouse model promoting TREG cells plasticity, we found that USP11 protein was expressed at elevated levels in stable TREG cells, whereas ectopic USP11 expression enhanced the suppressive capacity and lineage commitment of these cells in vitro and in vivo. USP11 overexpression in TEFF cells enhanced the activation of the TGF-β pathway and promoted TREG or TH17, but not Th1, cell differentiation in vitro and in vivo, an effect abrogated by USP11 gene silencing or the inhibition of enzymatic activity. Thus, USP11 potentiates TGF-β signaling in both TREG and TEFF cells, in turn driving increased suppressive function and lineage commitment in thymic-derived TREG cells and potentiating the TGF-β-dependent differentiation of TEFF cells to peripherally induced TREG and TH17 cells.
Collapse
Affiliation(s)
- Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Centre of Excellence in Translational Immunology, Montreal, Quebec H4A 3J1, Canada; and
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Centre of Excellence in Translational Immunology, Montreal, Quebec H4A 3J1, Canada; and
| | - Yasser Almadani
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada; and.,Plastic Surgery Research Laboratory, Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada; and.,Plastic Surgery Research Laboratory, Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; .,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Centre of Excellence in Translational Immunology, Montreal, Quebec H4A 3J1, Canada; and
| |
Collapse
|
34
|
Deng G, Song X, Greene MI. FoxP3 in T reg cell biology: a molecular and structural perspective. Clin Exp Immunol 2019; 199:255-262. [PMID: 31386175 PMCID: PMC7008219 DOI: 10.1111/cei.13357] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Regulatory T cells (Tregs) are specialized in immune suppression and play a dominant role in peripheral immune tolerance. Treg cell lineage development and function maintenance is determined by the forkhead box protein 3 (FoxP3) transcriptional factor, whose activity is fine‐tuned by its post‐translational modifications (PTMs) and interaction partners. In this review, we summarize current studies in the crystal structures, the PTMs and interaction partners of FoxP3 protein, and discuss how these insights may provide a roadmap for new approaches to modulate Treg suppression, and new therapies to enhance immune tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- G Deng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - X Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - M I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Abstract
Regulatory T (Treg) cells expressing the transcription factor forkhead box P3 (Foxp3) play a requisite role in the maintenance of immunological homeostasis and prevention of peripheral self-tolerance breakdown. Although Foxp3 by itself is neither necessary nor sufficient to specify many aspects of the Treg cell phenotype, its sustained expression in Treg cells is indispensable for their phenotypic stability, metabolic fitness, and regulatory function. In this review, we summarize recent advances in Treg cell biology, with a particular emphasis on the role of Foxp3 as a transcriptional modulator and metabolic gatekeeper essential to an effective immune regulatory response. We discuss these findings in the context of human inborn errors of immune dysregulation, with a focus on FOXP3 mutations, leading to Treg cell deficiency. We also highlight emerging concepts of therapeutic Treg cell reprogramming to restore tolerance in the settings of immune dysregulatory disorders.
Collapse
|
36
|
Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat Immunol 2019; 20:1208-1219. [PMID: 31384057 PMCID: PMC6707855 DOI: 10.1038/s41590-019-0442-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Treg cells) deficient in the transcription factor Foxp3 lack suppressor function and manifest an effector T (Teff) cell-like phenotype. We demonstrate that Foxp3 deficiency dysregulates metabolic checkpoint kinase mammalian target of rapamycin (mTOR) complex 2 (mTORC2) signaling and gives rise to augmented aerobic glycolysis and oxidative phosphorylation. Specific deletion of the mTORC2 adaptor gene Rictor in Foxp3-deficient Treg cells ameliorated disease in a Foxo1 transcription factor-dependent manner. Rictor deficiency re-established a subset of Treg cell genetic circuits and suppressed the Teff cell-like glycolytic and respiratory programs, which contributed to immune dysregulation. Treatment of Treg cells from patients with FOXP3 deficiency with mTOR inhibitors similarly antagonized their Teff cell-like program and restored suppressive function. Thus, regulatory function can be re-established in Foxp3-deficient Treg cells by targeting their metabolic pathways, providing opportunities to restore tolerance in Treg cell disorders.
Collapse
|
37
|
Boonpiyathad T, Sokolowska M, Morita H, Rückert B, Kast JI, Wawrzyniak M, Sangasapaviliya A, Pradubpongsa P, Fuengthong R, Thantiworasit P, Sirivichayakul S, Kwok WW, Ruxrungtham K, Akdis M, Akdis CA. Der p 1-specific regulatory T-cell response during house dust mite allergen immunotherapy. Allergy 2019; 74:976-985. [PMID: 30485456 DOI: 10.1111/all.13684] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only available treatment for allergic diseases that can induce specific immune tolerance to allergens. The key mechanisms involved in this process include changes in allergen-specific regulatory T (Treg) cells. METHODS We studied 25 allergic rhinitis patients undergoing subcutaneous house dust mite-specific immunotherapy. Peripheral blood mononuclear cells were studied before and after 10, 30 weeks, and 3 years of AIT. Der p 1-specific T regulatory cell responses were investigated by characterization of Der p 1-MHC class II tetramer-positive cells and correlated with nasal symptom score. RESULTS Twelve of 25 AIT patients matched with their MHC class II expression to the Der p 1 peptide-MHC class II tetramers. A significant increase in the numbers of Der p 1-specific FOXP3+ Helios+ CD25+ CD127- Treg cells after 30 weeks was observed, which slightly decreased after 3 years of AIT. In contrast, Der p 1-specific immunoglobulin-like transcript 3 (ILT3)+ CD25+ Treg cells decreased substantially from baseline after 3 years of AIT. ILT3+ Treg cells displayed compromised suppressive function and low FOXP3 expression. In addition, Der p 1-specific IL-10 and IL-22 responses have increased after 30 weeks, but only IL-10+ Der p 1-specific Treg cells remained present at high frequency after 3 years of AIT. Increased number of FOXP3+ Helios+ and IL-10+ and decreased ILT3+ Treg cell responses correlated with improved allergic symptoms. CONCLUSION The results indicate that AIT involves upregulation of the activated allergen-specific Treg cells and downregulation of dysfunctional allergen-specific Treg cell subset. Correction of dysregulated Treg cells responses during AIT is associated with improved clinical response.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Department of Medicine Phramongkutklao Hospital Bangkok Thailand
- Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Hideaki Morita
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Jeannette I. Kast
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Marcin Wawrzyniak
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | | | | | | | | | | | - William W. Kwok
- Benaroya Research Institute at Virginia Mason Seattle Washington
- Department of Immunology University of Washington Seattle Washington
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
38
|
The alarmins IL-1 and IL-33 differentially regulate the functional specialisation of Foxp3 + regulatory T cells during mucosal inflammation. Mucosal Immunol 2019; 12:746-760. [PMID: 30872761 DOI: 10.1038/s41385-019-0153-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 02/04/2023]
Abstract
CD4+Foxp3+ regulatory T (TREG) cells are critical mediators of peripheral tolerance and modulators of immune responses. Functional adaptation of TREG cells, through acquisition of secondary transcription factors is critical for their effector differentiation towards local inflammatory stimuli including infections. The drivers and consequences of this adaptation of TREG cell function remain largely unknown. Using an unbiased screen, we identified receptors of the IL-1 family controlling the adaptation of TREG cells. Through respiratory infection models, we show that the IL-33 receptor (ST2) and the IL-1 receptor (IL1R1) selectively identify stable and unstable TREG cells at mucosal surfaces, respectively. IL-33, not IL-1, is specifically required for maintaining the suppressive function of TREG cells. In the absence of ST2, TREG cells are prone to lose Foxp3 expression and acquire RORγT and IL1R1, while, in the absence of IL-1R1, they maintain Foxp3 expression and resist the acquisition of a Th17 phenotype. Finally, lack of IL-1 signalling enhances the accumulation of ST2+ TREG over pro-inflammatory TREG cells in a Cryptococcus neoformans infection. These observations show that IL-1 and IL-33 exert opposing functions in controlling the functional adaptation of TREG cells, ultimately dictating the dynamics of adaptive immunity to pathogens.
Collapse
|
39
|
Attias M, Al-Aubodah T, Piccirillo CA. Mechanisms of human FoxP3 + T reg cell development and function in health and disease. Clin Exp Immunol 2019; 197:36-51. [PMID: 30864147 PMCID: PMC6591147 DOI: 10.1111/cei.13290] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Regulatory T (Treg) cells represent an essential component of peripheral tolerance. Given their potently immunosuppressive functions that is orchestrated by the lineage‐defining transcription factor forkhead box protein 3 (FoxP3), clinical modulation of these cells in autoimmunity and cancer is a promising therapeutic target. However, recent evidence in mice and humans indicates that Treg cells represent a phenotypically and functionally heterogeneic population. Indeed, both suppressive and non‐suppressive Treg cells exist in human blood that are otherwise indistinguishable from one another using classical Treg cell markers such as CD25 and FoxP3. Moreover, murine Treg cells display a degree of plasticity through which they acquire the trafficking pathways needed to home to tissues containing target effector T (Teff) cells. However, this plasticity can also result in Treg cell lineage instability and acquisition of proinflammatory Teff cell functions. Consequently, these dysfunctional CD4+FoxP3+ T cells in human and mouse may fail to maintain peripheral tolerance and instead support immunopathology. The mechanisms driving human Treg cell dysfunction are largely undefined, and obscured by the scarcity of reliable immunophenotypical markers and the disregard paid to Treg cell antigen‐specificity in functional assays. Here, we review the mechanisms controlling the stability of the FoxP3+ Treg cell lineage phenotype. Particular attention will be paid to the developmental and functional heterogeneity of human Treg cells, and how abrogating these mechanisms can lead to lineage instability and Treg cell dysfunction in diseases like immunodysregulation polyendocrinopathy enteropathy X‐linked (IPEX) syndrome, type 1 diabetes, rheumatoid arthritis and cancer.
Collapse
Affiliation(s)
- M Attias
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - T Al-Aubodah
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - C A Piccirillo
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| |
Collapse
|
40
|
Van Gool F, Nguyen MLT, Mumbach MR, Satpathy AT, Rosenthal WL, Giacometti S, Le DT, Liu W, Brusko TM, Anderson MS, Rudensky AY, Marson A, Chang HY, Bluestone JA. A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity 2019; 50:362-377.e6. [PMID: 30709738 PMCID: PMC6476426 DOI: 10.1016/j.immuni.2018.12.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/25/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022]
Abstract
Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Child
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Polyendocrinopathies, Autoimmune/genetics
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Frédéric Van Gool
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle L T Nguyen
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wendy L Rosenthal
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Simone Giacometti
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duy T Le
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weihong Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Marson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Nagai Y, Ji MQ, Zhu F, Xiao Y, Tanaka Y, Kambayashi T, Fujimoto S, Goldberg MM, Zhang H, Li B, Ohtani T, Greene MI. PRMT5 Associates With the FOXP3 Homomer and When Disabled Enhances Targeted p185 erbB2/neu Tumor Immunotherapy. Front Immunol 2019; 10:174. [PMID: 30800128 PMCID: PMC6375878 DOI: 10.3389/fimmu.2019.00174] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a subpopulation of T cells that are specialized in suppressing immune responses. Here we show that the arginine methyl transferase protein PRMT5 can complex with FOXP3 transcription factors in Tregs. Mice with conditional knock out (cKO) of PRMT5 expression in Tregs develop severe scurfy-like autoimmunity. In these PRMT5 cKO mice, the spleen has reduced numbers of Tregs, but normal numbers of Tregs are found in the peripheral lymph nodes. These peripheral Tregs that lack PRMT5, however, display a limited suppressive function. Mass spectrometric analysis showed that FOXP3 can be di-methylated at positions R27, R51, and R146. A point mutation of Arginine (R) 51 to Lysine (K) led to defective suppressive functions in human CD4 T cells. Pharmacological inhibition of PRMT5 by DS-437 also reduced human Treg functions and inhibited the methylation of FOXP3. In addition, DS-437 significantly enhanced the anti-tumor effects of anti-erbB2/neu monoclonal antibody targeted therapy in Balb/c mice bearing CT26Her2 tumors by inhibiting Treg function and induction of tumor immunity. Controlling PRMT5 activity is a promising strategy for cancer therapy in situations where host immunity against tumors is attenuated in a FOXP3 dependent manner.
Collapse
Affiliation(s)
- Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mei Q Ji
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fuxiang Zhu
- Unit of Molecular Immunology, Key Laboratory of Molecular Virology & Immunology, CAS Center for Excellence in Molecular Cell Science, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Xiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yukinori Tanaka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Li
- The Department of Immunology and Microbiology & Shanghai, Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Takuya Ohtani
- Penn Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
42
|
Gambineri E, Ciullini Mannurita S, Hagin D, Vignoli M, Anover-Sombke S, DeBoer S, Segundo GRS, Allenspach EJ, Favre C, Ochs HD, Torgerson TR. Clinical, Immunological, and Molecular Heterogeneity of 173 Patients With the Phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX) Syndrome. Front Immunol 2018; 9:2411. [PMID: 30443250 PMCID: PMC6223101 DOI: 10.3389/fimmu.2018.02411] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) Syndrome is a rare recessive disorder caused by mutations in the FOXP3 gene. In addition, there has been an increasing number of patients with wild-type FOXP3 gene and, in some cases, mutations in other immune regulatory genes. Objective: To molecularly asses a cohort of 173 patients with the IPEX phenotype and to delineate the relationship between the clinical/immunologic phenotypes and the genotypes. Methods: We reviewed the clinical presentation and laboratory characteristics of each patient and compared clinical and laboratory data of FOXP3 mutation-positive (IPEX patients) with those from FOXP3 mutation-negative patients (IPEX-like). A total of 173 affected patients underwent direct sequence analysis of the FOXP3 gene while 85 IPEX-like patients with normal FOXP3 were investigated by a multiplex panel of "Primary Immune Deficiency (PID-related) genes." Results: Forty-four distinct FOXP3 variants were identified in 88 IPEX patients, 9 of which were not previously reported. Among the 85 IPEX-like patients, 19 different disease-associated variants affecting 9 distinct genes were identified. Conclusions: We provide a comprehensive analysis of the clinical features and molecular bases of IPEX and IPEX-like patients. Although we were not able to identify major distinctive clinical features to differentiate IPEX from IPEX-like syndromes, we propose a simple flow-chart to effectively evaluate such patients and to focus on the most likely molecular diagnosis. Given the large number of potential candidate genes and overlapping phenotypes, selecting a panel of PID-related genes will facilitate a molecular diagnosis.
Collapse
Affiliation(s)
- Eleonora Gambineri
- Department of NEUROFARBA, University of Florence, Florence, Italy
- Oncology/Hematology Department, “Anna Meyer” Children's Hospital, Florence, Italy
| | - Sara Ciullini Mannurita
- Department of NEUROFARBA, University of Florence, Florence, Italy
- Oncology/Hematology Department, “Anna Meyer” Children's Hospital, Florence, Italy
| | - David Hagin
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Marina Vignoli
- Department of NEUROFARBA, University of Florence, Florence, Italy
- Oncology/Hematology Department, “Anna Meyer” Children's Hospital, Florence, Italy
| | | | - Stacey DeBoer
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Gesmar R. S. Segundo
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Eric J. Allenspach
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Claudio Favre
- Oncology/Hematology Department, “Anna Meyer” Children's Hospital, Florence, Italy
| | - Hans D. Ochs
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Troy R. Torgerson
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
43
|
Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol 2018; 19:665-673. [PMID: 29925983 PMCID: PMC7882196 DOI: 10.1038/s41590-018-0120-4] [Citation(s) in RCA: 468] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
In recent years, the understanding of regulatory T cell (Treg cell) biology has expanded considerably. Key observations have challenged the traditional definition of Treg cells and have provided insight into the underlying mechanisms responsible for the development of autoimmune diseases, with new therapeutic strategies that improve disease outcome. This Review summarizes the newer concepts of Treg cell instability, Treg cell plasticity and tissue-specific Treg cells, and their relationship to autoimmunity. Those three main concepts have changed the understanding of Treg cell biology: how they interact with other immune and non-immune cells; their functions in specific tissues; and the implications of this for the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CN, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CN, USA.
| |
Collapse
|
44
|
Time-resolved transcriptome and proteome landscape of human regulatory T cell (Treg) differentiation reveals novel regulators of FOXP3. BMC Biol 2018; 16:47. [PMID: 29730990 PMCID: PMC5937035 DOI: 10.1186/s12915-018-0518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background Regulatory T cells (Tregs) expressing the transcription factor FOXP3 are crucial mediators of self-tolerance, preventing autoimmune diseases but possibly hampering tumor rejection. Clinical manipulation of Tregs is of great interest, and first-in-man trials of Treg transfer have achieved promising outcomes. Yet, the mechanisms governing induced Treg (iTreg) differentiation and the regulation of FOXP3 are incompletely understood. Results To gain a comprehensive and unbiased molecular understanding of FOXP3 induction, we performed time-series RNA sequencing (RNA-Seq) and proteomics profiling on the same samples during human iTreg differentiation. To enable the broad analysis of universal FOXP3-inducing pathways, we used five differentiation protocols in parallel. Integrative analysis of the transcriptome and proteome confirmed involvement of specific molecular processes, as well as overlap of a novel iTreg subnetwork with known Treg regulators and autoimmunity-associated genes. Importantly, we propose 37 novel molecules putatively involved in iTreg differentiation. Their relevance was validated by a targeted shRNA screen confirming a functional role in FOXP3 induction, discriminant analyses classifying iTregs accordingly, and comparable expression in an independent novel iTreg RNA-Seq dataset. Conclusion The data generated by this novel approach facilitates understanding of the molecular mechanisms underlying iTreg generation as well as of the concomitant changes in the transcriptome and proteome. Our results provide a reference map exploitable for future discovery of markers and drug candidates governing control of Tregs, which has important implications for the treatment of cancer, autoimmune, and inflammatory diseases. Electronic supplementary material The online version of this article (10.1186/s12915-018-0518-3) contains supplementary material, which is available to authorized users.
Collapse
|