1
|
Corral D, Ansaldo E, Delaleu J, Pichler AC, Kabat J, Oguz C, Teijeiro A, Yong D, Abid M, Rivera CA, Link VM, Yang K, Chi L, Nie J, Kamenyeva O, Fan Y, Chan JKY, Ginhoux F, Bosselut R, Belkaid Y. Mammary intraepithelial lymphocytes promote lactogenesis and offspring fitness. Cell 2025:S0092-8674(25)00097-2. [PMID: 39954680 DOI: 10.1016/j.cell.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Breastfeeding is an obligatory requirement of mammalian survival. This fundamental process is associated with the adaptation of maternal physiology, including the transformation of the mammary gland into a milk-secreting organ. How maternal immunity contributes to mammary gland remodeling and function remains largely unknown. Here, we show that maternal adaptive immunity plays a critical role in shaping lactogenesis. Specifically, physiological adaptation during pregnancy is associated with thymic involution and a paradoxical enrichment in intraepithelial lymphocyte (IEL) precursors that no longer migrate to the gut but instead preferentially accumulate within the mammary gland. IEL precursors differentiate into T-bet-expressing unconventional CD8αα lymphocytes in an IL-15-dependent manner. Mammary IELs control milk production by favoring the differentiation and maturation of contractile and milk-secreting cells, thereby promoting offspring fitness. Altogether, this work uncovers a contribution of the maternal adaptive immune system in organismal remodeling during pregnancy that is associated with mammary gland development and function.
Collapse
Affiliation(s)
- Dan Corral
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Eduard Ansaldo
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jérémie Delaleu
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea C Pichler
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Teijeiro
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Yong
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnoor Abid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claudia A Rivera
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katharine Yang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117597, Singapore; Obstetrics and Gynecology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117597, Singapore; Obstetrics and Gynecology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Gustave Roussy, INSERM U1015, Villejuif, France
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [PMID: 39713080 PMCID: PMC11551703 DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
3
|
Michelson DA, Mathis D. Thymic Mimetic Cells: Ontogeny as Immunology. Annu Rev Cell Dev Biol 2024; 40:283-300. [PMID: 38608315 PMCID: PMC11446667 DOI: 10.1146/annurev-cellbio-112122-023316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Medullary thymic epithelial cells (mTECs) generate immunological self-tolerance by ectopically expressing peripheral-tissue antigens (PTAs) within the thymus to preview the peripheral self to maturing T cells. Recent work, drawing inspiration from old histological observations, has shown that subtypes of mTECs, collectively termed mimetic cells, co-opt developmental programs from throughout the organism to express biologically coherent groups of PTAs. Here, we review key aspects of mimetic cells, especially as they relate to the larger contexts of molecular, cellular, developmental, and evolutionary biology. We highlight lineage-defining transcription factors as key regulators of mimetic cells and speculate as to what other factors, including Aire and the chromatin potential of mTECs, permit mimetic cell differentiation and function. Last, we consider what mimetic cells can teach us about not only the thymus but also other tissues.
Collapse
Affiliation(s)
- Daniel A Michelson
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
4
|
Wei X, Liu Z, Cai L, Shi D, Sun Q, Zhang L, Zhou F, Sun L. Integrated transcriptomic analysis and machine learning for characterizing diagnostic biomarkers and immune cell infiltration in fetal growth restriction. Front Immunol 2024; 15:1381795. [PMID: 39295860 PMCID: PMC11408188 DOI: 10.3389/fimmu.2024.1381795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background Fetal growth restriction (FGR) occurs in 10% of pregnancies worldwide. Placenta dysfunction, as one of the most common causes of FGR, is associated with various poor perinatal outcomes. The main objectives of this study were to screen potential diagnostic biomarkers for FGR and to evaluate the function of immune cell infiltration in the process of FGR. Methods Firstly, differential expression genes (DEGs) were identified in two Gene Expression Omnibus (GEO) datasets, and gene set enrichment analysis was performed. Diagnosis-related key genes were identified by using three machine learning algorithms (least absolute shrinkage and selection operator, random forest, and support vector machine model), and the nomogram was then developed. The receiver operating characteristic curve, calibration curve, and decision curve analysis curve were used to verify the validity of the diagnostic model. Using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT), the characteristics of immune cell infiltration in placental tissue of FGR were evaluated and the candidate key immune cells of FGR were screened. In addition, this study also validated the diagnostic efficacy of TREM1 in the real world and explored associations between TREM1 and various clinical features. Results By overlapping the genes selected by three machine learning algorithms, four key genes were identified from 290 DEGs, and the diagnostic model based on the key genes showed good predictive performance (AUC = 0.971). The analysis of immune cell infiltration indicated that a variety of immune cells may be involved in the development of FGR, and nine candidate key immune cells of FGR were screened. Results from real-world data further validated TREM1 as an effective diagnostic biomarker (AUC = 0.894) and TREM1 expression was associated with increased uterine artery PI (UtA-PI) (p-value = 0.029). Conclusion Four candidate hub genes (SCD, SPINK1, TREM1, and HIST1H2BB) were identified, and the nomogram was constructed for FGR diagnosis. TREM1 was not only associated with a variety of key immune cells but also correlated with increased UtA-PI. The results of this study could provide some new clues for future research on the prediction and treatment of FGR.
Collapse
Affiliation(s)
- Xing Wei
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Luyao Cai
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dayuan Shi
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianqian Sun
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luye Zhang
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fenhe Zhou
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luming Sun
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Miller CN, Waterfield MR, Gardner JM, Anderson MS. Aire in Autoimmunity. Annu Rev Immunol 2024; 42:427-53. [PMID: 38360547 PMCID: PMC11774315 DOI: 10.1146/annurev-immunol-090222-101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| | - Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Surgery, University of California, San Francisco, California, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Paucar Iza YA, Brown CC. Early life imprinting of intestinal immune tolerance and tissue homeostasis. Immunol Rev 2024; 323:303-315. [PMID: 38501766 PMCID: PMC11102293 DOI: 10.1111/imr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Besides its canonical role in protecting the host from pathogens, the immune system plays an arguably equally important role in maintaining tissue homeostasis. Within barrier tissues that interface with the external microenvironment, induction of immune tolerance to innocuous antigens, such as commensal, dietary, and environmental antigens, is key to establishing immune homeostasis. The early postnatal period represents a critical window of opportunity in which parallel development of the tissue, immune cells, and microbiota allows for reciprocal regulation that shapes the long-term immunological tone of the tissue and subsequent risk of immune-mediated diseases. During early infancy, the immune system appears to sacrifice pro-inflammatory functions, prioritizing the establishment of tissue tolerance. In this review, we discuss mechanisms underlying early life windows for intestinal tolerance with a focus on newly identified RORγt+ antigen-presenting cells-Thetis cells-and highlight the role of the intestinal microenvironment in shaping intestinal immune system development and tolerance.
Collapse
Affiliation(s)
- Yoselin A. Paucar Iza
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chrysothemis C. Brown
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
7
|
Hetemäki I, Sarkkinen J, Heikkilä N, Drechsel K, Mäyränpää MI, Färkkilä A, Laakso S, Mäkitie O, Arstila TP, Kekäläinen E. Dysregulated germinal center reaction with expanded T follicular helper cells in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy lymph nodes. J Allergy Clin Immunol 2024; 153:1445-1455. [PMID: 38128835 DOI: 10.1016/j.jaci.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, also called APS-1) is an inborn error of immunity with clear signs of B-cell autoimmunity such as neutralizing anti-IFN antibodies. In APECED, mutations in the AIRE gene impair thymic negative selection of T cells. The resulting T-cell alterations may then cause dysregulation of B-cell responses. However, no analysis of interactions of T and B cells in the germinal centers (GCs) in patients' secondary lymphatic tissues has been reported. OBJECTIVE This study examined the relationship between B cells and follicular T helper cells (TfH) in peripheral blood and lymph node (LN) GCs in patients with APECED. METHODS Immunophenotyping of peripheral blood B cells and TfH was performed for 24 patients with APECED. Highly multiplexed fluorescent immunohistochemical staining was performed on 7 LN biopsy samples from the patients to study spatial interactions of lymphocytes in the GCs at the single-cell level. RESULTS The patients' peripheral B-cell phenotype revealed skewing toward a mature B-cell phenotype with marked loss of transitional and naive B cells. The frequency of circulating TfH cells was diminished in the patients, while in the LNs the TfH population was expanded. In LNs the overall frequency of Treg cells and interactions of Treg cells with nonfollicular T cells were reduced, suggesting that aberrant Treg cell function might fail to restrain TfH differentiation. CONCLUSIONS GC reactions are disrupted in APECED as a result of defective T-cell control.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Joona Sarkkinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Karen Drechsel
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, FIMM & HiLIFE University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine, Helsinki, Finland; Department of Obstetrics and Gynecology, University Hospital, Helsinki, Finland
| | - Saila Laakso
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Stockholm, Sweden
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Filipp D, Manning J, Petrusová J. Extrathymic AIRE-Expressing Cells: A Historical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:33-49. [PMID: 38467971 DOI: 10.1007/978-981-99-9781-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Since its discovery, Aire has been the topic of numerous studies in its role as a transcriptional regulator in the thymus where it promotes the "promiscuous" expression of a large repertoire of tissue-restricted antigens (TRAs) that are normally expressed only in the immune periphery. This process occurs in specialized medullary thymic epithelial cells (mTECs) and mediates the elimination of self-reactive T cells or promotes their conversion to the Foxp3+ regulatory T cell lineage, both of which are required for the prevention of autoimmunity. In recent years, there has been increasing interest in the role of extrathymic Aire expression in peripheral organs. The focus has primarily been on the identification of the cellular source(s) and mechanism(s) by which extrathymic AIRE affects tolerance-related or other physiological processes. A cadre of OMICs tools including single cell RNA sequencing and novel transgenic models to trace Aire expression to perform lineage tracing experiments have shed light on a phenomenon that is more complex than previously thought. In this chapter, we provide a deeper analysis of how extrathymic Aire research has developed and progressed, how cellular sources were identified, and how the function of AIRE was determined. Current data suggests that extrathymic AIRE fulfills a function that differs from what has been observed in the thymus and strongly argues that its main purpose is to regulate transcriptional programs in a cell content-dependent manner. Surprisingly, there is data that also suggests a non-transcriptional role of extrathymic AIRE in the cytoplasm. We have arrived at a potential turning point that will take the field from the classical understanding of AIRE as a transcription factor in control of TRA expression to its role in immunological and non-immunological processes in the periphery.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Petrusová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Abramson J, Dobeš J, Lyu M, Sonnenberg GF. The emerging family of RORγt + antigen-presenting cells. Nat Rev Immunol 2024; 24:64-77. [PMID: 37479834 PMCID: PMC10844842 DOI: 10.1038/s41577-023-00906-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
10
|
Abstract
The incomplete removal of T cells that are reactive against self-proteins during their differentiation in the thymus requires mechanisms of tolerance that prevent their effector function within the periphery. A further challenge is imposed by the need to establish tolerance to the holobiont self, which comprises a highly complex community of commensal microorganisms. Here, we review recent advances in the investigation of peripheral T cell tolerance, focusing on new insights into mechanisms of tolerance to the gut microbiota, including tolerogenic antigen-presenting cell types and immunomodulatory lymphocytes, and their layered ontogeny that underlies developmental windows for establishing intestinal tolerance. While emphasizing the intestine as a model tissue for studying peripheral T cell tolerance, we highlight overlapping and distinct pathways that underlie tolerance to self-antigens versus commensal antigens within a broader framework for immune tolerance.
Collapse
|
11
|
Miyazawa R, Nagao JI, Arita-Morioka KI, Matsumoto M, Morimoto J, Yoshida M, Oya T, Tsuneyama K, Yoshida H, Tanaka Y, Matsumoto M. Dispensable Role of Aire in CD11c+ Conventional Dendritic Cells for Antigen Presentation and Shaping the Transcriptome. Immunohorizons 2023; 7:140-158. [PMID: 36695731 PMCID: PMC10563386 DOI: 10.4049/immunohorizons.2200103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Aire, the defect of which is responsible for the development of autoimmunity, is predominantly expressed in medullary thymic epithelial cells, and it controls a wide variety of genes, including those of tissue-restricted Ags, for establishing thymic tolerance. Aire is also expressed from APCs in the periphery, called extrathymic Aire-expressing cells (eTACs), and their complementing role to thymic tolerance has been suggested. eTACs are composed of two distinct classes of APCs, conventional dendritic cell (cDC)-type and group 3 innate lymphoid cell (ILC3)-like-type expressing retinoic acid receptor-related orphan receptor γt (RORγt). Although the essential role of Aire in the latter in the Th17-mediated immune response against Candida albicans has been reported, the role of Aire in the cDC-type eTACs for this action has not been examined. Furthermore, the significance of Aire in the production of the transcriptome of the cDC-type eTACs remains unknown. We have approached these issues using a high-fidelity Aire-reporter mouse strain. We found that although the cDC-type eTACs dominated ILC3-like-type eTACs in number and they served as efficient APCs for the immune response against an exogenous Ag as well as for the C. albicans-specific Th17 immune response, loss of Aire in cDC-type eTACs showed no clear effect on these functions. Furthermore, loss of Aire showed no major impact on the transcriptome from cDC-type eTACs. These results suggested that Aire in cDC-type eTACs may not have a cell-intrinsic role in the immune response in contrast to the role of Aire in ILC3-like-type eTACs.
Collapse
Affiliation(s)
- Ryuichiro Miyazawa
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Jun-ichi Nagao
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, Sawara-ku, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Sawara-ku, Fukuoka, Japan
| | - Ken-ichi Arita-Morioka
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, Sawara-ku, Fukuoka, Japan
| | - Minoru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Junko Morimoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Masaki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan; and
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan; and
| | - Yoshihiko Tanaka
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, Sawara-ku, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Sawara-ku, Fukuoka, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Abstract
Recent studies shed light on new populations and potential roles of Aire+ and RORγt+ antigen-presenting cells-including unique subsets with surprising properties-in immune homeostasis and host-microbe interactions.
Collapse
Affiliation(s)
- James M Gardner
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Adrian Liston
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT UK
| |
Collapse
|
13
|
Human Fetal Liver Parenchyma CD71+ Cells Have AIRE and Tissue-Specific Antigen Gene Expression. Genes (Basel) 2022; 13:genes13071278. [PMID: 35886060 PMCID: PMC9317677 DOI: 10.3390/genes13071278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune regulator (AIRE) is a multifunctional protein that is capable of inducing tissue-specific antigens’ (TSAs) gene expression, a key event in the induction of self-tolerance, that is usually expressed and functions in the thymus. However, its expression has been detected outside the thymus and cells expressing the gene have been named extra-thymic AIRE expressing cells (eTACs). Here, we discuss the finding of AIRE and TSAs gene expression in CD71+ cells from human fetal liver parenchyma, which are mostly represented by CD71+ erythroid cells.
Collapse
|
14
|
van Laar GG, van Hamburg JP, Tas SW. Extrathymic AIRE-expressing cells: Friends or foes in autoimmunity and cancer? Clin Exp Rheumatol 2022; 21:103141. [PMID: 35840039 DOI: 10.1016/j.autrev.2022.103141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022]
Abstract
Auto-immune regulator (AIRE) is a transcription factor that is mainly known for its crucial role in the thymus. Here, AIRE ensures central tolerance by promoting the expression of peripheral tissue antigens in thymic epithelial cells, which is essential for the negative selection of autoreactive T cells. Intriguingly, AIRE expressing cells have recently been identified in other tissues outside the thymus as well. However, the exact function of these extrathymic AIRE expressing cells (eTACs) remains largely enigmatic. Human eTACs are mainly found in secondary lymphoid tissues under homeostatic conditions, but are also found in pathologies such as the inflamed tissues of patients with autoimmune diseases and in various cancer tissues. eTACs have been demonstrated to express dendritic cell (DC)-like markers, such as MHCII, CD40 and CD127, but also CCR7, IDO and PD-L1. Interestingly, eTACs lack high expression of co-stimulatory molecules, such as CD80 or CD86. In mice, different types of peripheral AIRE expressing cells have been described, including cells with an innate lymphoid cell-like phenotype and antigen presenting cell (APC) function. These findings suggest that eTACs are APCs with the possibility to modulate or inhibit immune responses, which is confirmed by functional murine studies demonstrating the ability of eTACs to induce tolerance in autoreactive T cells. The potential immunomodulatory function of eTACs makes them promising targets to restore tolerance in autoimmunity or improve immunotherapy in cancer settings. Yet, this requires a better understanding of these cells and the molecular mechanisms involved. In this review we aim to summarize the current knowledge and understanding of eTACs, including their putative roles in health and disease.
Collapse
Affiliation(s)
- Gustaaf G van Laar
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Jan Piet van Hamburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands.
| |
Collapse
|
15
|
Sun IH, Gillis-Buck E, Mackenzie TC, Gardner JM. Thymic and extrathymic Aire-expressing cells in maternal-fetal tolerance. Immunol Rev 2022; 308:93-104. [PMID: 35535447 DOI: 10.1111/imr.13082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Healthy pregnancy requires maternal immune tolerance to both fetal and placental tissues which contain a range of self- and non-self-antigens. While many of the components and mechanisms of maternal-fetal tolerance have been investigated in detail and previously and thoroughly reviewed (Erlebacher A. Annu Rev Immunol. 2013;31:387-411), the role of autoimmune regulator (Aire), a critical regulator of central tolerance expressed by medullary thymic epithelial cells (mTECs), has been less explored. Aire is known to facilitate the expression of a range of otherwise tissue-specific antigens (TSAs) in mTECs, and here we highlight recent work showing a role for mTEC-mediated thymic selection in maintaining maternal-fetal tolerance. Recently, however, our group and others have identified additional populations of extrathymic Aire-expressing cells (eTACs) in the secondary lymphoid organs. These hematopoietic antigen-presenting cells possess the ability to induce functional inactivation and/or deletion of cognate T cells, and deletion of maternal eTACs during pregnancy increases T-cell activation in the lymph nodes and lymphocytic infiltration of the uterus, leading to pregnancy complications including intrauterine growth restriction (IUGR) and fetal resorption. In this review, we briefly summarize findings related to essential Aire biology, discuss the known roles of Aire-deficiency related to pregnancy complications and infertility, review the newly discovered role for eTACs in the maintenance of maternal-fetal tolerance-as well as recent work defining eTACs at the single-cell level-and postulate potential mechanisms by which eTACs may regulate this process.
Collapse
Affiliation(s)
- Im-Hong Sun
- Department of Surgery, University of California, San Francisco, California, USA.,Diabetes Center, University of California, San Francisco, California, USA
| | - Eva Gillis-Buck
- Department of Surgery, University of California, San Francisco, California, USA
| | - Tippi C Mackenzie
- Department of Surgery, University of California, San Francisco, California, USA.,Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
| | - James M Gardner
- Department of Surgery, University of California, San Francisco, California, USA.,Diabetes Center, University of California, San Francisco, California, USA
| |
Collapse
|
16
|
|
17
|
Petroff MG, Nguyen SL, Ahn SH. Fetal‐placental
antigens and the maternal immune system: Reproductive immunology comes of age. Immunol Rev 2022; 308:25-39. [PMID: 35643905 PMCID: PMC9328203 DOI: 10.1111/imr.13090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Reproductive physiology and immunology as scientific disciplines each have rich, largely independent histories. The physicians and philosophers of ancient Greece made remarkable observations and inferences to explain regeneration as well as illness and immunity. The scientific enlightenment of the renaissance and the technological advances of the past century have led to the explosion of knowledge that we are experiencing today. Breakthroughs in transplantation, immunology, and reproduction eventually culminated with Medawar’s discovery of acquired immunological tolerance, which helped to explain the transplantation success and failure. Medawar’s musings also keenly pointed out that the fetus apparently breaks these newly discovered rules, and with this, the field of reproductive immunology was launched. As a result of having stemmed from transplantation immunology, scientist still analogizes the fetus to a successful allograft. Although we now know of the fundamental differences between the two, this analogy remains a useful tool to understand how the fetus thrives despite its immunological disparity with the mother. Here, we review the history of reproductive immunology, and how major and minor histocompatibility antigens, blood group antigens, and tissue‐specific “self” antigens from the fetus and transplanted organs parallel and differ.
Collapse
Affiliation(s)
- Margaret G. Petroff
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
- Departments of Microbiology and Molecular Genetics, College of Veterinary Medicine and College of Human Medicine Michigan State University East Lansing Michigan USA
- Cell and Molecular Biology Program, College of Natural Science Michigan State University East Lansing Michigan USA
| | - Sean L. Nguyen
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
- Cell and Molecular Biology Program, College of Natural Science Michigan State University East Lansing Michigan USA
| | - Soo Hyun Ahn
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
| |
Collapse
|
18
|
Ahn SH, Nguyen SL, Kim TH, Jeong JW, Arora R, Lydon JP, Petroff MG. Nuclear Progesterone Receptor Expressed by the Cortical Thymic Epithelial Cells Dictates Thymus Involution in Murine Pregnancy. Front Endocrinol (Lausanne) 2022; 13:846226. [PMID: 35498436 PMCID: PMC9046655 DOI: 10.3389/fendo.2022.846226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Progesterone is a gonadal pro-gestational hormone that is absolutely necessary for the success of pregnancy. Most notable actions of progesterone are observed in the female reproductive organs, the uterus and the ovary. Acting through the nuclear progesterone receptor (PGR), progesterone prepares the endometrium for implantation of the embryo. Interestingly, the maternal thymus also is a known expressor of Pgr; its absence is associated with murine pregnancy complications. However, the localization of its expression and its functional importance were not known. Here, we used a transgenic dual fluorescent reporter mouse model and genetic deletion of Pgr in Foxn1+ thymic epithelial cells (TEC) to demonstrate TEC-specific Pgr expression in pregnancy, especially in the cortex where thymocyte maturation occurs. Using our TEC-specific Pgr deletion mouse model, we demonstrate that TEC-specific Pgr is necessary for pregnancy-induced thymic involution in pregnancy. Our investigation reveals that PGR expression is upregulated in the cortical thymic epithelial cells during pregnancy, and that PGR expression is important for thymic involution during murine pregnancy.
Collapse
Affiliation(s)
- Soo Hyun Ahn
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Sean L. Nguyen
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, United States
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, United States
| | - Ripla Arora
- Department of Obstetrics, Gynecology, and Reproductive Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Margaret G. Petroff
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Morelli AE, Sadovsky Y. Extracellular vesicles and immune response during pregnancy: A balancing act. Immunol Rev 2022; 308:105-122. [PMID: 35199366 DOI: 10.1111/imr.13074] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying maternal tolerance of the semi- or fully-allogeneic fetus are intensely investigated. Across gestation, feto-placental antigens interact with the maternal immune system locally within the trophoblast-decidual interface and distantly through shed cells and soluble molecules that interact with maternal secondary lymphoid tissues. The discovery of extracellular vesicles (EVs) as local or systemic carriers of antigens and immune-regulatory molecules has added a new dimension to our understanding of immune modulation prior to implantation, during trophoblast invasion, and throughout the course of pregnancy. New data on immune-regulatory molecules, located on EVs or within their cargo, suggest a role for EVs in negotiating immune tolerance during gestation. Lessons from the field of transplant immunology also shed light on possible interactions between feto-placentally derived EVs and maternal lymphoid tissues. These insights illuminate a potential role for EVs in major obstetrical disorders. This review provides updated information on intensely studied, pregnancy-related EVs, their cargo molecules, and patterns of fetal-placental-maternal trafficking, highlighting potential immune pathways that might underlie immune suppression or activation in gestational health and disease. Our summary also underscores the likely need to broaden the definition of the maternal-fetal interface to systemic maternal immune tissues that might interact with circulating EVs.
Collapse
Affiliation(s)
- Adrian E Morelli
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Shevyrev D, Tereshchenko V, Kozlov V, Sennikov S. Phylogeny, Structure, Functions, and Role of AIRE in the Formation of T-Cell Subsets. Cells 2022; 11:194. [PMID: 35053310 PMCID: PMC8773594 DOI: 10.3390/cells11020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
It is well known that the most important feature of adaptive immunity is the specificity that provides highly precise recognition of the self, altered-self, and non-self. Due to the high specificity of antigen recognition, the adaptive immune system participates in the maintenance of genetic homeostasis, supports multicellularity, and protects an organism from different pathogens at a qualitatively different level than innate immunity. This seemingly simple property is based on millions of years of evolution that led to the formation of diversification mechanisms of antigen-recognizing receptors and later to the emergence of a system of presentation of the self and non-self antigens. The latter could have a crucial significance because the presentation of nearly complete diversity of auto-antigens in the thymus allows for the "calibration" of the forming repertoires of T-cells for the recognition of self, altered-self, and non-self antigens that are presented on the periphery. The central role in this process belongs to promiscuous gene expression by the thymic epithelial cells that express nearly the whole spectrum of proteins encoded in the genome, meanwhile maintaining their cellular identity. This complex mechanism requires strict control that is executed by several transcription factors. One of the most important of them is AIRE. This noncanonical transcription factor not only regulates the processes of differentiation and expression of peripheral tissue-specific antigens in the thymic medullar epithelial cells but also controls intercellular interactions in the thymus. Besides, it participates in an increase in the diversity and transfer of presented antigens and thus influences the formation of repertoires of maturing thymocytes. Due to these complex effects, AIRE is also called a transcriptional regulator. In this review, we briefly described the history of AIRE discovery, its structure, functions, and role in the formation of antigen-recognizing receptor repertoires, along with other transcription factors. We focused on the phylogenetic prerequisites for the development of modern adaptive immunity and emphasized the importance of the antigen presentation system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), 630099 Novosibirsk, Russia; (V.T.); (V.K.); (S.S.)
| | | | | | | |
Collapse
|
21
|
Wang J, Lareau CA, Bautista J, Gupta A, Sandor K, Germino J, Yin Y, Arvedson M, Reeder GC, Cramer NT, Xie F, Ntranos V, Satpathy AT, Anderson MS, Gardner JM. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci Immunol 2021; 6:eabl5053. [PMID: 34767455 PMCID: PMC8855935 DOI: 10.1126/sciimmunol.abl5053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The autoimmune regulator (Aire), a well-defined transcriptional regulator in the thymus, is also found in extrathymic Aire-expressing cells (eTACs) in the secondary lymphoid organs. eTACs are hematopoietic antigen-presenting cells and inducers of immune tolerance, but their precise identity has remained unclear. Here, we use single-cell multiomics, transgenic murine models, and functional approaches to define eTACs at the transcriptional, genomic, and proteomic level. We find that eTACs consist of two similar cell types: CCR7+ Aire-expressing migratory dendritic cells (AmDCs) and an Airehi population coexpressing Aire and retinoic acid receptor–related orphan receptor γt (RORγt) that we term Janus cells (JCs). Both JCs and AmDCs have the highest transcriptional and genomic homology to CCR7+ migratory dendritic cells. eTACs, particularly JCs, have highly accessible chromatin and broad gene expression, including a range of tissue-specific antigens, as well as remarkable homology to medullary thymic epithelium and RANK-dependent Aire expression. Transgenic self-antigen expression by eTACs is sufficient to induce negative selection and prevent autoimmune diabetes. This transcriptional, genomic, and functional symmetry between eTACs (both JCs and AmDCs) and medullary thymic epithelium—the other principal Aire-expressing population and a key regulator of central tolerance—identifies a core program that may influence self-representation and tolerance across the spectrum of immune development.
Collapse
Affiliation(s)
- Jiaxi Wang
- Diabetes Center, University of California San Francisco
| | - Caleb A. Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Alexander Gupta
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Joe Germino
- Diabetes Center, University of California San Francisco
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Matt Arvedson
- Diabetes Center, University of California San Francisco
| | | | | | - Fang Xie
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| | - Vasilis Ntranos
- Diabetes Center, University of California San Francisco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mark S. Anderson
- Diabetes Center, University of California San Francisco
- Department of Medicine, University of California San Francisco
| | - James M. Gardner
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| |
Collapse
|