1
|
Li C, Yu J, Issa R, Wang L, Ning M, Yin S, Li J, Wu C, Chen Y. CoronaVac-induced antibodies that facilitate Fc-mediated neutrophil phagocytosis track with COVID-19 disease resolution. Emerg Microbes Infect 2025; 14:2434567. [PMID: 39584817 PMCID: PMC11731273 DOI: 10.1080/22221751.2024.2434567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants raise concerns about decreased vaccine efficacy, vaccines continue to confer robust protection in humans, implying that immunity beyond neutralization contributes to vaccine efficacy. In addition to neutralization, antibodies can mediate various Fc-dependent effector functions, including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP) and antibody-dependent cellular cytotoxicity (ADCC). However, the specific role of each Fc-mediated effector function in contributing to COVID-19 disease attenuation in human remains unclear. To fully define the potential immune correlates of Fc-mediated effector functions, we comprehensively analysed the above Fc-mediated effector functions in two study cohorts. In the CoronaVac vaccinee cohort, individuals without breakthrough infection exhibited higher levels of ADCP and ADNP activities with a greater degree of cross-reactivity compared to those who had breakthrough infection. A predictive model was established incorporating ADNP activity and IgG titre, achieving an area under the curve (AUC) of 0.837. In the COVID-19 patient cohort, BA.5-specific ADCP and ADNP responses were significantly reduced in COVID-19 patients with fatal outcomes compared to milder outcomes. The prognostic model incorporating WT, BA.5, and XBB.1.5 spike-specific ADNP demonstrated effective predictive ability, achieving an AUC of 0.890. Meanwhile, transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients in the acute phases of infection highlighted remarkably upregulation of neutrophil activity and phagocytic function, further reinforcing the essential role of ADNP. Collectively, our findings underscored Fc-mediated effector activities, especially neutrophil phagocytosis, as significant antibody biomarkers for the risk of SARS-CoV-2 breakthrough infection and COVID-19 prognosis.
Collapse
Affiliation(s)
- Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| | - Jie Yu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Rahma Issa
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Department of Pharmacy, Ismailia Teaching Oncology Hospital (GOTHI), Ismailia, Egypt
| | - Lili Wang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Nanjing, People’s Republic of China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Lee JH, Shin Y, Shin KS, Park JY, Kim MS, Park YS, Kim W, Song JY, Noh JY, Cheong HJ, Kang CY, Seo SH, Kim JO, Kim DR, Hwang NS, Yang JS, Kim JH, Shim BS, Song M. Dose-dependent serological profiling of AdCLD-CoV19-1 vaccine in adults. mSphere 2025; 10:e0099824. [PMID: 39723823 PMCID: PMC11774024 DOI: 10.1128/msphere.00998-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
AdCLD-CoV19-1, a chimeric adenovirus-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, was previously reported to elicit robust antibody responses in mice and non-human primates after a single dose. In this study, we conducted a systems serology analysis to investigate changes in humoral immune responses induced by varying doses of the AdCLD-CoV19-1 vaccine in a phase I clinical trial. Serum samples from participants receiving either a low or a high dose of the vaccine were analyzed for antibody features against prototype SARS-CoV-2 spike (S) domains (full-length S, S1, S2, and receptor binding domain), as well as Fc receptor binding and effector functions. While both low- and high-dose vaccines induced robust humoral immune responses following vaccination, the quality of antibody features differed between the dose groups. Notably, while no significant difference was observed between the groups in the induction of most S1-specific antibody features, the high-dose group exhibited higher levels of antibodies and a stronger Fc receptor binding response specific to the S2 antigen. Moreover, univariate and multivariate analyses revealed that the high-dose vaccine induced higher levels of S2-specific antibodies binding to FcγR2A and FcγR3B, closely associated with antibody-dependent neutrophil phagocytosis (ADNP). Further analysis using the Omicron BA.2 variant demonstrated that the high-dose group maintained significantly higher levels of IgG and FcγR3B binding to the S2 antigen and exhibited a significantly higher ADNP response for the S2 antigen compared with the low-dose group. These findings underscore the importance of considering diverse humoral immune responses when evaluating vaccine efficacy and provide insights for optimizing adenovirus vector-based SARS-CoV-2 vaccine doses.IMPORTANCEOptimization of vaccine dose is crucial for eliciting effective immune responses. In addition to neutralizing antibodies, non-neutralizing antibodies that mediate Fc-dependent effector functions play a key role in protection against various infectious diseases, including coronavirus disease 2019. Using a systems serology approach, we demonstrated significant dose-dependent differences in the humoral immune responses induced by the AdCLD-CoV19-1 chimeric adenovirus-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, particularly against the SARS-CoV-2 spike 2 domain. These findings highlight the importance of assessing not only neutralizing antibody titers but also the quality and functionality of antibody responses when evaluating vaccine efficacy.
Collapse
Affiliation(s)
- Jung Hyuk Lee
- International Vaccine Institute, Seoul, South Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Yuna Shin
- International Vaccine Institute, Seoul, South Korea
| | - Kwang-Soo Shin
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Ju Yeon Park
- International Vaccine Institute, Seoul, South Korea
| | - Mi Sun Kim
- International Vaccine Institute, Seoul, South Korea
| | | | - Wuhyun Kim
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | | | - Jae-Ouk Kim
- International Vaccine Institute, Seoul, South Korea
| | | | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
- BioMAX Institute, Seoul National University, Seoul, South Korea
| | | | - Jerome H. Kim
- International Vaccine Institute, Seoul, South Korea
- College of Natural Sciences, Seoul National University, Seoul, South Korea
| | | | - Manki Song
- International Vaccine Institute, Seoul, South Korea
| |
Collapse
|
3
|
Marchese AM, Fries L, Beyhaghi H, Vadivale M, Zhu M, Cloney-Clark S, Plested JS, Chung AW, Dunkle LM, Kalkeri R. Mechanisms and implications of IgG4 responses to SARS-CoV-2 and other repeatedly administered vaccines. J Infect 2024; 89:106317. [PMID: 39419185 DOI: 10.1016/j.jinf.2024.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Vaccine-induced immunoglobulin G (IgG) profiles can vary with respect to the predominant subclasses that characterize the response. Among IgG subclasses, IgG4 is reported to have anti-inflammatory properties, but can also exhibit reduced capacity for virus neutralization and activation of Fc-dependent effector functions. Here, we review evidence that IgG4 subclass responses can be disproportionately increased in response to some types of vaccines targeting an array of diseases, including pertussis, HIV, malaria, and COVID-19. The basis for enhanced IgG4 induction by vaccines is poorly understood but may be associated with platform- or dose regimen-specific differences in antigen exposure and/or cytokine stimulation. The clinical implications of vaccine-induced IgG4 responses remain uncertain, though collective evidence suggests that proportional increases in IgG4 might reduce vaccine antigen-specific immunity. Additional work is needed to determine underlying mechanisms and to elucidate what role IgG4 may play in modifications of vaccine-induced immunity to disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | | | | |
Collapse
|
4
|
Gagne M, Flynn BJ, Andrew SF, Marquez J, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Pessaint L, Todd JPM, Doria-Rose NA, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, O'Dell S, Wali B, Ellis M, Godbole S, Laboune F, Henry AR, Teng IT, Wang D, Wang L, Zhou Q, Zouantchangadou S, Van Ry A, Lewis MG, Andersen H, Kwong PD, Curiel DT, Roederer M, Nason MC, Foulds KE, Suthar MS, Diamond MS, Douek DC, Seder RA. Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat Immunol 2024; 25:1913-1927. [PMID: 39227514 PMCID: PMC11436372 DOI: 10.1038/s41590-024-01951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Mychalowych
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Matthew R Burnett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonid A Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zohar E Ziff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erin Maule
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yogita Jethmalani
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bushra Wali
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehul S Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines & Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Tong X, Wang Q, Jung W, Chicz TM, Blanc R, Parker LJ, Barouch DH, McNamara RP. Compartment-specific antibody correlates of protection to SARS-CoV-2 Omicron in macaques. iScience 2024; 27:110174. [PMID: 39224511 PMCID: PMC11367469 DOI: 10.1016/j.isci.2024.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Antibodies represent a primary mediator of protection against respiratory viruses. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are poorly understood. Here we show that antibody correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, NAbs were the strongest correlate of protection and linked to spike-specific binding antibodies and other extra-NAb functions that create a larger protective network. In bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal spike-specific immunoglobulin (Ig)G, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Taras M. Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ross Blanc
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Lily J. Parker
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Dan H. Barouch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan P. McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Gao R, Feng C, Sheng Z, Li F, Wang D. Research progress in Fc-effector functions against SARS-CoV-2. J Med Virol 2024; 96:e29638. [PMID: 38682662 DOI: 10.1002/jmv.29638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused more than 676 million cases in the global human population with approximately 7 million deaths and vaccination has been proved as the most effective countermeasure in reducing clinical complications and mortality rate of SARS-CoV-2 infection in people. However, the protective elements and correlation of protection induced by vaccination are still not completely understood. Various antibodies with multiple protective mechanisms can be induced simultaneously by vaccination in vivo, thereby complicating the identification and characterization of individual correlate of protection. Recently, an increasing body of observations suggests that antibody-induced Fc-effector functions play a crucial role in combating SARS-CoV-2 infections, including neutralizing antibodies-escaping variants. Here, we review the recent progress in understanding the impact of Fc-effector functions in broadly disarming SARS-CoV-2 infectivity and discuss various efforts in harnessing this conserved antibody function to develop an effective SARS-CoV-2 vaccine that can protect humans against infections by SARS-CoV-2 virus and its variants of concern.
Collapse
Affiliation(s)
- Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Chenchen Feng
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Kocher K, Moosmann C, Drost F, Schülein C, Irrgang P, Steininger P, Zhong J, Träger J, Spriewald B, Bock C, Busch DH, Bogdan C, Schubert B, Winkler TH, Tenbusch M, Schuster EM, Schober K. Adaptive immune responses are larger and functionally preserved in a hypervaccinated individual. THE LANCET. INFECTIOUS DISEASES 2024; 24:e272-e274. [PMID: 38452777 DOI: 10.1016/s1473-3099(24)00134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Affiliation(s)
- Katharina Kocher
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carolin Moosmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Drost
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Christine Schülein
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jahn Zhong
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Träger
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Spriewald
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, School of Medicine and Health, Technical University of Munich, Munich, Germany; German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Schubert
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, Garching bei München, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ev-Marie Schuster
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
8
|
Fix J, Christopher Mast T, Smith K, Baker N. Benefit-risk assessment for the Novavax COVID-19 vaccine (NVX-CoV2373). Vaccine 2024; 42:2161-2165. [PMID: 38494410 DOI: 10.1016/j.vaccine.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
A benefit-risk assessment of NVX-CoV2373, a vaccine to prevent COVID-19, was conducted to determine if the benefits of vaccination outweigh the risks of myocarditis/pericarditis. This analysis used data on myocarditis/pericarditis cases observed in the NVX-CoV2373 clinical studies, real-world data of mRNA COVID vaccine effectiveness against predominant SARS-CoV-2 strains in early 2023, and recent COVID-19 burden of disease data from the United States. The benefits of NVX-CoV2373 vaccination were estimated as the number of COVID-19 cases, hospitalizations, and deaths prevented. The risks of myocarditis/pericarditis cases and related hospitalizations and deaths occurring within 7 days of vaccination were also estimated. In our analysis, vaccination with NVX-CoV2373, per 100,000 vaccinated, resulted in an estimated 1805 COVID-19 cases prevented compared with an estimated 5.3 excess myocarditis/pericarditis cases. The number of COVID-19 hospitalizations and deaths prevented were also greater than vaccine-associated myocarditis/pericarditis hospitalizations and deaths. Our analysis indicates a positive benefit-risk balance for NVX-CoV2373.
Collapse
|
9
|
Barouch SE, Chicz TM, Blanc R, Barbati DR, Parker LJ, Tong X, Li W, McNamara RP. Concurrent Administration of COVID-19 and Influenza Vaccines Enhances Spike-Specific Antibody Responses. Open Forum Infect Dis 2024; 11:ofae144. [PMID: 38567194 PMCID: PMC10986856 DOI: 10.1093/ofid/ofae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background The bivalent COVID-19 mRNA boosters became available in fall 2022 and were recommended alongside the seasonal influenza vaccine. However, the immunogenicity of concurrent vs separate administration of these vaccines remains unclear. Methods Here, we analyzed antibody responses in health care workers who received the bivalent COVID-19 booster and the influenza vaccine on the same day or on different days through systems serology. Antibody-binding and functional responses were characterized at peak responses and after 6 months following vaccination. Results IgG1 and neutralization responses to SARS-CoV-2 XBB.1.5 were higher at peak and after 6 months following concurrent administration as compared with separate administration of the COVID-19 and influenza vaccines. While similar results were not observed for influenza responses, no interference was noted with concurrent administration. Conclusions These data suggest that concurrent administration of these vaccines may yield higher and more durable SARS-CoV-2 neutralizing antibody responses while maintaining responses against influenza.
Collapse
Affiliation(s)
- Susanna E Barouch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Taras M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ross Blanc
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Domenic R Barbati
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Lily J Parker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Wenjun Li
- Department of Public Health, Center for Health Statistics and Biostatistics, University of Massachusetts at Lowell. Lowell, Massachusetts, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Kalkeri R, Zhu M, Cloney-Clark S, Plested JS, Parekh A, Gorinson D, Cai R, Mahato S, Ramanathan P, Aurelia LC, Selva KJ, Marchese AM, Fries L, Chung AW, Dunkle LM. Altered IgG4 antibody response to repeated mRNA versus recombinant protein SARS-CoV-2 vaccines. J Infect 2024; 88:106119. [PMID: 38360356 DOI: 10.1016/j.jinf.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Affiliation(s)
| | | | | | | | | | | | | | | | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Lidwina Carissa Aurelia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Kevin John Selva
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | | | | | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | | |
Collapse
|
11
|
Baxter RM, Cabrera-Martinez B, Ghosh T, Rester C, Moreno MG, Borko TL, Selva S, Fleischer CL, Haakonsen N, Mayher A, Bowhay E, Evans C, Miller TM, Huey L, McWilliams J, van Bokhoven A, Deane KD, Knight V, Jordan KR, Ghosh D, Klarquist J, Kedl RM, Piquet AL, Hsieh EWY. SARS-CoV-2 Vaccine-Elicited Immunity after B Cell Depletion in Multiple Sclerosis. Immunohorizons 2024; 8:254-268. [PMID: 38483384 PMCID: PMC10985059 DOI: 10.4049/immunohorizons.2300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
The impact of B cell deficiency on the humoral and cellular responses to SARS-CoV2 mRNA vaccination remains a challenging and significant clinical management question. We evaluated vaccine-elicited serological and cellular responses in 1) healthy individuals who were pre-exposed to SARS-CoV-2 (n = 21), 2) healthy individuals who received a homologous booster (mRNA, n = 19; or Novavax, n = 19), and 3) persons with multiple sclerosis on B cell depletion therapy (MS-αCD20) receiving mRNA homologous boosting (n = 36). Pre-exposure increased humoral and CD4 T cellular responses in immunocompetent individuals. Novavax homologous boosting induced a significantly more robust serological response than mRNA boosting. MS-α CD20 had an intact IgA mucosal response and an enhanced CD8 T cell response to mRNA boosting compared with immunocompetent individuals. This enhanced cellular response was characterized by the expansion of only effector, not memory, T cells. The enhancement of CD8 T cells in the setting of B cell depletion suggests a regulatory mechanism between B and CD8 T cell vaccine responses.
Collapse
Affiliation(s)
- Ryan M. Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | | | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Cody Rester
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Miguel Guerrero Moreno
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Tyler L. Borko
- Department of Neurology, Sections of Neuroimmunology, Neuroinfectious Disease, and Neurohospitalist, University of Colorado School of Medicine, Aurora, CO
| | - Sean Selva
- Department of Neurology, Sections of Neuroimmunology, Neuroinfectious Disease, and Neurohospitalist, University of Colorado School of Medicine, Aurora, CO
| | - Chelsie L. Fleischer
- Department of Medicine, Division of Rheumatology, University of Colorado, School of Medicine, Aurora, CO
| | - Nicola Haakonsen
- Department of Medicine, Division of Infectious Diseases, University of Colorado, School of Medicine, Aurora, CO
| | - Ariana Mayher
- Allergy and Immunology Research, Research Institute, Children’s Hospital Colorado, Aurora, CO
| | - Emily Bowhay
- Allergy and Immunology Research, Research Institute, Children’s Hospital Colorado, Aurora, CO
| | - Courtney Evans
- Allergy and Immunology Research, Research Institute, Children’s Hospital Colorado, Aurora, CO
| | - Todd M. Miller
- Analytics Resource Center, Children’s Hospital Colorado, Aurora, CO
| | - Leah Huey
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO
| | - Jennifer McWilliams
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Adrie van Bokhoven
- Department of Pathology, Section of Pathology Shared Resource, University of Colorado, Aurora, CO
| | - Kevin D. Deane
- Department of Medicine, Division of Rheumatology, University of Colorado, School of Medicine, Aurora, CO
| | - Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Ross M. Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Amanda L. Piquet
- Department of Neurology, Sections of Neuroimmunology, Neuroinfectious Disease, and Neurohospitalist, University of Colorado School of Medicine, Aurora, CO
| | - Elena W. Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO
| |
Collapse
|
12
|
Yan J, Bangalore CR, Nikouyan N, Appelberg S, Silva DN, Yao H, Pasetto A, Weber F, Weber S, Larsson O, Höglund U, Bogdanovic G, Grabbe M, Aleman S, Szekely L, Szakos A, Tuvesson O, Gidlund EK, Cadossi M, Salati S, Tegel H, Hober S, Frelin L, Mirazimi A, Ahlén G, Sällberg M. Distinct roles of vaccine-induced SARS-CoV-2-specific neutralizing antibodies and T cells in protection and disease. Mol Ther 2024; 32:540-555. [PMID: 38213030 PMCID: PMC10862018 DOI: 10.1016/j.ymthe.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) lack cross-reactivity between SARS-CoV species and variants and fail to mediate long-term protection against infection. The maintained protection against severe disease and death by vaccination suggests a role for cross-reactive T cells. We generated vaccines containing sequences from the spike or receptor binding domain, the membrane and/or nucleoprotein that induced only T cells, or T cells and NAbs, to understand their individual roles. In three models with homologous or heterologous challenge, high levels of vaccine-induced SARS-CoV-2 NAbs protected against neither infection nor mild histological disease but conferred rapid viral control limiting the histological damage. With no or low levels of NAbs, vaccine-primed T cells, in mice mainly CD8+ T cells, partially controlled viral replication and promoted NAb recall responses. T cells failed to protect against histological damage, presumably because of viral spread and subsequent T cell-mediated killing. Neither vaccine- nor infection-induced NAbs seem to provide long-lasting protective immunity against SARS-CoV-2. Thus, a more realistic approach for universal SARS-CoV-2 vaccines should be to aim for broadly cross-reactive NAbs in combination with long-lasting highly cross-reactive T cells. Long-lived cross-reactive T cells are likely key to prevent severe disease and fatalities during current and future pandemics.
Collapse
Affiliation(s)
- Jingyi Yan
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | | | - Negin Nikouyan
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Daniela Nacimento Silva
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Haidong Yao
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Anna Pasetto
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | | | | | | | - Gordana Bogdanovic
- Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Grabbe
- Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Laszlo Szekely
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Attila Szakos
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | - Hanna Tegel
- Department of Protein Science, KTH - Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH - Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Public Health Agency of Sweden, Stockholm, Sweden
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden.
| |
Collapse
|
13
|
Reinig S, Shih SR. Non-neutralizing functions in anti-SARS-CoV-2 IgG antibodies. Biomed J 2024; 47:100666. [PMID: 37778697 PMCID: PMC10825350 DOI: 10.1016/j.bj.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Most individuals infected with or vaccinated against COVID-19 develop antigenic neutralizing immunoglobulin G (IgG) antibodies against the SARS-CoV-2 spike protein. Although neutralizing antibodies are biomarkers of the adaptive immune response, their mere presence is insufficient to explain the protection afforded against the disease or its pathology. IgG exhibits other secondary effector functions that activate innate immune components, including complement, natural killer cells, and macrophages. The affinity for effector cells depends on the isotypes and glycosylation of IgG antibodies. The anti-spike IgG titer should be sufficient to provide significant Fc-mediated effects in severe COVID-19, mRNA, and protein subunit vaccinations. In combination with aberrant effector cells, pro-inflammatory afucosylated IgG1 and IgG3 may be detrimental in severe COVID-19. The antibody response of mRNA vaccines leads to higher fucosylation and a less inflammatory IgG profile, with a long-term shift to IgG4, which is correlated with protection from disease.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
15
|
Kalkeri R, Zhu M, Cloney-Clark S, Plested JS, Parekh A, Gorinson D, Cai R, Mahato S, Ramanathan P, Aurelia LC, Selva KJ, Marchese AM, Fries L, Chung AW, Dunkle LM. Altered IgG4 Antibody Response to Repeated mRNA versus Protein COVID Vaccines. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301374. [PMID: 38293205 PMCID: PMC10827267 DOI: 10.1101/2024.01.17.24301374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Repeated mRNA SARS-CoV-2 vaccination has been associated with increases in the proportion of IgG4 in spike-specific antibody responses and concurrent reductions in Fcγ-mediated effector functions that may limit control of viral infection. Here, we assessed anti-Spike total IgG, IgG1, IgG2, IgG3 and IgG4, and surrogate markers for antibody-dependent cellular phagocytosis (ADCP, FcγRIIa binding), antibody-dependent cellular cytotoxicity (ADCC, FcγRIIIa binding), and antibody-dependent complement deposition (ADCD, C1q binding) associated with repeated SARS-CoV-2 vaccination with NVX-CoV2373 (Novavax Inc., Gaithersburg, MD). The NVX-CoV2373 protein vaccine did not induce notable increases in spike-specific IgG4 or negatively impact surrogates for Fcγ effector responses. Conversely, repeated NVX-CoV2373 vaccination uniquely enhanced IgG3 responses which are known to exhibit strong affinity for FcγRIIIa and have previously been linked to potent neutralization of SARS-CoV-2. Subsequent investigations will help to understand the immunological diversity generated by different SARS-CoV-2 vaccine types and have the potential to reshape public health strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | - L. Carissa Aurelia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | - Kevin John Selva
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | | | | | - Amy W. Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | | |
Collapse
|
16
|
Andrade VM, Maricic I, Kalia R, Jachimowicz L, Bedoya O, Kulp DW, Humeau L, Smith TRF. Delineation of DNA and mRNA COVID-19 vaccine-induced immune responses in preclinical animal models. Hum Vaccin Immunother 2023; 19:2281733. [PMID: 38012018 PMCID: PMC10760386 DOI: 10.1080/21645515.2023.2281733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
Nucleic acid vaccines are designed based on genetic sequences (DNA or mRNA) of a target antigen to be expressed in vivo to drive a host immune response. In response to the COVID-19 pandemic, mRNA and DNA vaccines based on the SARS-CoV-2 Spike antigen were developed. Surprisingly, head-to-head characterizations of the immune responses elicited by each vaccine type has not been performed to date. Here, we have employed a range of preclinical animal models including the hamster, guinea pig, rabbit, and mouse to compare and delineate the immune response raised by DNA, administered intradermally (ID) with electroporation (EP) and mRNA vaccines (BNT162b2 or mRNA-1273), administered intramuscularly (IM), expressing the SARS-CoV-2 WT spike antigen. The results revealed clear differences in the quality and magnitude of the immune response between the two vaccine platforms. The DNA vaccine immune response was characterized by strong T cell responses, while the mRNA vaccine elicited robust humoral responses. The results may assist in guiding the disease target each vaccine type may be best matched against and suggest mechanisms to further enhance the breadth of each platform's immune response.
Collapse
Affiliation(s)
| | - Igor Maricic
- Preclinical R&D, Inovio Pharmaceuticals Inc, San Diego, CA, USA
| | - Richa Kalia
- Preclinical R&D, Inovio Pharmaceuticals Inc, San Diego, CA, USA
| | | | - Olivia Bedoya
- Preclinical R&D, Inovio Pharmaceuticals Inc, San Diego, CA, USA
| | - Daniel W. Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Laurent Humeau
- Preclinical R&D, Inovio Pharmaceuticals Inc, San Diego, CA, USA
| | | |
Collapse
|
17
|
Gagne M, Flynn BJ, Andrew SF, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Pessaint L, Todd JPM, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, Doria-Rose NA, O'Dell S, Godbole S, Laboune F, Henry AR, Marquez J, Teng IT, Wang L, Zhou Q, Wali B, Ellis M, Zouantchangadou S, Ry AV, Lewis MG, Andersen H, Kwong PD, Curiel DT, Foulds KE, Nason MC, Suthar MS, Roederer M, Diamond MS, Douek DC, Seder RA. Mucosal Adenoviral-vectored Vaccine Boosting Durably Prevents XBB.1.16 Infection in Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565765. [PMID: 37986823 PMCID: PMC10659340 DOI: 10.1101/2023.11.06.565765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens. Graphical abstract
Collapse
|
18
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|