1
|
Emamalipour M, Shamdani S, Mansoori B, Uzan G, Naserian S. The implications of the TNFα-TNFR2 immune checkpoint signaling pathway in cancer treatment: From immunoregulation to angiogenesis. Int J Cancer 2025; 156:7-19. [PMID: 39140321 DOI: 10.1002/ijc.35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Despite the tremendous advances that have been made in biomedical research, cancer remains one of the leading causes of death worldwide. Several therapeutic approaches have been suggested and applied to treat cancer with impressive results. Immunotherapy based on targeting immune checkpoint signaling pathways proved to be one of the most efficient. In this review article, we will focus on the recently discovered TNFα-TNFR2 signaling pathway, which controls the immunological and pro-angiogenic properties of many immunoregulatory and pro-angiogenic cells such as endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and regulatory T cells (Tregs). Due to their biological properties, these cells can play a major role in cancer progression and metastasis. Therefore, we will discuss the advantages and disadvantages of an anti-TNFR2 treatment that could carry two faces under one hood. It interrupts the immunosuppressive and pro-angiogenic behaviors of the above-mentioned cells and interferes with tumor growth and survival.
Collapse
Affiliation(s)
| | - Sara Shamdani
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, Pennsylvania, USA
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sina Naserian
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
2
|
Xue Q, Peng W, Zhang S, Wei X, Ye L, Wang Z, Xiang X, Liu Y, Wang H, Zhou Q. Lactylation-driven TNFR2 expression in regulatory T cells promotes the progression of malignant pleural effusion. J Immunother Cancer 2024; 12:e010040. [PMID: 39721754 PMCID: PMC11683941 DOI: 10.1136/jitc-2024-010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Although tumor necrosis factor receptor 2 (TNFR2) has been recognized as an attractive next-generation candidate target for cancer immunotherapy, the factors that regulate the gene expression and their mechanistic effects on tumor-infiltrating regulatory T cells (Treg cells) remain poorly understood. METHODS Single-cell RNA sequencing analysis was employed to analyze the phenotypic and functional differences between TNFR2+ Treg cells and TNFR2- Treg cells. Malignant pleural effusion (MPE) from humans and mouse was used to investigate the potential mechanisms by which lactate regulates TNFR2 expression. RESULTS Treg cells with high TNFR2 expression exhibited elevated levels of immune checkpoint molecules. Additionally, the high expression of TNFR2 on Treg cells was positively correlated with a poor prognosis in MPE patients. Moreover, we revealed that lactate upregulated TNFR2 expression on Treg cells, thereby enhancing their immunosuppressive function in MPE. Mechanistically, lactate modulated the gene transcription of transcription factor nuclear factor-κB p65 (NF-κB p65) through histone H3K18 lactylation (H3K18la), subsequently upregulating the gene expression of TNFR2 and expediting the progression of MPE. Notably, lactate metabolism blockade combined with immune checkpoint blockade (ICB) therapy effectively enhanced the efficacy of ICB therapy, prolonged the survival time of MPE mice, and improved immunosuppression in the microenvironment of MPE. CONCLUSIONS The study explains the mechanism that regulates TNFR2 expression on Treg cells and its function in MPE progression, providing novel insights into the epigenetic regulation of tumor development and metabolic strategies for MPE treatment by targeting lactate metabolism in Treg cells.
Collapse
Affiliation(s)
- Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Zhang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Ye
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Kang X, Han Y, Wu M, Li Y, Qian P, Xu C, Zou Z, Dong J, Wei J. In situ blockade of TNF-TNFR2 axis via oncolytic adenovirus improves antitumor efficacy in solid tumors. Mol Ther 2024:S1525-0016(24)00810-4. [PMID: 39690741 DOI: 10.1016/j.ymthe.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/13/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor necrosis factor (TNF) has been recognized as an immune activation factor in tumor immunotherapy. Our study demonstrated that TNF blockade markedly enhanced the antitumor efficacy of oncolytic adenovirus (AdV) therapy. To minimize systemic side effects, we engineered a recombinant oncolytic AdV encoding a TNF inhibitor (AdV-TNFi) to confine TNF blockade within the tumor microenvironment (TME). AdV-TNFi significantly improved therapeutic outcomes across various solid tumor models, including four murine and two golden hamster cancers. Immune cell profiling identified CD8+ T cells as the primary mediators of AdV-TNFi-induced antitumor effects, rather than CD4+ T or NK cells. Additionally, AdV-TNFi significantly decreased the infiltration of suppressive myeloid-derived immune cells within the TME and promoted long-term antitumor immune surveillance. Further investigation indicated that TNFR2, more than TNFR1, is pertinent to the immunosuppressive TME, with a recombinant AdV-encoding anti-TNFR2 demonstrating comparable antitumor efficacy to AdV-TNFi. Moreover, AdV-TNFi enhanced the antitumor efficacy of gemcitabine and immune checkpoint blockades (ICBs), such as anti-PD-L1 and anti-TIGIT antibodies, in pancreatic carcinoma and the anti-EGFR antibody in colon carcinoma. In conclusion, intratumoral blockade of the TNF/TNFR2 axis using AdV augments cancer immunotherapy efficacy while mitigating the risks associated with systemic TNF or TNFR2 suppression, warranting further clinical investigation.
Collapse
Affiliation(s)
- Xiaozhen Kang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yifeng Han
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mengdi Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuxin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Peng Qian
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chuning Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Dong
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| | - Jiwu Wei
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Kurnit KC, Odunsi K. Harnessing Antitumor Immunity in Ovarian Cancer. Cold Spring Harb Perspect Med 2024; 14:a041336. [PMID: 38621830 PMCID: PMC11610759 DOI: 10.1101/cshperspect.a041336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Despite progress in other tumor types, immunotherapy is not yet part of the standard of care treatment for high-grade serous ovarian cancer patients. Although tumor infiltration by T cells is frequently observed in patients with ovarian cancer, clinical responses to immunotherapy remain low. Mechanisms for immune resistance in ovarian cancer have been explored and may provide insight into future approaches to improve response to immunotherapy agents. In this review, we discuss what is known about the immune landscape in ovarian cancer, review the available data for immunotherapy-based strategies in these patients, and provide possible future directions.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| |
Collapse
|
5
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
6
|
Rachunek-Medved K, Krauß S, Daigeler A, Adams C, Eckert F, Ganser K, Gonzalez-Menendez I, Quintanilla-Martinez L, Kolbenschlag J. Acute remote ischemic conditioning enhances (CD3+)- but not (FoxP3+)-T-cell invasion in the tumor center and increases IL 17 and TNF-alpha expression in a murine melanoma model. Front Immunol 2024; 15:1501885. [PMID: 39650654 PMCID: PMC11621216 DOI: 10.3389/fimmu.2024.1501885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Hypoxia can drive tumor progression, suppress anti-tumor immunity, and reduce the effectiveness of radiotherapy and chemotherapy. This study aimed to assess the impact of remote ischemic conditioning (RIC) on tumor oxygenation (sO2) and the anti-tumor immune response. Material and methods Fourteen B16-Ova tumor-bearing C57BL/6N mice received six 5-minute RIC cycles, while another fourteen underwent anesthesia only. Pimonidazole was administered 1.5 hours before sacrifice. Blood flow, sO2, and hemoglobin levels were measured in the non-ischemic hind limb and tumor. Tumor hypoxia was assessed using pimonidazole and CA IX immunohistochemistry, and T cell infiltration by CD3 and FoxP3 staining. Serum levels of 23 cytokines were analyzed using a multiplex immunoassay. Results Isoflurane anesthesia caused a slight intraindividual increase in blood flow (p = 0.07) and sO2 (p = 0.06) of the hind limb and a sole increase in tumor sO2 (p = 0.035), whereas RIC improved sO2 of the tumor in relation to the hind limb (p=0.03). The median of the tumor oxygen saturation reached 51.4% in the control group and 62.7% in the RIC group (p = 0.09), exhibiting a slight tendency towards better oxygenation in the RIC group. Pimonidazole (p=0.24) and CA IX hypoxia score (p=0.48) did not reveal statistically significant differences between the two groups. In RIC-treated tumors, the number of CD3 (p=0.006), but not FoxP3- positive cells (p = 0.84), in the tumor core was significantly higher compared to the control group. In the RIC group, the mean fluorescence intensity (MFI) of IL-17 was significantly higher (p=0.035), and TNF-α was trend-wise higher (p=0.063) compared to the control group. Conclusion Both isoflurane anesthesia and RIC have an impact on microcirculation. The application of RIC counteracted some of the effects of isoflurane, primarily in healthy tissue, and led to a significant improvement in relative tumor tissue oxygenation compared to the non-ischemic hind limb. RIC selectively enhanced immune infiltration within the tumor center, probably by previously activated tumor infiltrating T cells, while having no significant impact on T-regulatory cells. RIC appears to impact the cytokine profile, as indicated by elevated MFIs of TNF-α and IL-17.
Collapse
Affiliation(s)
- Katarzyna Rachunek-Medved
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Sabrina Krauß
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Adrien Daigeler
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Constantin Adams
- Department of Paediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, University Hospital Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, University Hospital Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Jonas Kolbenschlag
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Debesset A, Pilon C, Meunier S, Cuelenaere-Bonizec O, Richer W, Thiolat A, Houppe C, Ponzo M, Magnan J, Caron J, Caudana P, Tosello Boari J, Baulande S, To NH, Salomon BL, Piaggio E, Cascone I, Cohen JL. TNFR2 blockade promotes antitumoral immune response in PDAC by targeting activated Treg and reducing T cell exhaustion. J Immunother Cancer 2024; 12:e008898. [PMID: 39562007 PMCID: PMC11580249 DOI: 10.1136/jitc-2024-008898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, highly resistant to standard chemotherapy and immunotherapy. Regulatory T cells (Tregs) expressing tumor necrosis factor α receptor 2 (TNFR2) contribute to immunosuppression in PDAC. Treg infiltration correlates with poor survival and tumor progression in patients with PDAC. We hypothesized that TNFR2 inhibition using a blocking monoclonal antibody (mAb) could shift the Treg-effector T cell balance in PDAC, thus enhancing antitumoral responses. METHOD To support this hypothesis, we first described TNFR2 expression in a cohort of 24 patients with PDAC from publicly available single-cell analysis data. In orthotopic and immunocompetent mouse models of PDAC, we also described the immune environment of PDAC after immune cell sorting and single-cell analysis. The modifications of the immune environment before and after anti-TNFR2 mAb treatment were evaluated as well as the effect on tumor progression. RESULTS Patients with PDAC exhibited elevated TNFR2 expression in Treg, myeloid cells and endothelial cells and lower level in tumor cells. By flow cytometry and single-cell RNA-seq analysis, we identified two Treg populations in orthotopic mouse models: Resting and activated Tregs. The anti-TNFR2 mAb selectively targeted activated tumor-infiltrating Tregs, reducing T cell exhaustion markers in CD8+ T cells. However, anti-TNFR2 treatment alone had limited efficacy in activating CD8+ T cells and only slightly reduced the tumor growth. The combination of the anti-TNFR2 mAb with agonistic anti-CD40 mAb promoted stronger T cell activation, tumor growth inhibition, and improved survival and immunological memory in PDAC-bearing mice. CONCLUSION Our data suggest that combining a CD40 agonist with a TNFR2 antagonist represents a promising therapeutic strategy for patients with PDAC.
Collapse
Affiliation(s)
- Anais Debesset
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Caroline Pilon
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| | - Sylvain Meunier
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | | | - Wilfrid Richer
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Allan Thiolat
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Claire Houppe
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Matteo Ponzo
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jeanne Magnan
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jonathan Caron
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Pamela Caudana
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Jimena Tosello Boari
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Research Center, ICGex Next-Generation Sequencing Platform, Single Cell Initiative, PSL Research University, Paris, France
| | - Nhu Han To
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- Department of Radiation Oncology, Henri Mondor Breast Center, AP-HP, GH Henri Mondor, Paris, France
| | - Benoit Laurent Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Eliane Piaggio
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Ilaria Cascone
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - José Laurent Cohen
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| |
Collapse
|
8
|
Liu Z, Ren M, Jia S, Qiao S, Yang D. Association between tumor necrosis factor receptor 2 and progression and poor prognosis of tumor stage 2‑3 esophageal squamous cell carcinoma and stratified analysis. Oncol Lett 2024; 28:505. [PMID: 39233825 PMCID: PMC11369855 DOI: 10.3892/ol.2024.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Although tumor necrosis factor receptor 2 (TNFR2) may serve a protumor role in several types of tumors, the clinical significance of TNFR2, including the diagnostic and prognostic value in tumor (T) stage 2-3 esophageal squamous cell carcinoma (ESCC), remains unclear. Therefore, the present study aimed to explore the clinical significance of TNFR2 in stage T2-3 ESCC. The present study collected the mRNA expression data of TNFR2 from two databases and confirmed the high expression of TNFR2 in ESCC tissue. TNFR2 expression in stage T2-3 ESCC tissue (n=404) was detected using immunohistochemistry and a stratified analysis was performed. For all patients with stage T2-3 ESCC, TNFR2 expression was associated with clinical stage, invasion depth and metastatic lymph nodes. Stage T3 and low differentiation was associated with an increase in the risk of lymph node metastasis, but older age was associated with a decrease. TNFR2 expression was associated with poor overall survival (OS) of all patients with stage T2-3 ESCC and stratified patients with stage T3 ESCC. Moreover, TNFR2 expression and metastatic lymph nodes were independent prognostic factors for these patients. For stratified patients aged ≤60 years, TNFR2 expression was associated with clinical stage and metastatic lymph nodes. In addition, TNFR2 expression was associated with poor OS in stratified patients with stage T2 ESCC. The presence of metastatic lymph nodes was also an independent prognostic factor for these patients. For stratified patients aged >60 years, TNFR2 expression was associated with invasion depth. TNFR2 expression was also associated with poor OS in all patients with stage T2-3 ESCC and stratified patients with stage T3 ESCC. TNFR2 expression and metastatic lymph nodes were identified as independent prognostic factors for these patients. In conclusion, TNFR2 expression is associated with progression and poor prognosis in patients with stage T2-3 ESCC as an independent prognostic factor, except in the subgroup of patients with stage T2-3 ESCC aged ≤60 years.
Collapse
Affiliation(s)
- Zifeng Liu
- Department of Oncology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Oncology, Jining No. 1 People's Hospital, Jining, Shandong 272029, P.R. China
| | - Mei Ren
- Department of Oncology, Jining No. 1 People's Hospital, Jining, Shandong 272029, P.R. China
| | - Shasha Jia
- Department of Oncology, Jining No. 1 People's Hospital, Jining, Shandong 272029, P.R. China
| | - Sen Qiao
- Department of Hepatological Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272029, P.R. China
| | - Dong Yang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
9
|
Li P, Yang Y, Wang Y, Zheng J, Chen F, Jiang M, Chou CK, Cong W, Li Z, Chen X. Anti-TNFR2 Antibody-Conjugated PLGA Nanoparticles for Targeted Delivery of Adriamycin in Mouse Colon Cancer. RESEARCH (WASHINGTON, D.C.) 2024; 7:0444. [PMID: 39247806 PMCID: PMC11377996 DOI: 10.34133/research.0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024]
Abstract
High levels of tumor necrosis factor receptor type II (TNFR2) are preferentially expressed by immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs), especially those present in the tumor microenvironment, as initially reported by us. There is compelling evidence that targeting TNFR2 markedly enhances antitumor immune responses. Furthermore, a broad spectrum of human cancers also expresses TNFR2, while its expression by normal tissue is very limited. We thus hypothesized that TNFR2 may be harnessed for tumor-targeted delivery of chemotherapeutic agents. In this study, we performed a proof-of-concept study by constructing a TNFR2-targeted PEGylated poly(dl-lactic-co-glycolic acid) (PLGA-PEG) nanodrug delivery system [designated as TNFR2-PLGA-ADR (Adriamycin)]. The results of in vitro study showed that this TNFR2-targeted delivery system had the properties in cellular binding and cytotoxicity toward mouse colon cancer cells. Further, upon intravenous injection, TNFR2-PLGA-ADR could efficiently accumulate in MC38 and CT26 mouse colon tumor tissues and preferentially bind with tumor-infiltrating Tregs. Compared with ADR and ISO-PLGA-ADR, the in vivo antitumor effect of TNFR2-PLGA-ADR was markedly enhanced, which was associated with a decrease of TNFR2+ Tregs and an increase of IFNγ+CD8+ cytotoxic T lymphocytes in the tumor tissue. Therefore, our results clearly show that targeting TNFR2 is a promising strategy for designing tumor-specific chemoimmunotherapeutic agent delivery system.
Collapse
Affiliation(s)
- Ping Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Yifei Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Jingbin Zheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Fengyang Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Mengmeng Jiang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Chon-Kit Chou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongjin Li
- Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
10
|
Li L, Ye R, Li Y, Pan H, Han S, Lu Y. Targeting TNFR2 for cancer immunotherapy: recent advances and future directions. J Transl Med 2024; 22:812. [PMID: 39223671 PMCID: PMC11367783 DOI: 10.1186/s12967-024-05620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is the leading cause of death worldwide, accounting for nearly 10 million deaths every year. Immune checkpoint blockade approaches have changed the therapeutic landscape for many tumor types. However, current immune checkpoint inhibitors PD-1 or CTLA-4 are far from satisfactory, due to high immune-related adverse event incident (up to 60%) and the inefficiency in cases of "cold" tumor microenvironment. TNFR2, a novel hopeful tumor immune target, was initially proposed in 2017. It not only promotes tumor cell proliferation, but also correlates with the suppressive function of Treg cells, implicating in the development of an immunosuppressive tumor microenvironment. In preclinical studies, TNFR2 antibody therapy has demonstrated efficacy alone or a potential synergistic effect when combined with classical PD-1/ CTLA-4 antibodies. The focus of this review is on the characteristics, functions, and recent advancements in TNFR2 therapy, providing a new direction for the next generation of anti-tumor alternative therapy.
Collapse
Affiliation(s)
- Linxue Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Ruiwei Ye
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Yingying Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Hanyu Pan
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Sheng Han
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| | - Yiming Lu
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| |
Collapse
|
11
|
Hong JH, Yong CH, Heng HL, Chan JY, Lau MC, Chen J, Lee JY, Lim AH, Li Z, Guan P, Chu PL, Boot A, Ng SR, Yao X, Wee FYT, Lim JCT, Liu W, Wang P, Xiao R, Zeng X, Sun Y, Koh J, Kwek XY, Ng CCY, Klanrit P, Zhang Y, Lai J, Tai DWM, Pairojkul C, Dima S, Popescu I, Hsieh SY, Yu MC, Yeong J, Kongpetch S, Jusakul A, Loilome W, Tan P, Tan J, Teh BT. Integrative multiomics enhancer activity profiling identifies therapeutic vulnerabilities in cholangiocarcinoma of different etiologies. Gut 2024; 73:966-984. [PMID: 38050079 DOI: 10.1136/gutjnl-2023-330483] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.
Collapse
Affiliation(s)
- Jing Han Hong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | - Chern Han Yong
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Department of Computer Science, National University of Singapore, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Yi Lee
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Abner Herbert Lim
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore
| | - Pek Lim Chu
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | - Arnoud Boot
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Sheng Rong Ng
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Xiaosai Yao
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Felicia Yu Ting Wee
- Institute of Molecular and Cell Biology, Integrative Biology for Theranostics Lab, Agency for Science Technology and Research (A*STAR), Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology, Integrative Biology for Theranostics Lab, Agency for Science Technology and Research (A*STAR), Singapore
| | - Wei Liu
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xian Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yichen Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Joanna Koh
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Xiu Yi Kwek
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Cedric Chuan Young Ng
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong
| | - Jiaming Lai
- Department of Pancreaticobiliary Surgery, Sun Yat-sen University, Guangzhou, China
| | - David Wai Meng Tai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Simona Dima
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucuresti, Romania
| | - Irinel Popescu
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucuresti, Romania
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Joe Yeong
- Institute of Molecular and Cell Biology, Integrative Biology for Theranostics Lab, Agency for Science Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
- Pathology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Sarinya Kongpetch
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Patrick Tan
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jing Tan
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- State Key Laboratory of Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| |
Collapse
|
12
|
Huang S, Liu D, Han L, Deng J, Wang Z, Jiang J, Zeng L. Decoding the potential role of regulatory T cells in sepsis-induced immunosuppression. Eur J Immunol 2024; 54:e2350730. [PMID: 38430202 DOI: 10.1002/eji.202350730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Sepsis, a multiorgan dysfunction with high incidence and mortality, is caused by an imbalanced host-to-infection immune response. Organ-support therapy improves the early survival rate of sepsis patients. In the long term, those who survive the "cytokine storm" and its secondary damage usually show higher susceptibility to secondary infections and sepsis-induced immunosuppression, in which regulatory T cells (Tregs) are evidenced to play an essential role. However, the potential role and mechanism of Tregs in sepsis-induced immunosuppression remains elusive. In this review, we elucidate the role of different functional subpopulations of Tregs during sepsis and then review the mechanism of sepsis-induced immunosuppression from the aspects of regulatory characteristics, epigenetic modification, and immunometabolism of Tregs. Thoroughly understanding how Tregs impact the immune system during sepsis may shed light on preclinical research and help improve the translational value of sepsis immunotherapy.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lei Han
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Alim LF, Keane C, Souza-Fonseca-Guimaraes F. Molecular mechanisms of tumour necrosis factor signalling via TNF receptor 1 and TNF receptor 2 in the tumour microenvironment. Curr Opin Immunol 2024; 86:102409. [PMID: 38154421 DOI: 10.1016/j.coi.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Tumour necrosis factor (TNF) is a primary mediator of inflammatory processes by facilitating cell death, immune cell activation and triggering of inflammation. In the cancer context, research has revealed TNF as a multifaceted cytokine that can be both pro- or anti-tumorigenic depending on what context is observed. We explore the plethora of ways that TNF and its receptors manipulate the functional and phenotypic characteristics in the tumour microenvironment (TME) on both tumour cells and immune cells, promoting either tumour elimination or progression. Here, we discuss the latest cutting-edge TNF-focused biologics currently in clinical translation that modifies the TME to derive greater immune responses and therapeutic outcomes, and further give perspectives on the future of targeting TNF in the context of cancer by emerging technological approaches.
Collapse
Affiliation(s)
- Louisa F Alim
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Colm Keane
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | | |
Collapse
|
15
|
Park EJ, Lee CW. Soluble receptors in cancer: mechanisms, clinical significance, and therapeutic strategies. Exp Mol Med 2024; 56:100-109. [PMID: 38182653 PMCID: PMC10834419 DOI: 10.1038/s12276-023-01150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024] Open
Abstract
Soluble receptors are soluble forms of receptors found in the extracellular space. They have emerged as pivotal regulators of cellular signaling and disease pathogenesis. This review emphasizes their significance in cancer as diagnostic/prognostic markers and potential therapeutic targets. We provide an overview of the mechanisms by which soluble receptors are generated along with their functions. By exploring their involvement in cancer progression, metastasis, and immune evasion, we highlight the importance of soluble receptors, particularly soluble cytokine receptors and immune checkpoints, in the tumor microenvironment. Although current research has illustrated the emerging clinical relevance of soluble receptors, their therapeutic applications remain underexplored. As the landscape of cancer treatment evolves, understanding and targeting soluble receptors might pave the way for novel strategies for cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Eun-Ji Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
16
|
Cho O, Lee JW, Jeong YJ, Kim LK, Jung BK, Heo TH. Celastrol, which targets IL-2/CD25 binding inhibition, induces T cell-mediated antitumor activity in melanoma. Eur J Pharmacol 2024; 962:176239. [PMID: 38043776 DOI: 10.1016/j.ejphar.2023.176239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Interleukin-2 (IL-2) induces contrasting immune responses depending on its binding receptor subunit; thus, selective receptor binding is considered a key challenge in cancer therapeutic strategies. In this study, we aimed to investigate the inhibition of IL-2 action and antitumor activity of celastrol (CEL), a compound identified in a screen for IL-2/CD25 binding inhibitors, and to elucidate the underlying role of CEL in immune cells. We found that CEL selectively impairs the binding of IL-2 and CD25 and directly binds to IL-2 but not to CD25. CEL significantly suppressed the proliferation and signaling of IL-2-dependent murine T cells and interfered with IL-2-responsive STAT5 phosphorylation in IL-2 reporter cells and human PBMCs. After confirming the impact of CEL on IL-2, we evaluated its antitumor activity in C57BL/6 mice bearing B16F10 tumors and found that CEL significantly inhibited tumor growth by increasing CD8+ T cells. We also found that CEL did not inhibit tumor growth in T cell-deficient BALB/c nude mice, suggesting that its activity was mediated by the T-cell response. Moreover, combination therapy with low-dose CEL and a TNFR2 antagonist synergistically improved the therapeutic efficacy of the individual monotherapies by increasing the ratio of intratumoral CD8/Treg cells and suppressing Foxp3 expression. These findings suggest that CEL, which inhibits CD25 binding by targeting IL-2, exerts antitumor activity by mediating the T-cell response and could be a promising candidate for combination therapy in cancer immunotherapy against melanoma.
Collapse
Affiliation(s)
- Okki Cho
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Joong-Woon Lee
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Young-Jin Jeong
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Bo-Kyung Jung
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
17
|
Engku Abd Rahman ENS, Irekeola AA, Shueb RH, Mat Lazim N, Mohamud R, Chen X, Ghazali L, Awang NMSH, Haron A, Chan YY. Aberrant frequency of TNFR2-expressing CD4+ FoxP3+ regulatory T cells in nasopharyngeal carcinoma patients. Cytokine 2023; 170:156341. [PMID: 37657236 DOI: 10.1016/j.cyto.2023.156341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
TNFR2 is a surface marker of highly suppressive subset of CD4+ FoxP3+ regulatory T cells (Tregs) in humans and mice. This study examined the TNFR2 expression by Tregs of nasopharyngeal carcinoma (NPC) patients and healthy controls. The proliferation, migration, survival of TNFR2+ Tregs, and association with clinicopathological characteristics were assessed. The expression levels of selected cytokines were also determined. The results demonstrated that in both peripheral blood (PB) (10.45 ± 5.71%) and tumour microenvironment (TME) (54.38 ± 16.15%) of NPC patients, Tregs expressed TNFR2 at noticeably greater levels than conventional T cells (Tconvs) (3.91 ± 2.62%, p < 0.0001), akin to healthy controls. Expression of TNFR2 (1.06 ± 0.99%) was correlated better than CD25+ (0.40 ± 0.46%) and CD127-/low (1.00 ± 0.83% ) with FoxP3 expression in NPC PB (p = 0.0005). Though there was no significant association between TNFR2 expression with the functional capacity (proliferation, migration and survival) of Tregs (p > 0.05), the proportions of PB and TME TNFR2+ Tregs in NPC patients showed more proliferative, higher migration capacity, and better survival ability, as compared to those in healthy controls. Furthermore, TNFR2+ Tregs from NPC patients expressed significantly higher amounts of IL-6 (p = 0.0077), IL-10 (p = 0.0001), IFN-γ (p = 0.0105) and TNF-α (p < 0.0001) than those from healthy controls. Most significantly, TNFR2 expression in maximally suppressive Tregs population were linked to WHO Type III histological type, distant metastasis, progressive disease status, and poor prognosis for NPC patients. Hence, our research implies that TNFR2 expression by PB and TME Tregs may be a useful predictive indicator in NPC patients.
Collapse
Affiliation(s)
- Engku Nur Syafirah Engku Abd Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, PMB 4412, Offa Kwara State, Nigeria
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078 Macau
| | - Liyana Ghazali
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nik Mohd Syahrul Hafizzi Awang
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ali Haron
- Department of Otorhinolaryngology, Hospital Raja Perempuan Zainab II, Jalan Hospital, 15200 Kota Bharu, Kelantan, Malaysia
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
18
|
Akiba H, Fujita J, Ise T, Nishiyama K, Miyata T, Kato T, Namba K, Ohno H, Kamada H, Nagata S, Tsumoto K. Development of a 1:1-binding biparatopic anti-TNFR2 antagonist by reducing signaling activity through epitope selection. Commun Biol 2023; 6:987. [PMID: 37758868 PMCID: PMC10533564 DOI: 10.1038/s42003-023-05326-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional bivalent antibodies against cell surface receptors often initiate unwanted signal transduction by crosslinking two antigen molecules. Biparatopic antibodies (BpAbs) bind to two different epitopes on the same antigen, thus altering crosslinking ability. In this study, we develop BpAbs against tumor necrosis factor receptor 2 (TNFR2), which is an attractive immune checkpoint target. Using different pairs of antibody variable regions specific to topographically distinct TNFR2 epitopes, we successfully regulate the size of BpAb-TNFR2 immunocomplexes to result in controlled agonistic activities. Our series of results indicate that the relative positions of the two epitopes recognized by the BpAb are critical for controlling its signaling activity. One particular antagonist, Bp109-92, binds TNFR2 in a 1:1 manner without unwanted signal transduction, and its structural basis is determined using cryo-electron microscopy. This antagonist suppresses the proliferation of regulatory T cells expressing TNFR2. Therefore, the BpAb format would be useful in designing specific and distinct antibody functions.
Collapse
Affiliation(s)
- Hiroki Akiba
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan.
| | - Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoko Ise
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan
| | - Kentaro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Institute of Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, 565-0871, Japan
- RIKEN SPring-8 Center, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan
| | - Haruhiko Kamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan.
| | - Kouhei Tsumoto
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan.
- School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Institute of Medical Sciences, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
19
|
Wang Y, Ye R, Fan L, Zhao X, Li L, Zheng H, Qiu Y, He X, Lu Y. A TNF-α blocking peptide that reduces NF-κB and MAPK activity for attenuating inflammation. Bioorg Med Chem 2023; 92:117420. [PMID: 37573821 DOI: 10.1016/j.bmc.2023.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Overexpression of tumor necrosis factor-α (TNF-α) is implicated in many inflammatory diseases, including septic shock, hepatitis, asthma, insulin resistance and autoimmune diseases, such as rheumatoid arthritis and Crohn's disease. The TNF-α signaling pathway is a valuable target, and anti-TNF-α drugs are successfully used to treat autoimmune and inflammatory diseases. Here, we study anti-inflammatory activity of an anti-TNF-α peptide (SN1-13, DEFHLELHLYQSW). In the cellular level assessment, SN1-13 inhibited TNF-α-induced cytotoxicity and blocks TNF-α-triggered signaling activities (IC50 = 15.40 μM). Moreover, the potential binding model between SN1-13 and TNF-α/TNFRs conducted through molecular docking revealed that SN1-13 could stunt TNF-α mediated signaling thought blocking TNF-α and its receptor TNFR1 and TNFR2. These results suggest that SN1-13 would be a potential lead peptide to treat TNF-α-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yue Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China
| | - Ruiwei Ye
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Liming Fan
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China
| | - Xin Zhao
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072,China
| | - Linxue Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zheng
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China.
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai 200444, China; Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072,China.
| |
Collapse
|
20
|
Geng Z, Pan X, Xu J, Jia X. Friend and foe: the regulation network of ascites components in ovarian cancer progression. J Cell Commun Signal 2023; 17:391-407. [PMID: 36227507 PMCID: PMC10409702 DOI: 10.1007/s12079-022-00698-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/11/2022] [Indexed: 10/17/2022] Open
Abstract
The tumor microenvironment (TME) and its complex role in cancer progression have been hotspots of cancer research in recent years. Ascites, which occurs frequently in patients with ovarian cancer especially in advanced stages, represents a unique TME. Malignant ascites contains abundant cellular and acellular components that play important roles in tumorigenesis, growth, metastasis, and chemoresistance of ovarian cancer through complex molecular mechanisms and signaling pathways. As a valuable liquid biopsy sample, ascites fluid is also of great significance for the prognostic analysis of ovarian cancer. The components of ovarian cancer ascites are generally considered to comprise tumor-promoting factors; however, in recent years studies have found that ascites also contains tumor-suppressing factors, raising new perspectives on interactions between ascites and tumors. Malignant ascites directly constitutes the ovarian cancer microenvironment, therefore, the study of its components will aid in the development of new therapeutic strategies. This article reviews the current research on tumor-promoting and tumor-suppressing factors and molecular mechanisms of their actions in ovarian cancer-derived ascites and therapeutic strategies targeting ascites, which may provide references for the development of novel therapeutic targets for ovarian cancer in the future.
Collapse
Affiliation(s)
- Zhe Geng
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China.
| |
Collapse
|
21
|
Vanamee ÉS, Faustman DL. The benefits of clustering in TNF receptor superfamily signaling. Front Immunol 2023; 14:1225704. [PMID: 37662920 PMCID: PMC10469783 DOI: 10.3389/fimmu.2023.1225704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor necrosis factor (TNF) receptor superfamily is a structurally and functionally related group of cell surface receptors that play crucial roles in various cellular processes, including apoptosis, cell survival, and immune regulation. This review paper synthesizes key findings from recent studies, highlighting the importance of clustering in TNF receptor superfamily signaling. We discuss the underlying molecular mechanisms of signaling, the functional consequences of receptor clustering, and potential therapeutic implications of targeting surface structures of receptor complexes.
Collapse
Affiliation(s)
- Éva S. Vanamee
- Immunobiology Department, Massachusetts General Hospital, Boston, MA, United States
| | - Denise L. Faustman
- Immunobiology Department, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Chen Y, Jiang M, Chen X. Therapeutic potential of TNFR2 agonists: a mechanistic perspective. Front Immunol 2023; 14:1209188. [PMID: 37662935 PMCID: PMC10469862 DOI: 10.3389/fimmu.2023.1209188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
TNFR2 agonists have been investigated as potential therapies for inflammatory diseases due to their ability to activate and expand immunosuppressive CD4+Foxp3+ Treg cells and myeloid-derived suppressor cells (MDSCs). Despite TNFR2 being predominantly expressed in Treg cells at high levels, activated effector T cells also exhibit a certain degree of TNFR2 expression. Consequently, the role of TNFR2 signaling in coordinating immune or inflammatory responses under different pathological conditions is complex. In this review article, we analyze possible factors that may determine the therapeutic outcomes of TNFR2 agonism, including the levels of TNFR2 expression on different cell types, the biological properties of TNFR2 agonists, and disease status. Based on recent progress in the understanding of TNFR2 biology and the study of TNFR2 agonistic agents, we discuss the future direction of developing TNFR2 agonists as a therapeutic agents.
Collapse
Affiliation(s)
- Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Mengmeng Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, Macau SAR, China
| |
Collapse
|
23
|
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, Wieder E, Rafie CI, Dosch AR, Zhou Z, Umland O, Amirian H, Ogobuiro IC, Zhang J, Ban Y, Shiau C, Nagathihalli NS, Montgomery EA, Hwang WL, Brambilla R, Komanduri K, Villarino AV, Toska E, Stanger BZ, Gabrilovich DI, Merchant NB, Datta J. Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov 2023; 13:1428-1453. [PMID: 36946782 PMCID: PMC10259764 DOI: 10.1158/2159-8290.cd-22-1046] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Anna Bianchi
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iago De Castro Silva
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nilesh U. Deshpande
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samara Singh
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Siddharth Mehra
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vanessa T. Garrido
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xinyu Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luis A. Nivelo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Despina S. Kolonias
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eric Wieder
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Christine I. Rafie
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Austin R. Dosch
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Haleh Amirian
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ifeanyichukwu C. Ogobuiro
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Zhang
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences; University of Miami Miller School of Medicine, Miami, FL, USA Miami, FL, USA
| | - Carina Shiau
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth A. Montgomery
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William L. Hwang
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krishna Komanduri
- Department of Medicine, University of California San Francisco Health, San Francisco, CA, USA
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Nipun B. Merchant
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jashodeep Datta
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
24
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
25
|
Manca MA, Scarpa F, Cossu D, Simula ER, Sanna D, Ruberto S, Noli M, Ashraf H, Solinas T, Madonia M, Cusano R, Sechi LA. A Multigene-Panel Study Identifies Single Nucleotide Polymorphisms Associated with Prostate Cancer Risk. Int J Mol Sci 2023; 24:ijms24087594. [PMID: 37108754 PMCID: PMC10142258 DOI: 10.3390/ijms24087594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The immune system plays a critical role in modulating cancer development and progression. Polymorphisms in key genes involved in immune responses are known to affect susceptibility to cancer. Here, we analyzed 35 genes to evaluate the association between variants of genes involved in immune responses and prostate cancer risk. Thirty-five genes were analyzed in 47 patients with prostate cancer and 43 healthy controls using next-generation sequencing. Allelic and genotype frequencies were calculated in both cohorts, and a generalized linear mixed model was applied to test the relationship between prostate cancer risk and nucleotide substitution. Odds ratios were calculated to describe the association between each single nucleotide polymorphism (SNP) and prostate cancer risk. Significant changes in allelic and genotypic distributions were observed for IL4R, IL12RB1, IL12RB2, IL6, TMPRSS2, and ACE2. Furthermore, a generalized linear mixed model identified statistically significant associations between prostate cancer risk and SNPs in IL12RB2, IL13, IL17A, IL4R, MAPT, and TFNRS1B. Finally, a statistically significant association was observed between IL2RA and TNFRSF1B and Gleason scores, and between SLC11A1, TNFRSF1B and PSA values. We identified SNPs in inflammation and two prostate cancer-associated genes. Our results provide new insights into the immunogenetic landscape of prostate cancer and the impact that SNPs on immune genes may have on affecting the susceptibility to prostate cancer.
Collapse
Affiliation(s)
| | - Fabio Scarpa
- Dipartimento di Scienze Biomediche, University of Sassari, 07100 Sassari, Italy
| | - Davide Cossu
- Dipartimento di Scienze Biomediche, University of Sassari, 07100 Sassari, Italy
| | - Elena Rita Simula
- Dipartimento di Scienze Biomediche, University of Sassari, 07100 Sassari, Italy
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, University of Sassari, 07100 Sassari, Italy
| | - Stefano Ruberto
- Dipartimento di Scienze Biomediche, University of Sassari, 07100 Sassari, Italy
| | - Marta Noli
- Dipartimento di Scienze Biomediche, University of Sassari, 07100 Sassari, Italy
| | - Hajra Ashraf
- Dipartimento di Scienze Biomediche, University of Sassari, 07100 Sassari, Italy
| | - Tatiana Solinas
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy
- Struttura Complessa di Urologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| | - Massimo Madonia
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy
- Struttura Complessa di Urologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| | | | - Leonardo A Sechi
- Dipartimento di Scienze Biomediche, University of Sassari, 07100 Sassari, Italy
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
26
|
Jasmine F, Aschebrook-Kilfoy B, Rahman MM, Zaagman G, Grogan RH, Kamal M, Ahsan H, Kibriya MG. Association of DNA Promoter Methylation and BRAF Mutation in Thyroid Cancer. Curr Oncol 2023; 30:2978-2996. [PMID: 36975440 PMCID: PMC10047424 DOI: 10.3390/curroncol30030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The BRAF V600E mutation and DNA promoter methylation play important roles in the pathogenesis of thyroid cancer (TC). However, the association of these genetic and epigenetic alterations is not clear. In this study, using paired tumor and surrounding normal tissue from the same patients, on a genome-wide scale we tried to identify (a) any association between BRAF mutation and DNA promoter methylation, and (b) if the molecular findings may provide a basis for therapeutic intervention. We included 40 patients with TC (female = 28, male = 12) without distant metastasis. BRAF mutation was present in 18 cases. We identified groups of differentially methylated loci (DML) that are found in (a) both BRAF mutant and wild type, (b) only in BRAF mutant tumors, and (c) only in BRAF wild type. BRAF mutation-specific promoter loci were more frequently hypomethylated, whereas BRAF wild-type-specific loci were more frequently hypermethylated. Common DML were enriched in cancer-related pathways, including the mismatch repair pathway and Wnt-signaling pathway. Wild-type-specific DML were enriched in RAS signaling. Methylation status of checkpoint signaling genes, as well as the T-cell inflamed genes, indicated an opportunity for the potential use of PDL1 inhibitors in BRAF mutant TC. Our study shows an association between BRAF mutation and methylation in TC that may have biological significance.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Briseis Aschebrook-Kilfoy
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| | - Mohammad M. Rahman
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - Garrett Zaagman
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Raymon H. Grogan
- Department of Surgery, Baylor St. Luke’s Medical Center, Houston, TX 77030, USA
| | - Mohammed Kamal
- Department of Pathology, The Laboratory, Dhaka 1205, Bangladesh
| | - Habibul Ahsan
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers (Basel) 2023; 15:cancers15041282. [PMID: 36831623 PMCID: PMC9953912 DOI: 10.3390/cancers15041282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Platelets, the primary operatives of hemostasis that contribute to blood coagulation and wound healing after blood vessel injury, are also involved in pathological conditions, including cancer. Malignancy-associated thrombosis is common in ovarian cancer patients and is associated with poor clinical outcomes. Platelets extravasate into the tumor microenvironment in ovarian cancer and interact with cancer cells and non-cancerous elements. Ovarian cancer cells also activate platelets. The communication between activated platelets, cancer cells, and the tumor microenvironment is via various platelet membrane proteins or mediators released through degranulation or the secretion of microvesicles from platelets. These interactions trigger signaling cascades in tumors that promote ovarian cancer progression, metastasis, and neoangiogenesis. This review discusses how interactions between platelets, cancer cells, cancer stem cells, stromal cells, and the extracellular matrix in the tumor microenvironment influence ovarian cancer progression. It also presents novel potential therapeutic approaches toward this gynecological cancer.
Collapse
|
28
|
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F, Delort L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int J Mol Sci 2023; 24:4002. [PMID: 36835413 PMCID: PMC9964711 DOI: 10.3390/ijms24044002] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Several immune and immunocompetent cells, including dendritic cells, macrophages, adipocytes, natural killer cells, T cells, and B cells, are significantly correlated with the complex discipline of oncology. Cytotoxic innate and adaptive immune cells can block tumor proliferation, and others can prevent the immune system from rejecting malignant cells and provide a favorable environment for tumor progression. These cells communicate with the microenvironment through cytokines, a chemical messenger, in an endocrine, paracrine, or autocrine manner. These cytokines play an important role in health and disease, particularly in host immune responses to infection and inflammation. They include chemokines, interleukins (ILs), adipokines, interferons, colony-stimulating factors (CSFs), and tumor necrosis factor (TNF), which are produced by a wide range of cells, including immune cells, such as macrophages, B-cells, T-cells, and mast cells, as well as endothelial cells, fibroblasts, a variety of stromal cells, and some cancer cells. Cytokines play a crucial role in cancer and cancer-related inflammation, with direct and indirect effects on tumor antagonistic or tumor promoting functions. They have been extensively researched as immunostimulatory mediators to promote the generation, migration and recruitment of immune cells that contribute to an effective antitumor immune response or pro-tumor microenvironment. Thus, in many cancers such as breast cancer, cytokines including leptin, IL-1B, IL-6, IL-8, IL-23, IL-17, and IL-10 stimulate while others including IL-2, IL-12, and IFN-γ, inhibit cancer proliferation and/or invasion and enhance the body's anti-tumor defense. Indeed, the multifactorial functions of cytokines in tumorigenesis will advance our understanding of cytokine crosstalk pathways in the tumor microenvironment, such as JAK/STAT, PI3K, AKT, Rac, MAPK, NF-κB, JunB, cFos, and mTOR, which are involved in angiogenesis, cancer proliferation and metastasis. Accordingly, targeting and blocking tumor-promoting cytokines or activating and amplifying tumor-inhibiting cytokines are considered cancer-directed therapies. Here, we focus on the role of the inflammatory cytokine system in pro- and anti-tumor immune responses, discuss cytokine pathways involved in immune responses to cancer and some anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Rea Bingula
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
29
|
TNFR2 antagonistic antibody induces the death of tumor infiltrating CD4 +Foxp3 + regulatory T cells. Cell Oncol (Dordr) 2023; 46:167-177. [PMID: 36369606 DOI: 10.1007/s13402-022-00742-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND TNFR2 expression is a characteristic of highly potent immunosuppressive tumor infiltrating CD4+Foxp3+ regulatory T cells (Tregs). There is compelling evidence that TNF through TNFR2 preferentially stimulates the activation and expansion of Tregs. We and others, therefore, proposed that targeting TNFR2 may provide a novel strategy in cancer immunotherapy. Several studies have shown the effect of TNFR2 antagonistic antibodies in different tumor models. However, the exact action of the TNFR2 antibody on Tregs remained understood. METHOD TY101, an anti-murine TNFR2 antibody, was used to examine the effect of TNFR2 blockade on Treg proliferation and viability in vitro. The role of TNFR2 on Treg viability was further validated by TNFR2 knockout mice and in the TY101 antagonistic antibody-treated mouse tumor model. RESULTS In this study, we found that an anti-mouse TNFR2 antibody TY101 could inhibit TNF-induced proliferative expansion of Tregs, indicative of an antagonistic property. To examine the effect of TY101 antagonistic antibody on Treg viability, we treated unfractionated lymph node (L.N.) cells with Dexamethasone (Dex) which was known to induce T cell death. The result showed that TY101 antagonistic antibody treatment further promoted Treg death in the presence of Dex. This led us to find that TNFR2 expression was crucial for the survival of Tregs. In the mouse EG7 lymphoma model, treatment with TY101 antagonistic antibody potently inhibited tumor growth, resulting in complete regression of the tumor in 60% of mice. The treatment with TY101 antagonistic antibody elicited potent antitumor immune responses in this model, accompanied by enhanced death of Tregs. CONCLUSION This study, therefore, provides clear experimental evidence that TNFR2 antagonistic antibody, TY101, can promote the death of Tregs, and this effect may be attributable to the antitumor effect of TNFR2 antagonistic antibody.
Collapse
|
30
|
Kampan NC, Kartikasari AER, Deceneux C, Madondo MT, McNally OM, Flanagan KL, Aziz NA, Stephens AN, Reynolds J, Quinn MA, Plebanski M. Combining TNFR2-Expressing Tregs and IL-6 as Superior Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Masses. Cancers (Basel) 2023; 15:667. [PMID: 36765633 PMCID: PMC9913655 DOI: 10.3390/cancers15030667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
We hypothesised that the inclusion of immunosuppressive and inflammatory biomarkers in HGSOC patients would improve the sensitivity and specificity of the preoperative marker prediction of malignancy in patients with ovarian masses. We tested a panel of 29 soluble immune factors by multiplex bead immunoassay and 16 phenotypic T cell markers by flow cytometry in pre-treatment blood samples from 66 patients undergoing surgery for suspected ovarian cancer or ovarian cancer risk reduction. The potential diagnostic utility of all parameters was explored using Volcano plots, principal component analysis (PCA) and receiver operator characteristic (ROC) analysis. We also assessed the effect of culturing PBMCs from 20 healthy donors in the presence of malignant ascites fluid. The combination of TNFR2+ Tregs and IL-6 in the pre-treatment blood of patients with advanced HGSOC effectively discriminated patients with benign or malignant ovarian masses. In vitro culturing of the PBMCs of healthy donors in malignant ascites promoted an increase in TNFR2-expressing Tregs, which were decreased following blockade with IL-6 or STAT3 activity. Pre-treatment serum IL-6 and peripheral blood TNFR2+ Tregs may be potential clinical biomarkers that can discriminate patients with malignant compared to benign ovarian cancer masses, and the relationship between IL-6 and TNFR2+ Treg is likely to be mediated via the STAT3 signalling pathway.
Collapse
Affiliation(s)
- Nirmala Chandralega Kampan
- Department of Immunology & Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
- Oncology Unit, Royal Women’s Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Cyril Deceneux
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Mutsa Tatenda Madondo
- Department of Immunology & Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| | - Orla M. McNally
- Oncology Unit, Royal Women’s Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, Melbourne University, Parkville, VIC 3052, Australia
| | - Katie Louise Flanagan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Norhaslinda A. Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Andrew N. Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
- Epworth Research Institute, Epworth Healthcare, Richmond, VIC 3121, Australia
| | - John Reynolds
- Biostatistics Consulting Platform, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| | - Michael A. Quinn
- Oncology Unit, Royal Women’s Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia
| | - Magdalena Plebanski
- Department of Immunology & Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
31
|
The Immunosuppressive Effect of TNFR2 Expression in the Colorectal Cancer Microenvironment. Biomedicines 2023; 11:biomedicines11010173. [PMID: 36672682 PMCID: PMC9856189 DOI: 10.3390/biomedicines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common causes of death among cancers worldwide. Its incidence has been increasing among the young population. Many risk factors contribute to the development and progression of CRC and about 70% of them are sporadic. The CRC microenvironment is highly heterogeneous and represents a very complex immunosuppressive platform. Many cytokines and their receptors are vital participants in this immunosuppressive microenvironment. Tumor necrosis factors (TNFs) and TNF receptor 2 (TNFR2) are critical players in the development of CRC. TNFR2 was observed to have increased the immunosuppressive activity of CRC cells via regulatory T cells (T regs) and myeloid-derived suppressor cells (MDSC) in the CRC microenvironment. However, the exact mechanism of TNFR2 in regulating the CRC prognosis remains elusive. Here, we discuss the role of TNFR2 in immune escape mechanism of CRC in the immunosuppressive cells, including Tregs and MDSCs, and the complex signaling pathways that facilitate the development of CRC. It is suggested that extensive studies on TNFR2 downstream signaling must be done, since TNFR2 has a high potential to be developed into a therapeutic agent and cancer biomarker in the future.
Collapse
|
32
|
Li Q, Lu J, Li J, Zhang B, Wu Y, Ying T. Antibody-based cancer immunotherapy by targeting regulatory T cells. Front Oncol 2023; 13:1157345. [PMID: 37182149 PMCID: PMC10174253 DOI: 10.3389/fonc.2023.1157345] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Regulatory T cells (Tregs) are among the most abundant suppressive cells, which infiltrate and accumulate in the tumor microenvironment, leading to tumor escape by inducing anergy and immunosuppression. Their presence has been correlated with tumor progression, invasiveness and metastasis. Targeting tumor-associated Tregs is an effective addition to current immunotherapy approaches, but it may also trigger autoimmune diseases. The major limitation of current therapies targeting Tregs in the tumor microenvironment is the lack of selective targets. Tumor-infiltrating Tregs express high levels of cell surface molecules associated with T-cell activation, such as CTLA4, PD-1, LAG3, TIGIT, ICOS, and TNF receptor superfamily members including 4-1BB, OX40, and GITR. Targeting these molecules often attribute to concurrent depletion of antitumor effector T-cell populations. Therefore, novel approaches need to improve the specificity of targeting Tregs in the tumor microenvironment without affecting peripheral Tregs and effector T cells. In this review, we discuss the immunosuppressive mechanisms of tumor-infiltrating Tregs and the status of antibody-based immunotherapies targeting Tregs.
Collapse
Affiliation(s)
- Quanxiao Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| |
Collapse
|
33
|
Regulatory T Cells in Ovarian Carcinogenesis and Future Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14225488. [PMID: 36428581 PMCID: PMC9688690 DOI: 10.3390/cancers14225488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Regulatory T cells (Tregs) have been shown to play a role in the development of solid tumors. A better understanding of the biology of Tregs, immune suppression by Tregs, and how cancer developed with the activity of Tregs has facilitated the development of strategies used to improve immune-based therapy. In ovarian cancer, Tregs have been shown to promote cancer development and resistance at different cancer stages. Understanding the various Treg-mediated immune escape mechanisms provides opportunities to establish specific, efficient, long-lasting anti-tumor immunity. Here, we review the evidence of Treg involvement in various stages of ovarian cancer. We further provide an overview of the current and prospective therapeutic approaches that arise from the modulation of Treg-related tumor immunity at those specific stages. Finally, we propose combination strategies of Treg-related therapies with other anti-tumor therapies to improve clinical efficacy and overcome tumor resistance in ovarian cancer.
Collapse
|
34
|
Quazi S. TNFR2 antagonist and agonist: a potential therapeutics in cancer immunotherapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:215. [PMID: 36175687 DOI: 10.1007/s12032-022-01772-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Tumour necrosis factor receptor 2 or TNFR2 is considered an appealing target protein due to its limited frequency to TREGs, which are highly immunosuppressive and present on human malignancies. Numerous studies have revealed that TNFR2 is primarily found on MDSCs (myeloid-derived suppressor cells) and CD + Foxp3 + regulatory T cells (TREGs). Therefore, it has great importance in the proliferation and functional activity of TREGs and MDSCs. TNFR2 suppression must be downregulated or upregulated as required to treat malignancies and diseases like autoimmune disorders. Therefore, at the molecular level, advances in the comprehension of TNFR2's complex structure and its binding to TNF have opened the door to structure-guided drug development. Two critical obstacles to cancer treatment are the dearth of TREG-specific inhibitors and the lack of widely applicable ways to target tumours via frequently expressed surface oncogenes directly. Many researchers have discovered potential antagonists and agonists of TNFR2, which were successful in inhibiting TREGs proliferation, reducing soluble TNFR2 secretion from normal cells, and expanding T effector cells. The data represented in the following review article elucidates the clinically administrated TNFR2 antagonist and agonist in treating cancers.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, 560043, Karnataka, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
35
|
Lan TT, Song Y, Liu XH, Liu CP, Zhao HC, Han YS, Wang CH, Yang N, Xu Z, Tao M, Li H. IP6 reduces colorectal cancer metastasis by mediating the interaction of gut microbiota with host genes. Front Nutr 2022; 9:979135. [PMID: 36118769 PMCID: PMC9479145 DOI: 10.3389/fnut.2022.979135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Inositol hexaphosphate (IP6) is a phytochemical widely found in grains and legumes that plays an anti-cancer role. However, the mechanism underlying the inhibition of colorectal cancer metastasis by IP6 through host genes, gut microbiota, and their interactions remain elusive. In this study, 16S rRNA sequencing was used to study the effect of IP6 on gut microbiota in an orthotopic transplantation model of colorectal cancer mice. The transcriptome was used to study the changes of host genes in metastasis and the relationship with gut microbiota. The results showed that the gut microbiota composition of model mice was significantly different from that of normal mice. The beta diversity partly tended to return to the normal level after IP6 intervention. Especially, Lactobacillus helveticus and Lactococcus lactis were recovered after IP6-treated. Enrichment analysis showed that the enrichment score of the Cytokine-Cytokine receptor interaction signal pathway decreased after IP6 treatment compared to the model group. Further analysis of differentially expressed genes (DEGs) in this pathway showed that IP6 reduced the expression of the Tnfrsf1b gene related to the area of liver metastasis, and the Tnfrsf1b gene was negatively correlated with the relative abundance of Lactobacillus helveticus. Our results presented that host gene, microbiome and their interaction may serve as promising targets for the mechanism of IP6 intervention in colorectal cancer metastasis.
Collapse
Affiliation(s)
- Tong-Tong Lan
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Yang Song
| | - Xiao-Han Liu
- Institute of STD and AIDS Prevention, Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Cui-Ping Liu
- School of Nursing, College of Medicine, Qingdao University, Qingdao, China
| | - Hui-Chao Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Sa Han
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Chu-Hui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Ning Yang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Meng Tao
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Díaz ECG, Lee AG, Sayles LC, Feria C, Sweet-Cordero EA, Yang F. A 3D Osteosarcoma Model with Bone-Mimicking Cues Reveals a Critical Role of Bone Mineral and Informs Drug Discovery. Adv Healthc Mater 2022; 11:e2200768. [PMID: 35767377 PMCID: PMC10162498 DOI: 10.1002/adhm.202200768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/10/2022] [Indexed: 01/27/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone cancer for which survival has not improved over three decades. While biomaterials have been widely used to engineer 3D soft-tissue tumor models, the potential of engineering 3D biomaterials-based OS models for comprehensive interrogation of OS pathology and drug discovery remains untapped. Bone is characterized by high mineral content, yet the role of bone mineral in OS progression and drug response remains unknown. Here, a microribbon-based OS model with bone-mimicking compositions is developed to elucidate the role of 3D culture and hydroxyapatite in OS signaling and drug response. The results reveal that hydroxyapatite in 3D is critical to support retention of OS signaling and drug resistance similar to patient tissues and mouse orthotopic tumors. The physiological relevance of this 3D model is validated using four established OS cell lines, seven patient-derived xenograft (PDX) cell lines and two animal models. Integrating 3D OS PDX models with RNA-sequencing identified 3D-specific druggable target, which predicts drug response in mouse orthotopic model. These results establish microribbon-based 3D OS models as a novel experimental tool to enable discovery of novel therapeutics that would be otherwise missed with 2D model and may serve as platforms to study patient-specific OS heterogeneity and drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Alex G. Lee
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, USA
| | - Leanne C. Sayles
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, USA
| | - Criselle Feria
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - E. Alejandro Sweet-Cordero
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
37
|
Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol 2022; 15:118. [PMID: 36031601 PMCID: PMC9420297 DOI: 10.1186/s13045-022-01335-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1, programmed death-ligand 1, and cytotoxic T-lymphocyte-associated protein 4 provide deep and durable treatment responses which have revolutionized oncology. However, despite over 40% of cancer patients being eligible to receive immunotherapy, only 12% of patients gain benefit. A key to understanding what differentiates treatment response from non-response is better defining the role of the innate immune system in anti-tumor immunity and immune tolerance. Teleologically, myeloid cells, including macrophages, dendritic cells, monocytes, and neutrophils, initiate a response to invading pathogens and tissue repair after pathogen clearance is successfully accomplished. However, in the tumor microenvironment (TME), these innate cells are hijacked by the tumor cells and are imprinted to furthering tumor propagation and dissemination. Major advancements have been made in the field, especially related to the heterogeneity of myeloid cells and their function in the TME at the single cell level, a topic that has been highlighted by several recent international meetings including the 2021 China Cancer Immunotherapy workshop in Beijing. Here, we provide an up-to-date summary of the mechanisms by which major myeloid cells in the TME facilitate immunosuppression, enable tumor growth, foster tumor plasticity, and confer therapeutic resistance. We discuss ongoing strategies targeting the myeloid compartment in the preclinical and clinical settings which include: (1) altering myeloid cell composition within the TME; (2) functional blockade of immune-suppressive myeloid cells; (3) reprogramming myeloid cells to acquire pro-inflammatory properties; (4) modulating myeloid cells via cytokines; (5) myeloid cell therapies; and (6) emerging targets such as Siglec-15, TREM2, MARCO, LILRB2, and CLEVER-1. There is a significant promise that myeloid cell-based immunotherapy will help advance immuno-oncology in years to come.
Collapse
Affiliation(s)
- Yi Wang
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Margaret E Gatti-Mays
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA.
| | - Zihai Li
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
38
|
Chen S, Li R, Chen Y, Chou CK, Zhang Z, Yang Y, Liao P, Wang Q, Chen X. Scutellarin enhances anti-tumor immune responses by reducing TNFR2-expressing CD4 +Foxp3 + regulatory T cells. Biomed Pharmacother 2022; 151:113187. [PMID: 35676787 DOI: 10.1016/j.biopha.2022.113187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 11/26/2022] Open
Abstract
One characteristic of tumor-associated CD4+Foxp3+ regulatory T cells (Tregs) is the high expression of tumor necrosis factor receptor type II (TNFR2), a receptor that mediates the decisive effect of tumor necrosis factor (TNF) in the activation and expansion of Tregs. There is increasing evidence that inhibition of TNFR2 can enhance anti-tumor immune responses. Therefore, we screened Chinese herbal extracts for their capacity to block TNF-TNFR2 interaction. The results showed that the treatment with a Chinese herb extract could inhibit TNFR2-induced biological responses in vitro, including the proliferation of TNFR2+ Tregs. Our subsequent study led to the identification of flavonoid compound scutellarin was responsible for the activity. Our results showed that scutellarin is able to disrupt the interaction of TNF-TNFR2 and inhibited the phosphorylation of p38 MAPK, a down-stream signaling component of TNFR2. Importantly, in vivo scutellarin treatment markedly enhanced the efficacy of tumor immunotherapy with CpG oligodeoxynucleotide in mouse CT26 colon cancer model. This effect of scutellarin was associated with the reduction of the number of tumor-infiltrating TNFR2-expressing Tregs and increased tumor infiltration of interferon-γ-producing CD8+ T cells. Our result also suggests that scutellarin or its analogs may be used as an adjuvant to enhance the anti-tumor effect of immunotherapeutic agent by eliminating TNFR2+ Treg activity.
Collapse
Affiliation(s)
- Shaokui Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, 999078, Macao Special Administrative Region of China, China
| | - Ruixin Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, 999078, Macao Special Administrative Region of China, China
| | - Yibo Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, 999078, Macao Special Administrative Region of China, China
| | - Chon-Kit Chou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, 999078, Macao Special Administrative Region of China, China
| | - Zhexuan Zhang
- College of Science, Hunan University of Technology and Business, Changsha 410205, China
| | - Yang Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, 999078, Macao Special Administrative Region of China, China
| | - Ping Liao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, 999078, Macao Special Administrative Region of China, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, 999078, Macao Special Administrative Region of China, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, 999078, Macao Special Administrative Region of China, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macao Special Administrative Region of China, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, 999078, Macao Special Administrative Region of China, China.
| |
Collapse
|
39
|
Mensink M, Tran TNM, Zaal EA, Schrama E, Berkers CR, Borst J, de Kivit S. TNFR2 Costimulation Differentially Impacts Regulatory and Conventional CD4 + T-Cell Metabolism. Front Immunol 2022; 13:881166. [PMID: 35844585 PMCID: PMC9282886 DOI: 10.3389/fimmu.2022.881166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
CD4+ conventional T cells (Tconvs) mediate adaptive immune responses, whereas regulatory T cells (Tregs) suppress those responses to safeguard the body from autoimmunity and inflammatory diseases. The opposing activities of Tconvs and Tregs depend on the stage of the immune response and their environment, with an orchestrating role for cytokine- and costimulatory receptors. Nutrient availability also impacts T-cell functionality via metabolic and biosynthetic processes that are largely unexplored. Many data argue that costimulation by Tumor Necrosis Factor Receptor 2 (TNFR2) favors support of Treg over Tconv responses and therefore TNFR2 is a key clinical target. Here, we review the pertinent literature on this topic and highlight the newly identified role of TNFR2 as a metabolic regulator for thymus-derived (t)Tregs. We present novel transcriptomic and metabolomic data that show the differential impact of TNFR2 on Tconv and tTreg gene expression and reveal distinct metabolic impact on both cell types.
Collapse
Affiliation(s)
- Mark Mensink
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thi Ngoc Minh Tran
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ellen Schrama
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Celia R. Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Sander de Kivit
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
40
|
Takahashi H, Yoshimatsu G, Faustman DL. The Roles of TNFR2 Signaling in Cancer Cells and the Tumor Microenvironment and the Potency of TNFR2 Targeted Therapy. Cells 2022; 11:1952. [PMID: 35741080 DOI: 10.3390/cells11121952pubmedhttps:/www.ncbi.nlm.nih.gov/pubmed/35741080pubmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 08/02/2024] Open
Abstract
The appreciation that cancer growth is promoted by a dynamic tumor microenvironment (TME) has spawned novel approaches to cancer treatment. New therapies include agents that activate quiescent T effector cells and agents that interfere with abnormal neovascularity. Although promising, many experimental therapies targeted at the TME have systemic toxicity. Another approach is to target the TME with greater specificity by taking aim at the tumor necrosis factor receptor 2 (TNFR2) signaling pathway. TNFR2 is an attractive molecular target because it is rarely expressed in normal tissues (thus, has low potential for systemic toxicity) and because it is overexpressed on many types of cancer cells as well as on associated TME components, such as T regulatory cells (Tregs), tumor-associated macrophages, and other cells that facilitate tumor progression and spread. Novel therapies that block TNFR2 signaling show promise in cell culture studies, animal models, and human studies. Novel antibodies have been developed that expressly kill only rapidly proliferating cells expressing newly synthesized TNFR2 protein. This review traces the origins of our understanding of TNFR2's multifaceted roles in the TME and discusses the therapeutic potential of agents designed to block TNFR2 as the cornerstone of a TME-specific strategy.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka 814-0180, Japan
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gumpei Yoshimatsu
- Department of Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka 814-0180, Japan
| | - Denise Louise Faustman
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
41
|
Takahashi H, Yoshimatsu G, Faustman DL. The Roles of TNFR2 Signaling in Cancer Cells and the Tumor Microenvironment and the Potency of TNFR2 Targeted Therapy. Cells 2022; 11:cells11121952. [PMID: 35741080 PMCID: PMC9222015 DOI: 10.3390/cells11121952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
The appreciation that cancer growth is promoted by a dynamic tumor microenvironment (TME) has spawned novel approaches to cancer treatment. New therapies include agents that activate quiescent T effector cells and agents that interfere with abnormal neovascularity. Although promising, many experimental therapies targeted at the TME have systemic toxicity. Another approach is to target the TME with greater specificity by taking aim at the tumor necrosis factor receptor 2 (TNFR2) signaling pathway. TNFR2 is an attractive molecular target because it is rarely expressed in normal tissues (thus, has low potential for systemic toxicity) and because it is overexpressed on many types of cancer cells as well as on associated TME components, such as T regulatory cells (Tregs), tumor-associated macrophages, and other cells that facilitate tumor progression and spread. Novel therapies that block TNFR2 signaling show promise in cell culture studies, animal models, and human studies. Novel antibodies have been developed that expressly kill only rapidly proliferating cells expressing newly synthesized TNFR2 protein. This review traces the origins of our understanding of TNFR2’s multifaceted roles in the TME and discusses the therapeutic potential of agents designed to block TNFR2 as the cornerstone of a TME-specific strategy.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka 814-0180, Japan; (H.T.); (G.Y.)
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gumpei Yoshimatsu
- Department of Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka 814-0180, Japan; (H.T.); (G.Y.)
| | - Denise Louise Faustman
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Correspondence: ; Tel.: +1-617-726-4084; Fax: +1-617-726-4095
| |
Collapse
|
42
|
Ben-Baruch A. Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Front Immunol 2022; 13:903679. [PMID: 35663982 PMCID: PMC9157545 DOI: 10.3389/fimmu.2022.903679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Medler J, Kucka K, Wajant H. Tumor Necrosis Factor Receptor 2 (TNFR2): An Emerging Target in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14112603. [PMID: 35681583 PMCID: PMC9179537 DOI: 10.3390/cancers14112603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the great success of TNF blockers in the treatment of autoimmune diseases and the identification of TNF as a factor that influences the development of tumors in many ways, the role of TNFR2 in tumor biology and its potential suitability as a therapeutic target in cancer therapy have long been underestimated. This has been fundamentally changed with the identification of TNFR2 as a regulatory T-cell (Treg)-stimulating factor and the general clinical breakthrough of immunotherapeutic approaches. However, considering TNFR2 as a sole immunosuppressive factor in the tumor microenvironment does not go far enough. TNFR2 can also co-stimulate CD8+ T-cells, sensitize some immune and tumor cells to the cytotoxic effects of TNFR1 and/or acts as an oncogene. In view of the wide range of cancer-associated TNFR2 activities, it is not surprising that both antagonists and agonists of TNFR2 are considered for tumor therapy and have indeed shown overwhelming anti-tumor activity in preclinical studies. Based on a brief summary of TNFR2 signaling and the immunoregulatory functions of TNFR2, we discuss here the main preclinical findings and insights gained with TNFR2 agonists and antagonists. In particular, we address the question of which TNFR2-associated molecular and cellular mechanisms underlie the observed anti-tumoral activities of TNFR2 agonists and antagonists.
Collapse
|
44
|
Signaling pathway(s) of TNFR2 required for the immunoregulatory effect of CD4 +Foxp3 + regulatory T cells. Int Immunopharmacol 2022; 108:108823. [PMID: 35623290 DOI: 10.1016/j.intimp.2022.108823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
CD4+Foxp3+ regulatory T cells (Tregs), a subpopulation of CD4+ T cells, are engaged in maintaining the periphery tolerance and preventing autoimmunity. Recent studies showed that tumor necrosis factor receptor 2 (TNFR2) is preferentially expressed by Tregs and the expression of this receptor identifies the maximally suppressive Tregs. That is, TNFR2 is a liable phenotypic and functional surface marker of Tregs. Moreover, TNF activates and expands Tregs through TNFR2. However, it is very interesting which signaling pathway(s) of TNFR2 is required for the inhibitory effect of Tregs. Compelling evidence shows three TNFR2 signaling pathways in Tregs, including NF-κB, MAPK and PI3K-Akt pathways. Here, we summarize and discuss the latest progress in the studies on the downstream signaling pathways of TNF-TNFR2 for controlling Treg homeostasis, differentiation and proliferation.
Collapse
|
45
|
Li M, Zhang X, Bai X, Liang T. Targeting TNFR2: A Novel Breakthrough in the Treatment of Cancer. Front Oncol 2022; 12:862154. [PMID: 35494080 PMCID: PMC9048045 DOI: 10.3389/fonc.2022.862154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor type II (TNFR2) is expressed in various tumor cells and some immune cells, such as regulatory T cells and myeloid-derived suppressing cells. TNFR2 contributes a lot to the tumor microenvironment. For example, it directly promotes the occurrence and growth of some tumor cells, activates immunosuppressive cells, and supports immune escape. Existing studies have proved the importance of TNFR2 in cancer treatment. Here, we reviewed the activation mechanism of TNFR2 and its role in signal transduction in the tumor microenvironment. We summarized the expression and function of TNFR2 within different immune cells and the potential opportunities and challenges of targeting TNFR2 in immunotherapy. Finally, the advantages and limitations of TNFR2 to treat tumor-related diseases are discussed, and the problems that may be encountered in the clinical development and application of targeted anti-TNFR2 agonists and inhibitors are analyzed.
Collapse
Affiliation(s)
- Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- *Correspondence: Tingbo Liang, ; Xueli Bai,
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Tingbo Liang, ; Xueli Bai,
| |
Collapse
|
46
|
Moatti A, Debesset A, Pilon C, Beldi-Ferchiou A, Leclerc M, Redjoul R, Charlotte F, To NH, Bak A, Belkacemi Y, Salomon BL, Issa F, Michonneau D, Maury S, Cohen JL, Thiolat A. TNFR2 blockade of regulatory T cells unleashes an antitumor immune response after hematopoietic stem-cell transplantation. J Immunother Cancer 2022; 10:jitc-2021-003508. [PMID: 35387779 PMCID: PMC8987798 DOI: 10.1136/jitc-2021-003508] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background Targeting immune checkpoints that inhibit antitumor immune responses has emerged as a powerful new approach to treat cancer. We recently showed that blocking the tumor necrosis factor receptor-type 2 (TNFR2) pathway induces the complete loss of the protective function of regulatory T cells (Tregs) in a model of graft-versus-host disease (GVHD) prevention that relies on Treg-based cell therapy. Here, we tested the possibility of amplifying the antitumor response by targeting TNFR2 in a model of tumor relapse following hematopoietic stem-cell transplantation, a clinical situation for which the need for efficient therapeutic options is still unmet. Method We developed appropriate experimental conditions that mimic patients that relapsed from their initial hematological malignancy after hematopoietic stem-cell transplantation. This consisted of defining in allogeneic bone marrow transplantation models developed in mice, the maximum number of required tumor cells and T cells to infuse into recipient mice to develop a model of tumor relapse without inducing GVHD. We next evaluated whether anti-TNFR2 treatment could trigger alloreactivity and consequently antitumor immune response. In parallel, we also studied the differential expression of TNFR2 on T cells including Treg from patients in post-transplant leukemia relapse and in patients developing GVHD. Results Using experimental conditions in which neither donor T cells nor TNFR2-blocking antibody per se have any effect on tumor relapse, we observed that the coadministration of a suboptimal number of T cells and an anti-TNFR2 treatment can trigger alloreactivity and subsequently induce a significant antitumor effect. This was associated with a reduced percentage of activated CD4+ and CD8+ Tregs. Importantly, human Tregs over-expressed TNFR2 relative to conventional T cells in healthy donors and in patients experiencing leukemia relapse or cortico-resistant GVHD after hematopoietic stem cell transplantation. Conclusions These results highlight TNFR2 as a new target molecule for the development of immunotherapies to treat blood malignancy relapse, used either directly in grafted patients or to enhance donor lymphocyte infusion strategies. More widely, they open the door for new perspectives to amplify antitumor responses against solid cancers by directly targeting Tregs through their TNFR2 expression.
Collapse
Affiliation(s)
- Audrey Moatti
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,CIC Biotherapy, GHU Chenevier Mondor, Créteil, France
| | - Anais Debesset
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France
| | | | | | - Mathieu Leclerc
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,Service d'hématologie Clinique, GHU Chenevier Mondor, Créteil, France
| | - Rabah Redjoul
- Service d'hématologie Clinique, GHU Chenevier Mondor, Créteil, France
| | - Frederic Charlotte
- Service d'anatomopathologie, University Hospital Pitié Salpêtrière, Paris, France
| | - Nhu Hanh To
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,Service d'oncologie-radiothérapie, GHU Chenevier Mondor, Créteil, France
| | - Adeline Bak
- Service d'oncologie-radiothérapie, GHU Chenevier Mondor, Créteil, France
| | - Yazid Belkacemi
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,Service d'oncologie-radiothérapie, GHU Chenevier Mondor, Créteil, France
| | - Benoît Laurent Salomon
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Paris, France
| | - Fadi Issa
- Transplantation Research Immunology Group, University of Oxford Nuffield Department of Surgical Sciences, Oxford, UK
| | | | - Sebastien Maury
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,Service d'hématologie Clinique, GHU Chenevier Mondor, Créteil, France
| | - José Laurent Cohen
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France .,CIC Biotherapy, GHU Chenevier Mondor, Créteil, France
| | - Allan Thiolat
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France
| |
Collapse
|
47
|
Kato M, Imaizumi N, Tanaka R, Mizuguchi M, Hayashi M, Miyagi T, Uchihara J, Ohshiro K, Todoroki J, Karube K, Masuzaki H, Tanaka Y, Fukushima T. Elevation of the Plasma Levels of TNF Receptor 2 in Association with Those of CD25, OX40, and IL-10 and HTLV-1 Proviral Load in Acute Adult T-Cell Leukemia. Viruses 2022; 14:v14040751. [PMID: 35458481 PMCID: PMC9032861 DOI: 10.3390/v14040751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) cells express TNF receptor type-2 (TNFR2) on their surface and shed its soluble form (sTNFR2). We previously reported that sTNFR2 levels were highly elevated in the plasma of patients with acute ATL. To investigate whether its quantitation would be helpful for the diagnosis or prediction of the onset of acute ATL, we examined the plasma levels of sTNFR2 in a large number of specimens obtained from a cohort of ATL patients and asymptomatic human T-cell leukemia virus type 1 (HTLV-1) carriers (ACs) and compared them to those of other candidate ATL biomarkers (sCD25, sOX40, and IL-10) by enzyme-linked immunosorbent assays (ELISA) and HTLV-1 proviral loads. We observed that sTNFR2 levels were significantly elevated in acute ATL patients compared to ACs and patients with other types of ATL (chronic, smoldering, and lymphoma). Importantly, sTNFR2 levels were significantly correlated with those of sCD25, sOX40, and IL-10, as well as proviral loads. Thus, the present study confirmed that an increase in plasma sTNFR2 levels is a biomarker for the diagnosis of acute ATL. Examination of plasma sTNFR2 alone or in combination with other ATL biomarkers may be helpful for the diagnosis of acute ATL.
Collapse
Affiliation(s)
- Megumi Kato
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan; (M.K.); (R.T.)
| | - Naoki Imaizumi
- Laboratory of Molecular Genetics, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan;
| | - Reiko Tanaka
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan; (M.K.); (R.T.)
| | - Mariko Mizuguchi
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan;
| | - Masaki Hayashi
- Department of Hematology, Nakagami Hospital, Okinawa 904-2142, Japan;
| | - Takashi Miyagi
- Department of Hematology, Heart Life Hospital, Nakagusuku 901-2492, Japan;
| | | | - Kazuiku Ohshiro
- Department of Hematology, Okinawa Prefectural Nambu Medical Center and Children’s Medical Center, Naha 901-1193, Japan;
| | - Junpei Todoroki
- Department of Hematology, Chubu Tokushukai Hospital, Nakagami 901-2305, Japan;
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes, and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan;
| | - Yuetsu Tanaka
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan; (M.K.); (R.T.)
- Correspondence: (Y.T.); (T.F.); Tel.: +81-98-895-1745 (Y.T.); +81-98-895-1276 (T.F.)
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan; (M.K.); (R.T.)
- Correspondence: (Y.T.); (T.F.); Tel.: +81-98-895-1745 (Y.T.); +81-98-895-1276 (T.F.)
| |
Collapse
|
48
|
Bai J, Ding B, Li H. Targeting TNFR2 in Cancer: All Roads Lead to Rome. Front Immunol 2022; 13:844931. [PMID: 35251045 PMCID: PMC8891135 DOI: 10.3389/fimmu.2022.844931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
TNF receptor 2 (TNFR2) has become one of the best potential immune checkpoints that might be targeted, mainly because of its vital role in tumor microenvironments (TMEs). Overexpression of TNFR2 in some tumor cells and essential function in immunosuppressive cells, especially regulatory T cells (Tregs), makes blocking TNFR2 an excellent strategy in cancer treatment; however, there is evidence showing that activating TNFR2 can also inhibit tumor progression in vivo. In this review, we will discuss drugs that block and activate TNFR2 under clinical trials or preclinical developments up till now. Meanwhile, we summarize and explore the possible mechanisms related to them.
Collapse
Affiliation(s)
- Jingchao Bai
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bowen Ding
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
49
|
Chen Y, Jia M, Wang S, Xu S, He N. Antagonistic Antibody Targeting TNFR2 Inhibits Regulatory T Cell Function to Promote Anti-Tumor Activity. Front Immunol 2022; 13:835690. [PMID: 35251028 PMCID: PMC8889907 DOI: 10.3389/fimmu.2022.835690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Infiltration of regulatory T cells (Tregs) in the tumor microenvironment suppresses anti-tumor immune response, and promotes tumor progression. Tumor necrosis factor receptor-2 (TNFR2), which is highly expressed on Tregs, activates Tregs through nuclear factor kappa B (NF-κB) pathway. Moreover, TNFR2+ Tregs have been shown to be most suppressive among all Tregs populations in tumor. Due to the unique expression pattern and function of TNFR2 on Tregs, a TNFR2 blocking antibody is expected to compromise Tregs function, relieve Tregs-mediated immunosuppression, and hence to enhance anti-tumor immune response. AN3025 is an antagonistic anti-human TNFR2 (hTNFR2) antibody that is currently under preclinical development. This study investigates the immunomodulatory and anti-tumor activity of AN3025. AN3025 was generated through rabbit immunization with extracellular domain of human TNFR2 and subsequent humanization by complementarity-determining regions (CDRs) grafting. AN3025 binds to the extracellular domain of both human and cynomolgus with sub-nanomolar affinity and specificity, but not mouse or rat TNFR2. AN3025 inhibited tumor necrosis factor alpha (TNFα) induced cell death of hTNFR2-overexpressing Jurkat cells by competing with TNFα for binding to hTNFR2. In the Tregs/T effector co-culture assay, AN3025 increased T effector proliferation and enhanced interferon gamma (IFNγ) production. As a monotherapy, AN3025 significantly inhibited MC38 tumor growth in TNFR2 humanized mouse model. Subsequent flow cytometry (FACS) and immunohistochemistry (IHC) analysis revealed that administration of AN3025 led to decreased Tregs population, increased CD4+ and CD8+ T cell numbers in the tumor. The anti-tumor activity of AN3025 was dependent on the existence of CD4+ and CD8+ T cells, as depletion of CD4+ and CD8+ T cells abolished the anti-tumor activity of AN3025. In addition, AN3025 in combination with anti-PD-1 antibody demonstrated stronger in-vivo anti-tumor activity. The potent anti-tumor efficacy of AN3025, either as a monotherapy or in combination with anti-PD-1 antibody, supports its further clinical development for the treatment of various human tumors.
Collapse
Affiliation(s)
- Yonglin Chen
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| | - Manxue Jia
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| | - Sharon Wang
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| | - Sherry Xu
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| | - Nanhai He
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| |
Collapse
|
50
|
Zhang X, Lao M, Xu J, Duan Y, Yang H, Li M, Ying H, He L, Sun K, Guo C, Chen W, Jiang H, Zhang X, Bai X, Liang T. Combination cancer immunotherapy targeting TNFR2 and PD-1/PD-L1 signaling reduces immunosuppressive effects in the microenvironment of pancreatic tumors. J Immunother Cancer 2022; 10:e003982. [PMID: 35260434 PMCID: PMC8906048 DOI: 10.1136/jitc-2021-003982] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDS In advanced pancreatic ductal adenocarcinoma (PDAC), immune therapy, including immune checkpoint inhibitors, has limited efficacy, encouraging the study of combination therapy. METHODS Tumor necrosis factor receptor 2 (TNFR2) was analyzed via immunohistochemistry, immunofluorescence, western blotting, and ELISAs. The in vitro mechanism that TNFR2 regulates programmed cell death 1 ligand 1 (PD-L1) was investigated using immunofluorescence, immunohistochemistry, flow cytometry, western blotting, and chromatin immunoprecipitation (ChIP). In vivo efficacy and mechanistic studies, using C57BL/6 mice and nude mice with KPC cell-derived subcutaneous and orthotopic tumors, employed antibodies against TNFR2 and PD-L1. Survival curves were constructed for the orthotopic model and a genetically engineered PDAC model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre). Mass cytometry, immunohistochemistry, and flow cytometry analyzed local and systemic alterations in the immunophenotype. RESULTS TNFR2 showed high expression and is a prognostic factor in CD8+ T cell-enriched pancreatic cancer. TNFR2 promotes tumorigenesis and progression of pancreatic cancer via dual effect: suppressing cancer immunogenicity and partially accelerating tumor growth. TNFR2 positivity correlated with PD-L1, and in vitro and in vivo, it could regulate the expression of PDL1 at the transcription level via the p65 NF-κB pathway. Combining anti-TNFR2 and PD-L1 antibodies eradicated tumors, prolonged overall survival in pancreatic cancer, and induced strong antitumor immune memory and secondary prevention by reducing the infiltration of Tregs and tumor-associated macrophages and inducing CD8+ T cell activation in the PDAC microenvironment. Finally, the antitumor immune response derived from combination therapy is mainly dependent on CD8+ T cells, partially dependent on CD4+ T cells, and independent of natural killer cells. CONCLUSIONS Anti-TNFR2 and anti-PD-L1 combination therapy eradicated tumors by inhibiting their growth, relieving tumor immunosuppression, and generating robust memory recall.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Wen Chen
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Haitao Jiang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|