1
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Glueck M, Lucaciu A, Subburayalu J, Kestner RI, Pfeilschifter W, Vutukuri R, Pfeilschifter J. Atypical sphingosine-1-phosphate metabolites-biological implications of alkyl chain length. Pflugers Arch 2024:10.1007/s00424-024-03018-8. [PMID: 39297971 DOI: 10.1007/s00424-024-03018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P1-5) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P's alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length-influenced signaling and its implications for drug discovery.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University Hospital, 60528, Frankfurt Am Main, Germany
| | - Alexandra Lucaciu
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Julien Subburayalu
- Department of Internal Medicine, University Hospital Carl Gustav Carus TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- Center of Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Roxane Isabelle Kestner
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology and Clinical Neurophysiology, Städtisches Klinikum Lüneburg, 21339, Lüneburg, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| |
Collapse
|
3
|
Zhao T, Zeng J, Zhang R, Wang H, Pu L, Yang H, Liang J, Dai X, Fan W, Han L. Identification of Blood Biomarkers in Ischemic Stroke by Integrated Analysis of Metabolomics and Proteomics. J Proteome Res 2024; 23:4082-4094. [PMID: 39167481 DOI: 10.1021/acs.jproteome.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We aimed to uncover the pathological mechanism of ischemic stroke (IS) using a combined analysis of untargeted metabolomics and proteomics. The serum samples from a discovery set of 44 IS patients and 44 matched controls were analyzed using a specific detection method. The same method was then used to validate metabolites and proteins in the two validation sets: one with 30 IS patients and 30 matched controls, and the other with 50 IS patients and 50 matched controls. A total of 105 and 221 differentially expressed metabolites or proteins were identified, and the association between the two omics was determined in the discovery set. Enrichment analysis of the top 25 metabolites and 25 proteins in the two-way orthogonal partial least-squares with discriminant analysis, which was employed to identify highly correlated biomarkers, highlighted 15 pathways relevant to the pathological process. One metabolite and seven proteins exhibited differences between groups in the validation set. The binary logistic regression model, which included metabolite 2-hydroxyhippuric acid and proteins APOM_O95445, MASP2_O00187, and PRTN3_D6CHE9, achieved an area under the curve of 0.985 (95% CI: 0.966-1) in the discovery set. This study elucidated alterations and potential coregulatory influences of metabolites and proteins in the blood of IS patients.
Collapse
Affiliation(s)
- Tian Zhao
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Jingjing Zeng
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Ruijie Zhang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Han Wang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Liyuan Pu
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Huiqun Yang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Jie Liang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Xiaoyu Dai
- Department of Anus & Intestine Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
| | - Weinv Fan
- Department of Neurology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
| | - Liyuan Han
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| |
Collapse
|
4
|
SenthilKumar G, Zirgibel Z, Cohen KE, Katunaric B, Jobe AM, Shult CG, Limpert RH, Freed JK. Ying and Yang of Ceramide in the Vascular Endothelium. Arterioscler Thromb Vasc Biol 2024; 44:1725-1736. [PMID: 38899471 PMCID: PMC11269027 DOI: 10.1161/atvbaha.124.321158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Ceramides, a group of biologically active sphingolipids, have been described as the new cholesterol given strong evidence linking high plasma ceramide with endothelial damage, risk for early adverse cardiovascular events, and development of cardiometabolic disease. This relationship has sparked great interest in investigating therapeutic targets with the goal of suppressing ceramide formation. However, the growing data challenge this paradigm of ceramide as solely eliciting detrimental effects to the cardiovascular system. Studies show that ceramides are necessary for maintaining proper endothelial redox states, mechanosensation, and membrane integrity. Recent work in preclinical models and isolated human microvessels highlights that the loss of ceramide formation can in fact propagate vascular endothelial dysfunction. Here, we delve into these conflicting findings to evaluate how ceramide may be capable of exerting both beneficial and damaging effects within the vascular endothelium. We propose a unifying theory that while basal levels of ceramide in response to physiological stimuli are required for the production of vasoprotective metabolites such as S1P (sphingosine-1-phosphate), the chronic accumulation of ceramide can promote activation of pro-oxidative stress pathways in endothelial cells. Clinically, the evidence discussed here highlights the potential challenges associated with therapeutic suppression of ceramide formation as a means of reducing cardiovascular disease risk.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Zachary Zirgibel
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Katie E. Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee WI
| | - Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Alyssa M. Jobe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Carolyn G. Shult
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Rachel H. Limpert
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| |
Collapse
|
5
|
Frances L, Croyal M, Ruidavets JB, Maraninchi M, Combes G, Raffin J, de Souto Barreto P, Ferrières J, Blaak EE, Perret B, Moro C, Valéro R, Martinez LO, Viguerie N. Identification of circulating apolipoprotein M as a new determinant of insulin sensitivity and relationship with adiponectin. Int J Obes (Lond) 2024; 48:973-980. [PMID: 38491190 PMCID: PMC11216985 DOI: 10.1038/s41366-024-01510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The adiponectin is one of the rare adipokines down-regulated with obesity and protects against obesity-related disorders. Similarly, the apolipoprotein M (apoM) is expressed in adipocytes and its expression in adipose tissue is associated with metabolic health. We compared circulating apoM with adiponectin regarding their relationship with metabolic parameters and insulin sensitivity and examined their gene expression patterns in adipocytes and in the adipose tissue. METHODS Circulating apoM and adiponectin were examined in 169 men with overweight in a cross-sectional study, and 13 patients with obesity during a surgery-induced slimming program. Correlations with clinical parameters including the insulin resistance index (HOMA-IR) were analyzed. Multiple regression analyses were performed on HOMA-IR. The APOM and ADIPOQ gene expression were measured in the adipose tissue from 267 individuals with obesity and a human adipocyte cell line. RESULTS Participants with type 2 diabetes had lower circulating adiponectin and apoM, while apoM was higher in individuals with dyslipidemia. Similar to adiponectin, apoM showed negative associations with HOMA-IR and hs-CRP (r < -0.2), and positive correlations with HDL markers (HDL-C and apoA-I, r > 0.3). Unlike adiponectin, apoM was positively associated with LDL markers (LDL-C and apoB100, r < 0.20) and negatively correlated with insulin and age (r < -0.2). The apoM was the sole negative determinant of HOMA-IR in multiple regression models, while adiponectin not contributing significantly. After surgery, the change in HOMA-IR was negatively associated with the change in circulating apoM (r = -0.71), but not with the change in adiponectin. The APOM and ADIPOQ gene expression positively correlated in adipose tissue (r > 0.44) as well as in adipocytes (r > 0.81). In adipocytes, APOM was downregulated by inflammatory factors and upregulated by adiponectin. CONCLUSIONS The apoM rises as a new partner of adiponectin regarding insulin sensitivity. At the adipose tissue level, the adiponectin may be supported by apoM to promote a healthy adipose tissue. TRIAL REGISTRATION NCT01277068, registered 13 January 2011; NCT02332434, registered 5 January 2015; and NCT00390637, registered 20 October 2006.
Collapse
Affiliation(s)
- Laurie Frances
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44000, Nantes, France
| | | | - Marie Maraninchi
- Aix Marseille Université, APHM, INSERM, INRAe, C2VN, Department of Nutrition, Metabolic Diseases and Endocrinology, University Hospital La Conception, 13385, Marseille, France
| | - Guillaume Combes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Jérémy Raffin
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 31000, Toulouse, France
| | - Philippe de Souto Barreto
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, 31000, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 31000, Toulouse, France
| | - Jean Ferrières
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, 31000, Toulouse, France
- Department of Cardiology, Toulouse Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+(MUMC+), Maastricht, The Netherlands
| | - Bertrand Perret
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
| | - René Valéro
- Aix Marseille Université, APHM, INSERM, INRAe, C2VN, Department of Nutrition, Metabolic Diseases and Endocrinology, University Hospital La Conception, 13385, Marseille, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France.
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.
| | - Nathalie Viguerie
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France.
| |
Collapse
|
6
|
Lin YC, Swendeman S, Moreira IS, Ghosh A, Kuo A, Rosário-Ferreira N, Guo S, Culbertson A, Levesque MV, Cartier A, Seno T, Schmaier A, Galvani S, Inoue A, Parikh SM, FitzGerald GA, Zurakowski D, Liao M, Flaumenhaft R, Gümüş ZH, Hla T. Designer high-density lipoprotein particles enhance endothelial barrier function and suppress inflammation. Sci Signal 2024; 17:eadg9256. [PMID: 38377179 PMCID: PMC10954247 DOI: 10.1126/scisignal.adg9256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.
Collapse
Affiliation(s)
- Yueh-Chien Lin
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven Swendeman
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Irina S. Moreira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Avishek Ghosh
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Nícia Rosário-Ferreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456, Coimbra, Portugal
| | | | - Alan Culbertson
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michel V. Levesque
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Andreane Cartier
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Takahiro Seno
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Alec Schmaier
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Sylvain Galvani
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Samir M. Parikh
- Division of Nephrology and Department of Medicine, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75235, USA
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - David Zurakowski
- Department of Anesthesia and Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | | | - Zeynep H. Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Kurano M, Uranbileg B, Yatomi Y. Apolipoprotein M bound sphingosine 1-phosphate suppresses NETosis through activating S1P1 and S1P4. Biomed Pharmacother 2023; 166:115400. [PMID: 37657263 DOI: 10.1016/j.biopha.2023.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
The pleiotropic effects of high-density lipoprotein (HDL), including its protective properties against sepsis, are attributed to the sphingosine 1-phosphate and apolipoprotein M (ApoM) that are carried on the lipoproteins. In this study, we attempted to elucidate the possible mechanisms underlying the sepsis coagulopathic state by considering the modulation of NETosis. Our results revealed that in a lipopolysaccharide-induced sepsis mouse model, the levels of NETosis markers, such as plasma DNA and histone, were elevated in ApoM-knockout (KO) mice and attenuated in ApoM-overexpressing mice. In ApoM-KO mice, the survival rate decreased and the occurrence rates of coagulopathy and organ injury increased following the administration of histone. Treatment with a conditioned medium of ApoM-overexpressing cells attenuated the observed NETosis in HL-60S cells that differentiated into neutrophils and were inhibited through the suppression of S1P1 or S1P4. The attenuation of PKCδ and PKCα/β by S1P1 and S1P4 activation may also be involved. In ApoM-overexpressing mice, coagulopathy and organ injuries were attenuated following an injection of histone; these effects were partially inhibited by S1P1, 3, S1P4, or S1P1 antagonists. Furthermore, the exogenous administration of ApoM protected ApoM-KO mice that were challenged with histone from developing NETosis. In conclusion, the ApoM/S1P axis protects against NETosis through the attenuation of PKC activation by S1P1 and S1P4. The development of drugs targeting the ApoM/S1P axis may be beneficial for the treatment of pathological conditions involving uncontrolled NETosis, such as sepsis.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Kiyozuka K, Zhao X, Konishi A, Minamishima YA, Obinata H. Apolipoprotein M supports S1P production and conservation and mediates prolonged Akt activation via S1PR1 and S1PR3. J Biochem 2023; 174:253-266. [PMID: 37098187 DOI: 10.1093/jb/mvad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is one of the lipid mediators involved in diverse physiological functions. S1P circulates in blood and lymph bound to carrier proteins. Three S1P carrier proteins have been reported, albumin, apolipoprotein M (ApoM) and apolipoprotein A4 (ApoA4). The carrier-bound S1P exerts its functions via specific S1P receptors (S1PR1-5) on target cells. Previous studies showed several differences in physiological functions between albumin-bound S1P and ApoM-bound S1P. However, molecular mechanisms underlying the carrier-dependent differences have not been clarified. In addition, ApoA4 is a recently identified S1P carrier protein, and its functional differences from albumin and ApoM have not been addressed. Here, we compared the three carrier proteins in the processes of S1P degradation, release from S1P-producing cells and receptor activation. ApoM retained S1P more stable than albumin and ApoA4 in the cell culture medium when compared in the equimolar amounts. ApoM facilitated theS1P release from endothelial cells most efficiently. Furthermore, ApoM-bound S1P showed a tendency to induce prolonged activation of Akt via S1PR1 and S1PR3. These results suggest that the carrier-dependent functional differences of S1P are partly ascribed to the differences in the S1P stability, S1P-releasing efficiency and signaling duration.
Collapse
Key Words
- Apolipoprotein A4
- Apolipoprotein M
- LC–MS/MS
- Sphingosine 1-phosphate.Abbreviations: ApoA4, Apolipoprotein A4; ApoM, Apolipoprotein M; CHO, Chinese hamster ovary; ERK, Extracellular signal-regulated kinase; LC–MS/MS, Liquid chromatography–tandem mass spectrometry; LPP, Lipid phosphate phosphatase; Mfsd2b, Multiple facilitator superfamily domain containing 2B; PBS, Phosphate-buffered saline; S1P, Sphingosine 1-phosphate; S1PR1, Sphingosine 1-phosphate receptor 1; S1PR3, Sphingosine 1-phosphate receptor 3; SphK, Sphingosine kinase; Spns2, Spinster homolog 2; TBS-T, Tris-buffed saline containing 0.1% Tween20
Collapse
Affiliation(s)
- Keisuke Kiyozuka
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Xian Zhao
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akimitsu Konishi
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoji Andrew Minamishima
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
9
|
Chen H, Ahmed S, Zhao H, Elghobashi-Meinhardt N, Dai Y, Kim JH, McDonald JG, Li X, Lee CH. Structural and functional insights into Spns2-mediated transport of sphingosine-1-phosphate. Cell 2023; 186:2644-2655.e16. [PMID: 37224812 PMCID: PMC10330195 DOI: 10.1016/j.cell.2023.04.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shahbaz Ahmed
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongtu Zhao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jae Hun Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
10
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
11
|
Niaudet C, Jung B, Kuo A, Swendeman S, Bull E, Seno T, Crocker R, Fu Z, Smith LEH, Hla T. Therapeutic activation of endothelial sphingosine-1-phosphate receptor 1 by chaperone-bound S1P suppresses proliferative retinal neovascularization. EMBO Mol Med 2023; 15:e16645. [PMID: 36912000 PMCID: PMC10165359 DOI: 10.15252/emmm.202216645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), the circulating HDL-bound lipid mediator that acts via S1P receptors (S1PR), is required for normal vascular development. The role of this signaling axis in vascular retinopathies is unclear. Here, we show in a mouse model of oxygen-induced retinopathy (OIR) that endothelial overexpression of S1pr1 suppresses while endothelial knockout of S1pr1 worsens neovascular tuft formation. Furthermore, neovascular tufts are increased in Apom-/- mice which lack HDL-bound S1P while they are suppressed in ApomTG mice which have more circulating HDL-S1P. These results suggest that circulating HDL-S1P activation of endothelial S1PR1 suppresses neovascular pathology in OIR. Additionally, systemic administration of ApoM-Fc-bound S1P or a small-molecule Gi-biased S1PR1 agonist suppressed neovascular tuft formation. Circulating HDL-S1P activation of endothelial S1PR1 may be a key protective mechanism to guard against neovascular retinopathies that occur not only in premature infants but also in diabetic patients and aging people.
Collapse
Affiliation(s)
- Colin Niaudet
- Department of Surgery, Vascular Biology Program, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Bongnam Jung
- Department of Surgery, Vascular Biology Program, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Andrew Kuo
- Department of Surgery, Vascular Biology Program, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Steven Swendeman
- Department of Surgery, Vascular Biology Program, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Edward Bull
- Department of Ophthalmology, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Takahiro Seno
- Department of Surgery, Vascular Biology Program, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Reed Crocker
- Department of Surgery, Vascular Biology Program, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Timothy Hla
- Department of Surgery, Vascular Biology Program, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
12
|
Tian H, Zhao X, Zhang Y, Xia Z. Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2023; 163:114827. [PMID: 37141734 DOI: 10.1016/j.biopha.2023.114827] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
Myocardial ischemia-reperfusion injury is a common condition in cardiovascular diseases, and the mechanism of its occurrence involves multiple complex metabolic pathways and signaling pathways. Among these pathways, glucose metabolism and lipid metabolism play important roles in regulating myocardial energy metabolism. Therefore, this article focuses on the roles of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion injury, including glycolysis, glucose uptake and transport, glycogen metabolism and the pentose phosphate pathway; and triglyceride metabolism, fatty acid uptake and transport, phospholipid metabolism, lipoprotein metabolism, and cholesterol metabolism. Finally, due to the different alterations and development of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion, there are also complex interregulatory relationships between them. In the future, modulating the equilibrium between glucose metabolism and lipid metabolism in cardiomyocytes and ameliorating aberrations in myocardial energy metabolism represent highly promising novel strategies for addressing myocardial ischemia-reperfusion injury. Therefore, a comprehensive exploration of glycolipid metabolism can offer novel theoretical and clinical insights into the prevention and treatment of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
13
|
Callegari K, Dash S, Uchida H, Shingai Y, Liu C, Khodarkovskaya A, Lee Y, Ito A, Lopez A, Zhang T, Xiang J, Kluk MJ, Sanchez T. Molecular profiling of the stroke-induced alterations in the cerebral microvasculature reveals promising therapeutic candidates. Proc Natl Acad Sci U S A 2023; 120:e2205786120. [PMID: 37058487 PMCID: PMC10120001 DOI: 10.1073/pnas.2205786120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
Stroke-induced cerebral microvascular dysfunction contributes to aggravation of neuronal injury and compromises the efficacy of current reperfusion therapies. Understanding the molecular alterations in cerebral microvessels in stroke will provide original opportunities for scientific investigation of novel therapeutic strategies. Toward this goal, using a recently optimized method which minimizes cell activation and preserves endothelial cell interactions and RNA integrity, we conducted a genome-wide transcriptomic analysis of cerebral microvessels in a mouse model of stroke and compared these transcriptomic alterations with the ones observed in human, nonfatal, brain stroke lesions. Results from these unbiased comparative analyses have revealed the common alterations in mouse stroke microvessels and human stroke lesions and identified shared molecular features associated with vascular disease (e.g., Serpine1/Plasminogen Activator Inhibitor-1, Hemoxygenase-1), endothelial activation (e.g., Angiopoietin-2), and alterations in sphingolipid metabolism and signaling (e.g., Sphigosine-1-Phosphate Receptor 2). Sphingolipid profiling of mouse cerebral microvessels validated the transcript data and revealed the enrichment of sphingomyelin and sphingoid species in the cerebral microvasculature compared to brain and the stroke-induced increase in ceramide species. In summary, our study has identified novel molecular alterations in several microvessel-enriched, translationally relevant, and druggable targets, which are potent modulators of endothelial function. Our comparative analyses have revealed the presence of molecular features associated with cerebral microvascular dysfunction in human chronic stroke lesions. The results shared here provide a detailed resource for therapeutic discovery of candidates for neurovascular protection in stroke and potentially, other pathologies exhibiting cerebral microvascular dysfunction.
Collapse
Affiliation(s)
- Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Yunkyoung Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Akira Ito
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Amanda Lopez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY10065
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY10065
| | - Michael J. Kluk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
14
|
Guo Z, Valenzuela Ripoll C, Picataggi A, Rawnsley DR, Ozcan M, Chirinos JA, Chendamarai E, Girardi A, Riehl T, Evie H, Diab A, Kovacs A, Hyrc K, Ma X, Asnani A, Shewale SV, Scherrer-Crosbie M, Cowart LA, Parks JS, Zhao L, Gordon D, Ramirez-Valle F, Margulies KB, Cappola TP, Desai AA, Pedersen LN, Bergom C, Stitziel NO, Rettig MP, DiPersio JF, Hajny S, Christoffersen C, Diwan A, Javaheri A. Apolipoprotein M Attenuates Anthracycline Cardiotoxicity and Lysosomal Injury. JACC Basic Transl Sci 2023; 8:340-355. [PMID: 37034289 PMCID: PMC10077122 DOI: 10.1016/j.jacbts.2022.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
Apolipoprotein M (ApoM) binds sphingosine-1-phosphate (S1P) and is inversely associated with mortality in human heart failure (HF). Here, we show that anthracyclines such as doxorubicin (Dox) reduce circulating ApoM in mice and humans, that ApoM is inversely associated with mortality in patients with anthracycline-induced heart failure, and ApoM heterozygosity in mice increases Dox-induced mortality. In the setting of Dox stress, our studies suggest ApoM can help sustain myocardial autophagic flux in a post-transcriptional manner, attenuate Dox cardiotoxicity, and prevent lysosomal injury.
Collapse
Affiliation(s)
- Zhen Guo
- Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | - Mualla Ozcan
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Julio A. Chirinos
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Amanda Girardi
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Terrence Riehl
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Hosannah Evie
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Ahmed Diab
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Attila Kovacs
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Krzysztof Hyrc
- Hope Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Xiucui Ma
- Washington University School of Medicine, St Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St Louis, Missouri, USA
| | - Aarti Asnani
- Beth Israel Deaconess, Harvard Medical School, Boston, Massachusetts, USA
| | - Swapnil V. Shewale
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marielle Scherrer-Crosbie
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren Ashley Cowart
- Virginia Commonwealth University, Richmond, Virginia, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - John S. Parks
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lei Zhao
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - David Gordon
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas P. Cappola
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Carmen Bergom
- Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | - John F. DiPersio
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Stefan Hajny
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abhinav Diwan
- Washington University School of Medicine, St Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St Louis, Missouri, USA
| | - Ali Javaheri
- Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
15
|
Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int J Mol Sci 2023; 24:ijms24021637. [PMID: 36675152 PMCID: PMC9863938 DOI: 10.3390/ijms24021637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
It is commonly believed that the inactivation of inflammation is mainly due to the decay or cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous decay of inducers is not observed. It is now known that lipid mediators originating from polyunsaturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular inflammation and resolution, and their biochemical activity. In addition, we highlight data from the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic properties of these same lipid mediators. It should be noted that despite promising data observed in both animal and in vitro studies, contradictory clinical results have been observed for omega-3 PUFAs. Many further studies will be required in order to clarify the observed conflicts, although lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis of lipid mediators of inflammation resolution.
Collapse
|
16
|
Pan Y, Yang H, Chen T, Jin J, Ruan L, Hu L, Chen L. Extracellular vesicles metabolic changes reveals plasma signature in stage-dependent diabetic kidney disease. Ren Fail 2022; 44:1840-1849. [DOI: 10.1080/0886022x.2022.2118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Youjin Pan
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Qingdao, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan City, P. R. China
| | - Hui Yang
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tucan Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jian Jin
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luya Ruan
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Hu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Qingdao, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan City, P. R. China
| |
Collapse
|
17
|
Safi M, Borup A, Stevns Hansen C, Rossing P, Thorsten Jensen M, Christoffersen C. Association between plasma apolipoprotein M and cardiac autonomic neuropathy in type 1 diabetes. Diabetes Res Clin Pract 2022; 189:109943. [PMID: 35690270 DOI: 10.1016/j.diabres.2022.109943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
AIM Diabetes may lead to severe complications e.g. cardiac autonomic neuropathy (CAN) characterized by an increased risk of cardiovascular mortality. CAN is diagnosed by a decreased heart rate viability (HRV). Sphingosine-1-Phosphate (S1P) carried by the HDL-associated apolipoprotein M (apoM) is linked to a reduction in the heart rate, and treatment with an S1P-agonist increases HRV. The present study aimed to investigate if plasma apoM was associated with an increased risk of CAN. METHODS The study includes 278 individuals with Type 1 Diabetes recruited from Steno Diabetes Center in Copenhagen from 2010 to 2012. RESULTS A change of 0.1 µM plasma apoM was associated with the diagnosis of CAN (Odds ratio: 1.11 (1.02; 1.21), p = 0.013). ApoM plasma levels were also positively associated with CAN when adjusted for age and gender (Odds ratio: 1.11 (1.02; 1.21), p = 0.013) as well as lipids, beta-blockers, blood pressure, and alcohol (Odds ratio: 1.14 (1.04; 1.26), p = 0.005) and Hbga1c and time with diabetes (Odds ratio: 1.13 (1.02; 1.25), p = 0.01). Plasma apoM was also associated with a significantly lower SDNN as well as high frequency power in all adjusted models. CONCLUSION Increased plasma apoM was associated with an increased risk of CAN as well as a significant reduction in HRV indices. This could represent changes in parasympathetic activity, but, further studies are needed to also explore additional molecular alterations behind such observations.
Collapse
Affiliation(s)
- Mostafa Safi
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Anna Borup
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Magnus Thorsten Jensen
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital Amager Hvidovre, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Spampinato SF, Sortino MA, Salomone S. Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:95-139. [PMID: 35659378 DOI: 10.1016/bs.apha.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that binds and activates five distinct receptor subtypes, S1P1, S1P2, S1P3, S1P4, S1P5, widely expressed in different cells, tissues and organs. In the cardiovascular system these receptors have been extensively studied, but no drug acting on them has been approved so far for treating cardiovascular diseases. In contrast, a number of S1P receptor agonists are approved as immunomodulators, mainly for multiple sclerosis, because of their action on lymphocyte trafficking. This chapter summarizes the available information on S1P receptors in the cardiovascular system and discusses their potential for treating cardiovascular conditions and/or their role on the clinical pharmacology of drugs so far approved for non-cardiovascular conditions. Basic research has recently produced data useful to understand the molecular pharmacology of S1P and S1P receptors, regarding biased agonism, S1P storage, release and vehiculation and chaperoning by lipoproteins, paracrine actions, intracellular non-receptorial S1P actions. On the other hand, the approval of fingolimod and newer generation S1P receptor ligands as immunomodulators, provides information on a number of clinical observations on the impact of these drugs on cardiovascular system which need to be integrated with preclinical data. S1P receptors are potential targets for prevention and treatment of major cardiovascular conditions, including hypertension, myocardial infarction, heart failure and stroke.
Collapse
Affiliation(s)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.
| |
Collapse
|
19
|
Hu Y, Dai K. Sphingosine 1-Phosphate Metabolism and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:67-76. [PMID: 35503175 DOI: 10.1007/978-981-19-0394-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a well-defined bioactive lipid molecule derived from membrane sphingolipid metabolism. In the past decades, a series of key enzymes involved in generation of S1P have been identified and characterized in detail, as well as enzymes degrading S1P. S1P requires transporter to cross the plasma membrane and carrier to deliver to its cognate receptors and therefore transduces signaling in autocrine, paracrine, or endocrine fashions. The essential roles in regulation of development, metabolism, inflammation, and many other aspects of life are mainly executed when S1P binds to receptors provoking the downstream signaling cascades in distinct cells. This chapter will review the synthesis, degradation, transportation, and signaling of S1P and try to provide a comprehensive view of the biology of S1P, evoking new enthusiasms and ideas into the field of the fascinating S1P.
Collapse
Affiliation(s)
- Yan Hu
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Kezhi Dai
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
20
|
Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 2022; 18:335-351. [PMID: 35508810 DOI: 10.1038/s41584-022-00784-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P-S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P-S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.
Collapse
|
21
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
22
|
Funk-Hilsdorf TC, Behrens F, Grune J, Simmons S. Dysregulated Immunity in Pulmonary Hypertension: From Companion to Composer. Front Physiol 2022; 13:819145. [PMID: 35250621 PMCID: PMC8891568 DOI: 10.3389/fphys.2022.819145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) represents a grave condition associated with high morbidity and mortality, emphasizing a desperate need for innovative and targeted therapeutic strategies. Cumulative evidence suggests that inflammation and dysregulated immunity interdependently affect maladaptive organ perfusion and congestion as hemodynamic hallmarks of the pathophysiology of PH. The role of altered cellular and humoral immunity in PH gains increasing attention, especially in pulmonary arterial hypertension (PAH), revealing novel mechanistic insights into the underlying immunopathology. Whether these immunophysiological aspects display a universal character and also hold true for other types of PH (e.g., PH associated with left heart disease, PH-LHD), or whether there are unique immunological signatures depending on the underlying cause of disease are points of consideration and discussion. Inflammatory mediators and cellular immune circuits connect the local inflammatory landscape in the lung and heart through inter-organ communication, involving, e.g., the complement system, sphingosine-1-phosphate (S1P), cytokines and subsets of, e.g., monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs), and T- and B-lymphocytes with distinct and organ-specific pro- and anti-inflammatory functions in homeostasis and disease. Perivascular macrophage expansion and monocyte recruitment have been proposed as key pathogenic drivers of vascular remodeling, the principal pathological mechanism in PAH, pinpointing toward future directions of anti-inflammatory therapeutic strategies. Moreover, different B- and T-effector cells as well as DCs may play an important role in the pathophysiology of PH as an imbalance of T-helper-17-cells (TH17) activated by monocyte-derived DCs, a potentially protective role of regulatory T-cells (Treg) and autoantibody-producing plasma cells occur in diverse PH animal models and human PH. This article highlights novel aspects of the innate and adaptive immunity and their interaction as disease mediators of PH and its specific subtypes, noticeable inflammatory mediators and summarizes therapeutic targets and strategies arising thereby.
Collapse
Affiliation(s)
- Teresa C. Funk-Hilsdorf
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Behrens
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jana Grune
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Szandor Simmons,
| |
Collapse
|
23
|
Evaristi MF, Poirier B, Chénedé X, Lefebvre AM, Roccon A, Gillot F, Beeské S, Corbier A, Pruniaux-Harnist MP, Janiak P, Parkar AA. A G-protein-biased S1P1 agonist, SAR247799, improved LVH and diastolic function in a rat model of metabolic syndrome. PLoS One 2022; 17:e0257929. [PMID: 35030174 PMCID: PMC8759645 DOI: 10.1371/journal.pone.0257929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
AIM Heart failure with preserved ejection fraction (HFpEF) is a major cause of death worldwide with no approved treatment. Left ventricular hypertrophy (LVH) and diastolic dysfunction represent the structural and functional components of HFpEF, respectively. Endothelial dysfunction is prevalent in HFpEF and predicts cardiovascular events. We investigated if SAR247799, a G-protein-biased sphingosine-1-phosphate receptor 1 (S1P1) agonist with endothelial-protective properties, could improve cardiac and renal functions in a rat model of metabolic syndrome LVH and diastolic function. METHODS 31- and 65-week-old obese ZSF1 (Ob-ZSF1) rats, representing adult and aged animals with LVH and diastolic dysfunction, were randomized to a chow diet containing 0.025% (w/w) of SAR247799, or control (CTRL) chow for 4 weeks. Age-matched lean ZSF1 (Le-ZSF1) rats were fed control chow. Echocardiography, telemetry, biochemical and histological analysis were performed to evaluate the effect of SAR247799. RESULTS Echocardiography revealed that Ob-ZSF1 rats, in contrast to Le-ZSF1 rats, developed progressive diastolic dysfunction and cardiac hypertrophy with age. SAR247799 blunted the progression of diastolic dysfunction in adult and aged animals: in adult animals E/e' was evaluated at 21.8 ± 1.4 for Ob-ZSF1-CTRL, 19.5 ± 1.2 for Ob-ZSF1-SAR247799 p<0.01, and 19.5 ± 2.3 for Le-ZSF1-CTRL (median ± IQR). In aged animals E/e' was evaluated at 23.15 ± 4.45 for Ob-ZSF1-CTRL, 19.5 ± 5 for Ob-ZSF1-SAR247799 p<0.01, and 16.69 ± 1.7 for Le-ZSF1-CTRL, p<0.01 (median ± IQR). In aged animals, SAR247799 reduced cardiac hypertrophy (g/mm mean ± SEM of heart weight/tibia length 0.053 ± 0.001 for Ob-ZSF1-CTRL vs 0.046 ± 0.002 for Ob-ZSF1-SAR247799 p<0.01, Le-ZSF1-CTRL 0.035 ± 0.001) and myocardial perivascular collagen content (p<0.001), independently of any changes in microvascular density. In adult animals, SAR247799 improved endothelial function as assessed by the very low frequency bands of systolic blood pressure variability (mean ± SEM 67.8 ± 3.41 for Ob-ZSF1-CTRL 55.8 ± 4.27 or Ob-ZSF1-SAR247799, p<0.05 and 57.3 ± 1.82 Le-ZSF1-CTRL), independently of any modification of arterial blood pressure. In aged animals, SAR247799 reduced urinary protein/creatinine ratio, an index of glomerular injury, (10.3 ± 0.621 vs 8.17 ± 0.231 for Ob-ZSF1-CTRL vs Ob-ZSF1-SAR247799, respectively, p<0.05 and 0.294 ± 0.029 for Le-ZSF1-CTRL, mean ± SEM) and the fractional excretion of electrolytes. Circulating lymphocytes were not decreased by SAR247799, confirming lack of S1P1 desensitization. CONCLUSIONS These experimental findings suggest that S1P1 activation with SAR247799 may be considered as a new therapeutic approach for LVH and diastolic dysfunction, major components of HFpEF.
Collapse
Affiliation(s)
| | - Bruno Poirier
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Xavier Chénedé
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Anne-Marie Lefebvre
- Molecular Histology and Bioimaging Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Alain Roccon
- Biomarkers and Clinical Bioanalyses, Translational Medicine and Early Development, Sanofi R&D, Montpellier, France
| | - Florence Gillot
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Sandra Beeské
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Alain Corbier
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | | | - Philip Janiak
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Ashfaq A. Parkar
- Diabetes and Cardiovascular Research, Sanofi US Services, Bridgewater, NJ, United States of America
| |
Collapse
|
24
|
Knipe RS, Spinney JJ, Abe EA, Probst CK, Franklin A, Logue A, Giacona F, Drummond M, Griffith J, Brazee PL, Hariri LP, Montesi SB, Black KE, Hla T, Kuo A, Cartier A, Engelbrecht E, Christoffersen C, Shea BS, Tager AM, Medoff BD. Endothelial-Specific Loss of Sphingosine-1-Phosphate Receptor 1 Increases Vascular Permeability and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 66:38-52. [PMID: 34343038 PMCID: PMC8803357 DOI: 10.1165/rcmb.2020-0408oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease which leads to significant morbidity and mortality from respiratory failure. The two drugs currently approved for clinical use slow the rate of decline in lung function but have not been shown to halt disease progression or reverse established fibrosis. Thus, new therapeutic targets are needed. Endothelial injury and the resultant vascular permeability are critical components in the response to tissue injury and are present in patients with IPF. However, it remains unclear how vascular permeability affects lung repair and fibrosis following injury. Lipid mediators such as sphingosine-1-phosphate (S1P) are known to regulate multiple homeostatic processes in the lung including vascular permeability. We demonstrate that endothelial cell-(EC) specific deletion of the S1P receptor 1 (S1PR1) in mice (EC-S1pr1-/-) results in increased lung vascular permeability at baseline. Following a low-dose intratracheal bleomycin challenge, EC-S1pr1-/- mice had increased and persistent vascular permeability compared with wild-type mice, which was strongly correlated with the amount and localization of resulting pulmonary fibrosis. EC-S1pr1-/- mice also had increased immune cell infiltration and activation of the coagulation cascade within the lung. However, increased circulating S1P ligand in ApoM-overexpressing mice was insufficient to protect against bleomycin-induced pulmonary fibrosis. Overall, these data demonstrate that endothelial cell S1PR1 controls vascular permeability in the lung, is associated with changes in immune cell infiltration and extravascular coagulation, and modulates the fibrotic response to lung injury.
Collapse
Affiliation(s)
- Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Jillian J. Spinney
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Elizabeth A. Abe
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Clemens K. Probst
- Boston University School of Medicine, Boston University, Boston, Massachusetts
| | | | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Francesca Giacona
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Matt Drummond
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Jason Griffith
- Division of Pulmonary and Critical Care Medicine
- Center for Immunology and Inflammatory Diseases
| | - Patricia L. Brazee
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Lida P. Hariri
- Andrew M. Tager Fibrosis Research Center
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
| | - Katherine E. Black
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andreane Cartier
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric Engelbrecht
- University of Louisville School of Medicine, Louisville, Kentucky
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Barry S. Shea
- Division of Pulmonary, Critical Care, and Sleep Medicine, Rhode Island Hospital and Alpert Medical School, Providence, Rhode Island
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| |
Collapse
|
25
|
Sasset L, Di Lorenzo A. Sphingolipid Metabolism and Signaling in Endothelial Cell Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:87-117. [PMID: 35503177 DOI: 10.1007/978-981-19-0394-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endothelium, inner layer of blood vessels, constitutes a metabolically active paracrine, endocrine, and autocrine organ, able to sense the neighboring environment and exert a variety of biological functions important to preserve the health of vasculature, tissues, and organs. Sphingolipids are both fundamental structural components of the eukaryotic membranes and signaling molecules regulating a variety of biological functions. Ceramide and sphingosine-1-phosphate (S1P), bioactive sphingolipids, have emerged as important regulators of cardiovascular functions in health and disease. In this review we discuss recent insights into the role of ceramide and S1P biosynthesis and signaling in regulating endothelial cell functions, in health and diseases. We also highlight advances into the mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo sphingolipid biosynthesis, with an emphasis on its inhibitors, ORMDL and NOGO-B. Understanding the molecular mechanisms regulating the sphingolipid de novo biosynthesis may provide the foundation for therapeutic modulation of this pathway in a variety of conditions, including cardiovascular diseases, associated with derangement of this pathway.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Kurano M, Tsukamoto K, Sakai E, Hara M, Yatomi Y. Isoform-Dependent Effects of Apolipoprotein E on Sphingolipid Metabolism in Neural Cells. J Alzheimers Dis 2021; 85:1529-1544. [PMID: 34958030 DOI: 10.3233/jad-215205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sphingosine 1-phosphate (S1P) and ceramides have been implicated in the development of Alzheimer's disease. Apolipoprotein E (ApoE) isoforms are also involved in the development of Alzheimer's disease. OBJECTIVE We aimed at elucidating the potential association of the ApoE isoforms with sphingolipid metabolism in the central nervous system. METHODS We investigated the modulations of apolipoprotein M (apoM), a carrier of S1P, S1P, and ceramides in Apoeshl mice, which spontaneously lack apoE, and U251 cells and SH-SY5Y cells infected with adenovirus vectors encoding for apoE2, apoE3, and apoE4. RESULTS In the brains of Apoeshl mice, the levels of apoM were lower, while those of ceramides were higher. In U251 cells, cellular apoM and S1P levels were the highest in the cells overexpressing apoE2 among the apoE isoforms. The cellular and medium contents of ceramides decreased in the order of the cells overexpressing apoE3 > apoE2 and increased in the cells overexpressing apoE4. In SH-SY5Y cells, apoM mRNA and medium S1P levels were also the highest in the cells overexpressing apoE2. The cellular contents of ceramides decreased in the order of the cells overexpressing apoE3 > apoE2 = apoE4 and those in medium decreased in the order of the cells overexpressing apoE3 > apoE2, while increased in the cells overexpressing apoE4. CONCLUSION The modulation of apoM and S1P might partly explain the protective effects of apoE2 against Alzheimer's disease, and the modulation of ceramides might be one of the mechanisms explaining the association of apoE4 with the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Masumi Hara
- Department of Medicine IV, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
27
|
Zhang SQ, Xiao J, Chen M, Zhou LQ, Shang K, Qin C, Tian DS. Sphingosine-1-Phosphate Signaling in Ischemic Stroke: From Bench to Bedside and Beyond. Front Cell Neurosci 2021; 15:781098. [PMID: 34916911 PMCID: PMC8669352 DOI: 10.3389/fncel.2021.781098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) signaling is being increasingly recognized as a strong modulator of immune cell migration and endothelial function. Fingolimod and other S1P modulators in ischemic stroke treatment have shown promise in emerging experimental models and small-scale clinical trials. In this article, we will review the current knowledge of the role of S1P signaling in brain ischemia from the aspects of inflammation and immune interventions, sustaining endothelial functions, regulation of blood-brain barrier integrity, and functional recovery. We will then discuss the current and future therapeutic perspectives of targeting S1P for the treatment of ischemic stroke. Mechanism studies would help to bridge the gap between preclinical studies and clinical practice. Future success of bench-to-bedside translation shall be based on in depth understanding of S1P signaling during stroke and on the ability to have a fine temporal and spatial regulation of the signal pathway.
Collapse
Affiliation(s)
- Shuo-Qi Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Diebel LN, Liberati DM, Hla T, Swendeman S. Plasma components to protect the endothelial barrier after shock: A role for sphingosine 1-phosphate. Surgery 2021; 171:825-832. [PMID: 34865862 DOI: 10.1016/j.surg.2021.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Hemorrhagic shock leads to endothelial glycocalyx shedding, endothelial cellular inflammation, and increased vascular permeability. Early plasma administration improves survival in severely injured patients; this may be due in part to its ability to ameliorate this trauma-induced endotheliopathy. The protective effect of early plasma administration may be due to its sphingosine 1-phosphate content. Principle carriers of plasma sphingosine 1-phosphate include apolipoprotein M and albumin. The relative roles of these carriers on sphingosine 1-phosphate protective effects are unknown and were studied in an in vitro model of microcirculation. METHODS Endothelial cell monolayers were established in microfluidic perfusion devices and exposed to control or biomimetic shock conditions. Sphingosine 1-phosphate, albumin + sphingosine 1-phosphate, or apolipoprotein M + sphingosine 1-phosphate were added later to the perfusate. Biomarkers of endothelial and glycocalyx activation and damage were then determined. RESULTS Sphingosine 1-phosphate preserved endothelial and glycocalyx barrier function after exposure to conditions of shock in the microcirculation. The protective effect was related to sphingosine 1-phosphate chaperones; the apolipoprotein M loaded with sphingosine 1-phosphate had the most profound effect. CONCLUSION Carrier-based sphingosine 1-phosphate may be a useful adjunct in early hemorrhagic shock resuscitation.
Collapse
Affiliation(s)
- Lawrence N Diebel
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI.
| | - David M Liberati
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| | - Timothy Hla
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Steven Swendeman
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Bisgaard LS, Christoffersen C. The apoM/S1P Complex-A Mediator in Kidney Biology and Disease? Front Med (Lausanne) 2021; 8:754490. [PMID: 34722589 PMCID: PMC8553247 DOI: 10.3389/fmed.2021.754490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Kidney disease affects more than 10% of the population, can be both acute and chronic, and is linked to other diseases such as cardiovascular disease, diabetes, and sepsis. Despite the detrimental consequences for patients, no good treatment options directly targeting the kidney are available. Thus, a better understanding of the pathology and new treatment modalities are required. Accumulating evidence suggests that the apolipoprotein M/sphingosine-1-phosphate (apoM/S1P) axis is a likely drug target, but significant gaps in our knowledge remain. In this review, we present what has so far been elucidated about the role of apoM in normal kidney biology and describe how changes in the apoM/S1P axis are thought to affect the development of kidney disease. ApoM is primarily produced in the liver and kidneys. From the liver, apoM is secreted into circulation, where it is attached to lipoproteins (primarily HDL). Importantly, apoM is a carrier of the bioactive lipid S1P. S1P acts by binding to five different receptors. Together, apoM/S1P plays a role in several biological mechanisms, such as inflammation, endothelial cell permeability, and lipid turnover. In the kidney, apoM is primarily expressed in the proximal tubular cells. S1P can be produced locally in the kidney, and several of the five S1P receptors are present in the kidney. The functional role of kidney-derived apoM as well as plasma-derived apoM is far from elucidated and will be discussed based on both experimental and clinical studies. In summary, the current studies provide evidence that support a role for the apoM/S1P axis in kidney disease; however, additional pre-clinical and clinical studies are needed to reveal the mechanisms and target potential in the treatment of patients.
Collapse
Affiliation(s)
- Line S Bisgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Battistella R, Kritsilis M, Matuskova H, Haswell D, Cheng AX, Meissner A, Nedergaard M, Lundgaard I. Not All Lectins Are Equally Suitable for Labeling Rodent Vasculature. Int J Mol Sci 2021; 22:ijms222111554. [PMID: 34768985 PMCID: PMC8584019 DOI: 10.3390/ijms222111554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The vascular system is vital for all tissues and the interest in its visualization spans many fields. A number of different plant-derived lectins are used for detection of vasculature; however, studies performing direct comparison of the labeling efficacy of different lectins and techniques are lacking. In this study, we compared the labeling efficacy of three lectins: Griffonia simplicifolia isolectin B4 (IB4); wheat germ agglutinin (WGA), and Lycopersicon esculentum agglutinin (LEA). The LEA lectin was identified as being far superior to the IB4 and WGA lectins in histological labeling of blood vessels in brain sections. A similar signal-to-noise ratio was achieved with high concentrations of the WGA lectin injected during intracardial perfusion. Lectins were also suitable for labeling vasculature in other tissues, including spinal cord, dura mater, heart, skeletal muscle, kidney, and liver tissues. In uninjured tissues, the LEA lectin was as accurate as the Tie2–eGFP reporter mice and GLUT-1 immunohistochemistry for labeling the cerebral vasculature, validating its specificity and sensitivity. However, in pathological situations, e.g., in stroke, the sensitivity of the LEA lectin decreases dramatically, limiting its applicability in such studies. This work can be used for selecting the type of lectin and labeling method for various tissues.
Collapse
Affiliation(s)
- Roberta Battistella
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
| | - Marios Kritsilis
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
- Department of Neurology, Division of Vascular Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Douglas Haswell
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.H.); (A.X.C.); (M.N.)
| | - Anne Xiaoan Cheng
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.H.); (A.X.C.); (M.N.)
| | - Anja Meissner
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.H.); (A.X.C.); (M.N.)
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, Neurology Department, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Iben Lundgaard
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
- Correspondence:
| |
Collapse
|
31
|
Tian J, Huang T, Chang S, Wang Y, Fan W, Ji H, Wang J, Yang J, Kang J, Zhou Y. Role of sphingosine-1-phosphate mediated signalling in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2021; 156:106584. [PMID: 34352381 DOI: 10.1016/j.prostaglandins.2021.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
32
|
Yao Mattisson I, Christoffersen C. Apolipoprotein M and its impact on endothelial dysfunction and inflammation in the cardiovascular system. Atherosclerosis 2021; 334:76-84. [PMID: 34482091 DOI: 10.1016/j.atherosclerosis.2021.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
Apolipoprotein M (apoM) is a member of the lipocalin superfamily and is predominantly associated with high-density lipoprotein (HDL). It was found that apoM is the chaperon to the bioactive sphingolipid, sphingosine-1-phosphate (S1P). Several studies have since contributed to expand the knowledge on apoM, S1P, and the apoM/S1P-complex in cardiovascular diseases. For instance, the HDL-bound apoM/S1P complex serves as a bridge between HDL and endothelial cells, maintaining a healthy endothelial barrier. Evidence indicates, however, that the apoM/S1P complex may has both protective and harmful effects on the cardiovascular system, which suggests the need for more research to understand the interplay between these molecules. This review aims to shed light on the most recent findings on apoM/S1P-signaling and its impact on endothelial dysfunction, inflammation, and cardiovascular diseases. Finally, it will be discussed whether drugs that target apoM and/or S1P-signaling may be beneficial to patients with cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Ingrid Yao Mattisson
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department of Clinical Sciences Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark.
| |
Collapse
|
33
|
Akbari E, Spychalski GB, Menyhert MM, Rangharajan KK, Tinapple JW, Prakash S, Song JW. Endothelial barrier function is co-regulated at vessel bifurcations by fluid forces and sphingosine-1-phosphate. BIOMATERIALS AND BIOSYSTEMS 2021; 3:100020. [PMID: 35317095 PMCID: PMC8936769 DOI: 10.1016/j.bbiosy.2021.100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid mediator of endothelial barrier function. Prior studies have implicated mechanical stimulation due to intravascular laminar shear stress in co-regulating S1P signaling in endothelial cells (ECs). Yet, vascular networks in vivo consist of vessel bifurcations, and this geometry generates hemodynamic forces at the bifurcation point distinct from laminar shear stress. However, the role of these forces at vessel bifurcations in regulating S1P-dependent endothelial barrier function is not known. In this study, we implemented a microfluidic platform that recapitulates the flow dynamics of vessel bifurcations with in situ quantification of the permeability of microvessel analogues. Co-application of S1P with impinging bifurcated fluid flow, which is characterized by approximately zero shear stress and 38 dyn•cm-2 stagnation pressure at the vessel bifurcation point, promotes vessel stabilization. Similarly, co-treatment of S1P with 3 dyn•cm-2 laminar shear stress is also protective of endothelial barrier function. Moreover, it is shown that vessel stabilization due to bifurcated fluid flow and laminar shear stress is dependent on S1P receptor 1 or 2 signaling. Collectively, these findings demonstrate the endothelium-protective function of fluid forces at vessel bifurcations and their involvement in coordinating S1P-dependent regulation of vessel permeability.
Collapse
Affiliation(s)
- Ehsan Akbari
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Griffin B. Spychalski
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Miles M. Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Kaushik K. Rangharajan
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Joseph W. Tinapple
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States, 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States, 43210
| | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States, 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States, 43210
| |
Collapse
|
34
|
Del Gaudio I, Rubinelli L, Sasset L, Wadsack C, Hla T, Di Lorenzo A. Endothelial Spns2 and ApoM Regulation of Vascular Tone and Hypertension Via Sphingosine-1-Phosphate. J Am Heart Assoc 2021; 10:e021261. [PMID: 34240614 PMCID: PMC8483458 DOI: 10.1161/jaha.121.021261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Most of the circulating sphingosine-1-phosphate (S1P) is bound to ApoM (apolipoprotein M) of high-density lipoprotein (HDL) and mediates many beneficial effects of HDL on the vasculature via G protein-coupled S1P receptors. HDL-bound S1P is decreased in atherosclerosis, myocardial infarction, and diabetes mellitus. In addition to being the target, the endothelium is a source of S1P, which is transported outside of the cells by Spinster-2, contributing to circulating S1P as well as to local signaling. Mice lacking endothelial S1P receptor 1 are hypertensive, suggesting a vasculoprotective role of S1P signaling. This study investigates the role of endothelial-derived S1P and ApoM-bound S1P in regulating vascular tone and blood pressure. Methods and Results ApoM knockout (ApoM KO) mice and mice lacking endothelial Spinster-2 (ECKO-Spns2) were infused with angiotensin II for 28 days. Blood pressure, measured by telemetry and tail-cuff, was significantly increased in both ECKO-Spns2 and ApoM KO versus control mice, at baseline and following angiotensin II. Notably, ECKO-Spns2 presented an impaired vasodilation to flow and blood pressure dipping, which is clinically associated with increased risk for cardiovascular events. In hypertension, both groups presented reduced flow-mediated vasodilation and some degree of impairment in endothelial NO production, which was more evident in ECKO-Spns2. Increased hypertension in ECKO-Spns2 and ApoM KO mice correlated with worsened cardiac hypertrophy versus controls. Conclusions Our study identifies an important role for Spinster-2 and ApoM-HDL in blood pressure homeostasis via S1P-NO signaling and dissects the pathophysiological impact of endothelial-derived S1P and ApoM of HDL-bound S1P in hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY.,Department of Obstetrics and Gynecology Medical University of Graz Austria
| | - Luisa Rubinelli
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY
| | - Linda Sasset
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY
| | - Christian Wadsack
- Department of Obstetrics and Gynecology Medical University of Graz Austria
| | - Timothy Hla
- Vascular Biology Program Boston Children's Hospital and Department of Surgery Harvard Medical School Boston MA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY
| |
Collapse
|
35
|
Jujic A, Matthes F, Vanherle L, Petzka H, Orho-Melander M, Nilsson PM, Magnusson M, Meissner A. Plasma S1P (Sphingosine-1-Phosphate) Links to Hypertension and Biomarkers of Inflammation and Cardiovascular Disease: Findings From a Translational Investigation. Hypertension 2021; 78:195-209. [PMID: 33993723 DOI: 10.1161/hypertensionaha.120.17379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amra Jujic
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Lund University Diabetes Centre (A.J.), Lund University, Malmö, Sweden
| | - Frank Matthes
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| | - Lotte Vanherle
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| | - Henning Petzka
- Department of Mathematics, Lund Technical University, Sweden (H.P.)
| | - Marju Orho-Melander
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Department of Internal Medicine, Clinical Research Unit, Malmö, Sweden (P.M.N.)
| | - Martin Magnusson
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Hypertension in Africa Research Team, North West University Potchefstroom, South Africa (M.M.)
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden (M.M.)
| | - Anja Meissner
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| |
Collapse
|
36
|
Ziegler AC, Gräler MH. Barrier maintenance by S1P during inflammation and sepsis. Tissue Barriers 2021; 9:1940069. [PMID: 34152926 DOI: 10.1080/21688370.2021.1940069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a multifaceted lipid signaling molecule that activates five specific G protein-coupled S1P receptors. Despite the fact that S1P is known as one of the strongest barrier-enhancing molecules for two decades, no medical application is available yet. The reason for this lack of translation into clinical practice may be the complex regulatory network of S1P signaling, metabolism and transportation.In this review, we will provide an overview about the physiology and the network of S1P signaling with the focus on endothelial barrier maintenance in inflammation. We briefly describe the physiological role of S1P and the underlying S1P signaling in barrier maintenance, outline differences of S1P signaling and metabolism in inflammatory diseases, discuss potential targets and compounds for medical intervention, and summarize our current knowledge regarding the role of S1P in the maintenance of specialized barriers like the blood-brain barrier and the placenta.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
37
|
Cheng G, Zheng L. Regulation of the apolipoprotein M signaling pathway: a review. J Recept Signal Transduct Res 2021; 42:285-292. [PMID: 34006168 DOI: 10.1080/10799893.2021.1924203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apolipoprotein M (apoM), an apolipoprotein predominantly associated with high-density lipoprotein (HDL), is considered a mediator of the numerous roles of HDL, including reverse cholesterol transport, anti-atherosclerotic, anti-inflammatory and anti-oxidant, and mediates pre-β-HDL formation. ApoM expression is known to be regulated by a variety of in vivo and in vitro factors. The transcription factors farnesoid X receptor, small heterodimer partner, liver receptor homolog-1, and liver X receptor comprise the signaling cascade network that regulates the expression and secretion of apoM. Moreover, hepatocyte nuclear factor-1α and c-Jun/JunB have been demonstrated to exert opposing regulatory effects on apoM through competitive binding to the same sites in the proximal region of the apoM gene. Furthermore, as a carrier and modulator of sphingosine 1-phosphate (S1P), apoM binds to S1P within its hydrophobic-binding pocket. The apoM/S1P axis has been discovered to play a crucial role in the apoM signaling pathway through its ability to regulate glucose and lipid metabolism, vascular barrier homeostasis, inflammatory response and other pathological and physiological processes. Using the findings of previous studies, the present review aimed to summarize the regulation of apoM expression by various factors and its role in different physiological and pathological conditions, and provide a new perspective for the further treatment of these diseases.
Collapse
Affiliation(s)
- Gangli Cheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
38
|
Nitzsche A, Poittevin M, Benarab A, Bonnin P, Faraco G, Uchida H, Favre J, Garcia-Bonilla L, Garcia MCL, Léger PL, Thérond P, Mathivet T, Autret G, Baudrie V, Couty L, Kono M, Chevallier A, Niazi H, Tharaux PL, Chun J, Schwab SR, Eichmann A, Tavitian B, Proia RL, Charriaut-Marlangue C, Sanchez T, Kubis N, Henrion D, Iadecola C, Hla T, Camerer E. Endothelial S1P 1 Signaling Counteracts Infarct Expansion in Ischemic Stroke. Circ Res 2021; 128:363-382. [PMID: 33301355 PMCID: PMC7874503 DOI: 10.1161/circresaha.120.316711] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Blood-Brain Barrier/physiopathology
- Cerebral Arteries/drug effects
- Cerebral Arteries/metabolism
- Cerebral Arteries/pathology
- Cerebral Arteries/physiopathology
- Cerebrovascular Circulation
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/prevention & control
- Ischemic Attack, Transient/metabolism
- Ischemic Attack, Transient/pathology
- Ischemic Attack, Transient/physiopathology
- Ischemic Attack, Transient/prevention & control
- Ischemic Stroke/metabolism
- Ischemic Stroke/pathology
- Ischemic Stroke/physiopathology
- Ischemic Stroke/prevention & control
- Lysophospholipids/metabolism
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microcirculation
- Neuroprotective Agents/pharmacology
- Signal Transduction
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Sphingosine-1-Phosphate Receptors/agonists
- Sphingosine-1-Phosphate Receptors/genetics
- Sphingosine-1-Phosphate Receptors/metabolism
- Vascular Patency
- Mice
Collapse
Affiliation(s)
- Anja Nitzsche
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
| | - Marine Poittevin
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
- Institut des Vaisseaux et du Sang, Hôpital Lariboisière
| | - Ammar Benarab
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
| | - Philippe Bonnin
- Université de Paris, INSERM U965 and Physiologie Clinique - Explorations-Fonctionnelles, AP-HP, Hôpital Lariboisière
| | - Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York
| | - Hiroki Uchida
- Center for Vascular Biology, Weill Cornell Medical College, Cornell University, New York
| | - Julie Favre
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University
| | - Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York
| | - Manuela C. L. Garcia
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University
| | - Pierre-Louis Léger
- Institut des Vaisseaux et du Sang, Hôpital Lariboisière
- INSERM U1141, Hôpital Robert Debré
| | - Patrice Thérond
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Biochimie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Université Paris-Sud
- UFR de Pharmacie, EA 4529, Châtenay-Malabry, France
| | - Thomas Mathivet
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
| | - Gwennhael Autret
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
| | | | - Ludovic Couty
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
| | - Mari Kono
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | - Aline Chevallier
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
| | - Hira Niazi
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
| | | | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla
| | - Susan R. Schwab
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York
| | - Anne Eichmann
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
| | | | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | | | - Teresa Sanchez
- Center for Vascular Biology, Weill Cornell Medical College, Cornell University, New York
| | - Nathalie Kubis
- Université de Paris, INSERM U965 and Physiologie Clinique - Explorations-Fonctionnelles, AP-HP, Hôpital Lariboisière
- Université de Paris, INSERM U1148, Hôpital Bichat, Paris, France
| | - Daniel Henrion
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Centre, INSERM
| |
Collapse
|
39
|
Kobayashi T, Kurano M, Nanya M, Shimizu T, Ohkawa R, Tozuka M, Yatomi Y. Glycation of HDL Polymerizes Apolipoprotein M and Attenuates Its Capacity to Bind to Sphingosine 1-Phosphate. J Atheroscler Thromb 2021; 28:730-741. [PMID: 32999208 PMCID: PMC8265924 DOI: 10.5551/jat.55699] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim:
Recently, it has been established that most of the pleiotropic effects of high-density lipoprotein (HDL) are attributed to sphingosine 1-phosphate (S1P), which rides on HDL via apolipoprotein M (ApoM). In subjects with diabetes mellitus, both the pleiotropic effects of HDL and its role in reverse cholesterol transport are reported to be impaired. To elucidate the mechanisms underlying the impaired pleiotropic effects of HDL in subjects with diabetes, from the aspects of S1P and ApoM.
Methods:
The incubation of HDL in a high-glucose condition resulted in the dimerization of ApoM. Moreover, the treatment of HDL with methylglyoxal resulted in the modulation of the ApoM structure, as suggested by the results of western blot analysis, isoelectric focusing electrophoresis, and two-dimensional gel electrophoresis, which was reversed by treatment with anti-glycation reagents.
Results:
The glycation of HDL resulted in impaired binding of the glycated HDL to S1P, and the S1P on glycated HDL degraded faster. In the case of human subjects, on the other hand, although both the serum ApoM levels and the ApoM content in HDL were lower in subjects with diabetes, we did not observe the polymerization of ApoM.
Conclusions:
Modulation of the quantity and quality of ApoM might explain, at least in part, the impaired functions of HDL in subjects with diabetes mellitus. ApoM might be a useful target for laboratory testing and/or the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Tamaki Kobayashi
- Department of Clinical Laboratory Medicine, The University of Tokyo.,Analytical Laboratory Chemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo
| | - Mai Nanya
- Department of Clinical Laboratory Medicine, The University of Tokyo
| | - Tomo Shimizu
- Research and Development Division, Tsukuba Research Institute, Sekisui Medical Co., Ltd
| | - Ryunosuke Ohkawa
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Minoru Tozuka
- Life Science Research Center, Nagano Children's Hospital
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo
| |
Collapse
|
40
|
Drexler Y, Molina J, Mitrofanova A, Fornoni A, Merscher S. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. J Am Soc Nephrol 2021; 32:9-31. [PMID: 33376112 PMCID: PMC7894665 DOI: 10.1681/asn.2020050697] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few decades, sphingolipids and sphingolipid metabolites have gained attention because of their essential role in the pathogenesis and progression of kidney diseases. Studies in models of experimental and clinical nephropathies have described accumulation of sphingolipids and sphingolipid metabolites, and it has become clear that the intracellular sphingolipid composition of renal cells is an important determinant of renal function. Proper function of the glomerular filtration barrier depends heavily on the integrity of lipid rafts, which include sphingolipids as key components. In addition to contributing to the structural integrity of membranes, sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), play important roles as second messengers regulating biologic processes, such as cell growth, differentiation, migration, and apoptosis. This review will focus on the role of S1P in renal cells and how aberrant extracellular and intracellular S1P signaling contributes to the pathogenesis and progression of kidney diseases.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | |
Collapse
|
41
|
Engelbrecht E, MacRae CA, Hla T. Lysolipids in Vascular Development, Biology, and Disease. Arterioscler Thromb Vasc Biol 2020; 41:564-584. [PMID: 33327749 DOI: 10.1161/atvbaha.120.305565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Membrane phospholipid metabolism forms lysophospholipids, which possess unique biochemical and biophysical properties that influence membrane structure and dynamics. However, lysophospholipids also function as ligands for G-protein-coupled receptors that influence embryonic development, postnatal physiology, and disease. The 2 most well-studied species-lysophosphatidic acid and S1P (sphingosine 1-phosphate)-are particularly relevant to vascular development, physiology, and cardiovascular diseases. This review summarizes the role of lysophosphatidic acid and S1P in vascular developmental processes, endothelial cell biology, and their roles in cardiovascular disease processes. In addition, we also point out the apparent connections between lysophospholipid biology and the Wnt (int/wingless family) pathway, an evolutionarily conserved fundamental developmental signaling system. The discovery that components of the lysophospholipid signaling system are key genetic determinants of cardiovascular disease has warranted current and future research in this field. As pharmacological approaches to modulate lysophospholipid signaling have entered the clinical sphere, new findings in this field promise to influence novel therapeutic strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| | - Calum A MacRae
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Department of Medicine (C.A.M.), Harvard Medical School, Boston, MA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Márquez AB, Nazir S, van der Vorst EP. High-Density Lipoprotein Modifications: A Pathological Consequence or Cause of Disease Progression? Biomedicines 2020; 8:biomedicines8120549. [PMID: 33260660 PMCID: PMC7759904 DOI: 10.3390/biomedicines8120549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
High-density lipoprotein (HDL) is well-known for its cardioprotective effects, as it possesses anti-inflammatory, anti-oxidative, anti-thrombotic, and cytoprotective properties. Traditionally, studies and therapeutic approaches have focused on raising HDL cholesterol levels. Recently, it became evident that, not HDL cholesterol, but HDL composition and functionality, is probably a more fruitful target. In disorders, such as chronic kidney disease or cardiovascular diseases, it has been observed that HDL is modified and becomes dysfunctional. There are different modification that can occur, such as serum amyloid, an enrichment and oxidation, carbamylation, and glycation of key proteins. Additionally, the composition of HDL can be affected by changes to enzymes such as cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and phospholipid transfer protein (PLTP) or by modification to other important components. This review will highlight some main modifications to HDL and discuss whether these modifications are purely a consequential result of pathology or are actually involved in the pathology itself and have a causal role. Therefore, HDL composition may present a molecular target for the amelioration of certain diseases, but more information is needed to determine to what extent HDL modifications play a causal role in disease development.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Sumra Nazir
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P.C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-241-80-36914
| |
Collapse
|
43
|
Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal 2020; 78:109849. [PMID: 33249088 DOI: 10.1016/j.cellsig.2020.109849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important immune modulator responsible for physiological cellular responses like lymphocyte development and function, positioning and emigration of T and B cells and cytokine secretion. Recent reports indicate that S1P does not only regulate immunity, but can also protect the function of organs by inducing disease tolerance. S1P also influences the replication of certain pathogens, and sphingolipids are also involved in pathogen recognition and killing. Certain carrier molecules for S1P like serum albumin and high density lipoproteins contribute to the regulation of S1P effects. They are able to associate with S1P and modulate its signaling properties. Similar to S1P, both carrier molecules are also decreased in sepsis patients and likely contribute to sepsis pathology and severity. In this review, we will introduce the concept of disease tolerance and the involvement of S1P. We will also discuss the contribution of S1P and its precursor sphingosine to host defense mechanisms against pathogens. Finally, we will summarize current data demonstrating the influence of carrier molecules for differential S1P signaling. The presented data may lead to new strategies for the prevention and containment of sepsis.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
44
|
Emerging roles of lysophospholipids in health and disease. Prog Lipid Res 2020; 80:101068. [PMID: 33068601 DOI: 10.1016/j.plipres.2020.101068] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022]
Abstract
Lipids are abundant and play essential roles in human health and disease. The main functions of lipids are building blocks for membrane biogenesis. However, lipids are also metabolized to produce signaling molecules. Here, we discuss the emerging roles of circulating lysophospholipids. These lysophospholipids consist of lysoglycerophospholipids and lysosphingolipids. They are both present in cells at low concentration, but their concentrations in extracellular fluids are significantly higher. The biological functions of some of these lysophospholipids have been recently revealed. Remarkably, some of the lysophospholipids play pivotal signaling roles as well as being precursors for membrane biogenesis. Revealing how circulating lysophospholipids are produced, released, transported, and utilized in multi-organ systems is critical to understand their functions. The discovery of enzymes, carriers, transporters, and membrane receptors for these lysophospholipids has shed light on their physiological significance. In this review, we summarize the biological roles of these lysophospholipids via discussing about the proteins regulating their functions. We also discuss about their potential impacts to human health and diseases.
Collapse
|
45
|
Chua XY, Chai YL, Chew WS, Chong JR, Ang HL, Xiang P, Camara K, Howell AR, Torta F, Wenk MR, Hilal S, Venketasubramanian N, Chen CP, Herr DR, Lai MKP. Immunomodulatory sphingosine-1-phosphates as plasma biomarkers of Alzheimer's disease and vascular cognitive impairment. Alzheimers Res Ther 2020; 12:122. [PMID: 32998767 PMCID: PMC7528375 DOI: 10.1186/s13195-020-00694-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND There has been ongoing research impetus to uncover novel blood-based diagnostic and prognostic biomarkers for Alzheimer's disease (AD), vascular dementia (VaD), and related cerebrovascular disease (CEVD)-associated conditions within the spectrum of vascular cognitive impairment (VCI). Sphingosine-1-phosphates (S1Ps) are signaling lipids which act on the S1PR family of cognate G-protein-coupled receptors and have been shown to modulate neuroinflammation, a process known to be involved in both neurodegenerative and cerebrovascular diseases. However, the status of peripheral S1P in AD and VCI is at present unclear. METHODS We obtained baseline bloods from individuals recruited into an ongoing longitudinal cohort study who had normal cognition (N = 80); cognitive impairment, no dementia (N = 160); AD (N = 113); or VaD (N = 31), along with neuroimaging assessments of cerebrovascular diseases. Plasma samples were processed for the measurements of major S1P species: d16:1, d17:1, d18:0, and d18:1, along with pro-inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF). Furthermore, in vitro effects of S1Ps on cytokine expression were also studied in an astrocytoma cell line and in rodent primary astrocytes. RESULTS Of the S1Ps species measured, only d16:1 S1P was significantly reduced in the plasma of VaD, but not AD, patients, while the d18:1 to d16:1 ratios were increased in all cognitive subgroups (CIND, AD, and VaD). Furthermore, d18:1 to d16:1 ratios correlated with levels of IL-6, IL-8, and TNF. In both primary astrocytes and an astroglial cell line, treatment with d16:1 or d18:1 S1P resulted in the upregulation of mRNA transcripts of pro-inflammatory cytokines, with d18:1 showing a stronger effect than d16:1. Interestingly, co-treatment assays showed that the addition of d16:1 reduced the extent of d18:1-mediated gene expression, indicating that d16:1 may function to "fine-tune" the pro-inflammatory effects of d18:1. CONCLUSION Taken together, our data suggest that plasma d16:1 S1P may be useful as a diagnostic marker for VCI, while the d18:1 to d16:1 S1P ratio is an index of dysregulated S1P-mediated immunomodulation leading to chronic inflammation-associated neurodegeneration and cerebrovascular damage.
Collapse
Affiliation(s)
- Xin Ying Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Cancer Science Institute, National University of Singapore, Kent Ridge, Singapore
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
| | - Kaddy Camara
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Kent Ridge, Singapore
| | | | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore.
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore.
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore.
| |
Collapse
|
46
|
Dhangadamajhi G, Singh S. Sphingosine 1-Phosphate in Malaria Pathogenesis and Its Implication in Therapeutic Opportunities. Front Cell Infect Microbiol 2020; 10:353. [PMID: 32923406 PMCID: PMC7456833 DOI: 10.3389/fcimb.2020.00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Sphingosine 1-Phosphate (S1P) is a bioactive lipid intermediate in the sphingolipid metabolism, which exist in two pools, intracellular and extracellular, and each pool has a different function. The circulating extracellular pool, specifically the plasma S1P is shown to be important in regulating various physiological processes related to malaria pathogenesis in recent years. Although blood cells (red blood cells and platelets), vascular endothelial cells and hepatocytes are considered as the important sources of plasma S1P, their extent of contribution is still debated. The red blood cells (RBCs) and platelets serve as a major repository of intracellular S1P due to lack, or low activity of S1P degrading enzymes, however, contribution of platelets toward maintaining plasma S1P is shown negligible under normal condition. Substantial evidences suggest platelets loss during falciparum infection as a contributing factor for severe malaria. However, platelets function as a source for plasma S1P in malaria needs to be examined experimentally. RBC being the preferential site for parasite seclusion, and having the ability of trans-cellular S1P transportation to EC upon tight cell-cell contact, might play critical role in differential S1P distribution and parasite growth. In the present review, we have summarized the significance of both the S1P pools in the context of malaria, and how the RBC content of S1P can be channelized in better ways for its possible implication in therapeutic opportunities to control malaria.
Collapse
Affiliation(s)
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
47
|
Anwar M, Mehta D. Post-translational modifications of S1PR1 and endothelial barrier regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158760. [PMID: 32585303 PMCID: PMC7409382 DOI: 10.1016/j.bbalip.2020.158760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Sphingosine-1-phosphate receptor-1 (S1PR1), a G-protein coupled receptor that is expressed in endothelium and activated upon ligation by the bioactive lipid sphingosine-1-phosphate (S1P), is an important vascular-barrier protective mechanism at the level of adherens junctions (AJ). Loss of endothelial barrier function is a central factor in the pathogenesis of various inflammatory conditions characterized by protein-rich lung edema formation, such as acute respiratory distress syndrome (ARDS). While several S1PR1 agonists are available, the challenge of arresting the progression of protein-rich edema formation remains to be met. In this review, we discuss the role of S1PRs, especially S1PR1, in regulating endothelial barrier function. We review recent findings showing that replenishment of the pool of cell-surface S1PR1 may be crucial to the effectiveness of S1P in repairing the endothelial barrier. In this context, we discuss the S1P generating machinery and mechanisms that regulate S1PR1 at the cell surface and their impact on endothelial barrier function.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America.
| |
Collapse
|
48
|
Ma Y, Zhang S, Jin Z, Shi M. Lipid-mediated regulation of the cancer-immune crosstalk. Pharmacol Res 2020; 161:105131. [PMID: 32810628 DOI: 10.1016/j.phrs.2020.105131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Besides acting as principle cellular building blocks and energy reservoirs, lipids also carry important signals associated with many fundamental cell biological processes, such as proliferation, differentiation, migration, stress responses and cell demise. Hyperactive lipid metabolism is closely associated with cancer progression and unfavorable outcomes. The underlying mechanisms are being gradually deciphered. In this review, we aim to summarize recent advances on how reprogrammed lipid metabolism and accompanying signaling cascades directly modulate cancer cells, as well as influencing stromal cells and immune cells within the tumor microenvironment. For future studies, special attention should be paid to lipid-mediated crosstalk among cancer cells, their neighboring stromal cells, and immune cells, plus how these multi-level communications determine anti-tumor immunity and bring novel immunotherapeutic opportunities.
Collapse
Affiliation(s)
- Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.
| | - Shuqing Zhang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Ziqi Jin
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Minxin Shi
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| |
Collapse
|
49
|
Ouyang J, Shu Z, Chen S, Xiang H, Lu H. The role of sphingosine 1-phosphate and its receptors in cardiovascular diseases. J Cell Mol Med 2020; 24:10290-10301. [PMID: 32803879 PMCID: PMC7521328 DOI: 10.1111/jcmm.15744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
There are many different types of cardiovascular diseases, which impose a huge economic burden due to their extremely high mortality rates, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine 1‐phosphate (S1P) is a bioactive lipid mediator with paracrine and autocrine activities that acts through its cell surface S1P receptors (S1PRs) and intracellular signals. In the circulatory system, S1P is indispensable for both normal and disease conditions; however, there are very different views on its diverse roles, and its specific relevance to cardiovascular pathogenesis remains elusive. Here, we review the synthesis, release and functions of S1P, specifically detail the roles of S1P and S1PRs in some common cardiovascular diseases, and then address several controversial points, finally, we focus on the development of S1P‐based therapeutic approaches in cardiovascular diseases, such as the selective S1PR1 modulator amiselimod (MT‐1303) and the non‐selective S1PR1 and S1PR3 agonist fingolimod, which may provide valuable insights into potential therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ouyang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihao Shu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
50
|
Murine platelet production is suppressed by S1P release in the hematopoietic niche, not facilitated by blood S1P sensing. Blood Adv 2020; 3:1702-1713. [PMID: 31171507 DOI: 10.1182/bloodadvances.2019031948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
The bioactive lipid mediator sphingosine 1-phosphate (S1P) was recently assigned critical roles in platelet biology: whereas S1P1 receptor-mediated S1P gradient sensing was reported to be essential for directing proplatelet extensions from megakaryocytes (MKs) toward bone marrow sinusoids, MK sphingosine kinase 2 (Sphk2)-derived S1P was reported to further promote platelet shedding through receptor-independent intracellular actions, and platelet aggregation through S1P1 Yet clinical use of S1P pathway modulators including fingolimod has not been associated with risk of bleeding or thrombosis. We therefore revisited the role of S1P in platelet biology in mice. Surprisingly, no reduction in platelet counts was observed when the vascular S1P gradient was ablated by impairing S1P provision to plasma or S1P degradation in interstitial fluids, nor when gradient sensing was impaired by S1pr1 deletion selectively in MKs. Moreover, S1P1 expression and signaling were both undetectable in mature MKs in situ, and MK S1pr1 deletion did not affect platelet aggregation or spreading. When S1pr1 deletion was induced in hematopoietic progenitor cells, platelet counts were instead significantly elevated. Isolated global Sphk2 deficiency was associated with thrombocytopenia, but this was not replicated by MK-restricted Sphk2 deletion and was reversed by compound deletion of either Sphk1 or S1pr2, suggesting that this phenotype arises from increased S1P export and S1P2 activation secondary to redistribution of sphingosine to Sphk1. Consistent with clinical observations, we thus observe no essential role for S1P1 in facilitating platelet production or activation. Instead, S1P restricts megakaryopoiesis through S1P1, and can further suppress thrombopoiesis through S1P2 when aberrantly secreted in the hematopoietic niche.
Collapse
|