1
|
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2025; 22:9-22. [PMID: 39420154 PMCID: PMC7616774 DOI: 10.1038/s41575-024-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Zhao W, Yang R, Meng X, Xu SQ, Li MM, Hao ZC, Wang SY, Jiang YK, Naseem A, Chen QS, Zhang LL, Kuang HX, Yang BY, Liu Y. Panax quinquefolium saponins protects neuronal activity by promoting mitophagy in both in vitro and in vivo models of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119250. [PMID: 39681202 DOI: 10.1016/j.jep.2024.119250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the realm of traditional Chinese medicine, Panax quinquefolius L. has garnered significant attention for its potential to treat various ailments associated with deficiencies, including qi, blood, and kidneys. As its primary bioactive constituent, Panax quinquefolius saponins (PQS) have the potential therapeutic role of Alzheimer's disease (AD) treatment, but with unclear mechanisms of action. Meanwhile, AD is considered as a common dementia disease with kidney insufficiency and deficiency by traditional medicine, and often accompanied by autophagy in modern medical research. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of PQS on AD through the regulation of mitophagy. MATERIALS AND METHODS The chemical constituents of PQS were characterized using the UPLC-QTOF-MS technique. After that, the HT22 cell line was used to establish the D-galactose-induced cell model, and the SAMP8 mice model of AD was also employed. Cell viability was assessed using the CCK-8 assay, ROS detection, JC-1 staining, Mito-tracker Red and LC3 staining, and Mito-tracker Green and Lyso-tracker Red staining were used to assess levels of mitophagy. The Morris Water Maze (MWM) was used for the experimental evaluation of learning and memory abilities in mice. Subsequently, the mechanism was studied by pathological staining and western blotting. RESULTS Fifty-eight triterpenoid saponins were identified from PQS, and PQS alleviated D-galactose-induced HT22 cell death and increased intracellular levels of mitochondrial autophagy-related factors. In vivo, PQS significantly improved cognitive deficits and mitigated AD-like pathological features by activating the mitophagy mechanism. Furthermore, PQS may promote Pink1/Parkin-mediated mitophagy by activating the AMPK/mTOR/ULK1/DRP1 and SIRT1/PGC-1α pathways. CONCLUSION In conclusion, PQS have demonstrated the potential to mitigate mitochondrial dysfunction and enhance cognitive function in AD through the activation of mitophagy. This promising strategy holds great promise for the treatment of AD.
Collapse
Affiliation(s)
- Wei Zhao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Rui Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Xin Meng
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Shi-Qi Xu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Meng-Meng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Zhi-Chao Hao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Si-Yi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yi-Kai Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Anam Naseem
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Qing-Shan Chen
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), Heilongjiang, Harbin, 150040, People's Republic of China.
| | - Li-Li Zhang
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), Heilongjiang, Harbin, 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Bing-You Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| |
Collapse
|
3
|
Hu H, Hu J, Chen Z, Yang K, Zhu Z, Hao Y, Zhang Z, Li W, Peng Z, Cao Y, Sun X, Zhang F, Chi Q, Ding G, Liang W. RBBP6-Mediated ERRα Degradation Contributes to Mitochondrial Injury in Renal Tubular Cells in Diabetic Kidney Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405153. [PMID: 39441040 PMCID: PMC11633482 DOI: 10.1002/advs.202405153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Diabetic Kidney Disease (DKD), a major precursor to end-stage renal disease, involves mitochondrial dysfunction in proximal renal tubular cells (PTCs), contributing to its pathogenesis. Estrogen-related receptor α (ERRα) is essential for mitochondrial integrity in PTCs, yet its regulation in DKD is poorly understood. This study investigates ERRα expression and its regulatory mechanisms in DKD, assessing its therapeutic potential. Using genetic, biochemical, and cellular approaches, ERRα expression Was examined in human DKD specimens and DKD mouse models. We identified the E3 ubiquitin ligase retinoblastoma binding protein 6 (RBBP6) as a regulator of ERRα, promoting its degradation through K48-linked polyubiquitination at the K100 residue. This degradation pathway significantly contributed to mitochondrial injury in PTCs of DKD models. Notably, conditional ERRα overexpression or RBBP6 inhibition markedly reduced mitochondrial damage in diabetic mice, highlighting ERRα's protective role in maintaining mitochondrial integrity. The interaction between RBBP6 and ERRα opens new therapeutic avenues, suggesting that modulating RBBP6-ERRα interactions could be a strategy for preserving mitochondrial function and slowing DKD progression.
Collapse
Affiliation(s)
- Hongtu Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Jijia Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Zhaowei Chen
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Keju Yang
- The First College of Clinical Medical ScienceChina Three Gorges UniversityYichang443000China
| | - Zijing Zhu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Yiqun Hao
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Zongwei Zhang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Weiwei Li
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Zhuan Peng
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Yun Cao
- Department of NephrologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College)Haikou100053China
| | - Xiaoling Sun
- Ultrastructural Pathology CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Fangcheng Zhang
- Ultrastructural Pathology CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Qingjia Chi
- Department of Mechanics and Engineering StructureWuhan University of TechnologyWuhan430070China
| | - Guohua Ding
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| |
Collapse
|
4
|
Romão JS, Neto JGO, Andrade CBV, Carvalho JJ, Pazos-Moura CC, Oliveira KJ. Hypothyroidism modulates mitochondrial dynamics and mitophagy in the heart of rats under fed and fasting conditions. Life Sci 2024; 359:123254. [PMID: 39549934 DOI: 10.1016/j.lfs.2024.123254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
AIMS Investigate the impact of hypothyroidism on mitochondrial dynamics and mitophagy in the heart under fed and fasting conditions. METHODS Hypothyroidism was induced in male Wistar rats with methimazole (0.03 %) for 21 days. Half of the euthyroid and hypothyroid groups underwent a 48-h fasting. Mitochondrial number and ultrastructure were evaluated by transmission electron microscopy. Fusion, fission, mitophagy, oxidative stress, and mitochondrial oxidative phosphorylation system (OXPHOS) components were analyzed by Western Blot and qPCR. RESULTS Hypothyroidism increased DRP1 activation and the p-DRP1/OPA1 ratio, indicating a shift toward mitochondrial fission over fusion. Under fasting, hypothyroidism prevented the increases in mitochondrial size, elongation, OPA1, and OXPHOS seen in euthyroid fasted rats. Hypothyroidism also raised 4-HNE content, an oxidative stress product, increased mitochondrial injury, and exacerbated fasting-related mitochondrial damage. This was accompanied by elevated Parkin levels in both fed and fasted hypothyroid groups, but without changes in PINK1 levels or Parkin activation. While fasting upregulated Bnip3l and Map1lc3b expression in euthyroid rats, hypothyroidism suppressed this response, though it did not prevent fasting-induced Bnip3 increases. CONCLUSIONS Hypothyroidism increases the activation of mitochondrial fission machinery and oxidative stress, and induces mitochondrial damage without activation of mitophagy proteins, suggesting disrupted mitophagy signaling. It also interferes with fasting-induced mitochondrial dynamics adaptations, highlighting the essential role of thyroid hormones in metabolic adaptation to fasting.
Collapse
Affiliation(s)
- Juliana Santos Romão
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Jessika Geisebel Oliveira Neto
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Cidade Universitária - Ilha do fundão, Rio de Janeiro, RJ, Brazil
| | | | - Jorge José Carvalho
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carmen Cabanelas Pazos-Moura
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Cidade Universitária - Ilha do fundão, Rio de Janeiro, RJ, Brazil
| | - Karen Jesus Oliveira
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, RJ, Brazil.
| |
Collapse
|
5
|
Xue JL, Ji JL, Zhou Y, Zhang Y, Liu BC, Ma RX, Li ZL. The multifaceted effects of mitochondria in kidney diseases. Mitochondrion 2024; 79:101957. [PMID: 39270830 DOI: 10.1016/j.mito.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria serve as the primary site for aerobic respiration within cells, playing a crucial role in maintaining cellular homeostasis. To maintain homeostasis and meet the diverse demands of the cells, mitochondria have evolved intricate systems of quality control, mainly including mitochondrial dynamics, mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. The kidney, characterized by its high energy requirements, is particularly abundant in mitochondria. Interestingly, the mitochondria display complex behaviors and functions. When the kidney is suffered from obstructive, ischemic, hypoxic, oxidative, or metabolic insults, the dysfunctional mitochondrial derived from the defects in the mitochondrial quality control system contribute to cellular inflammation, cellular senescence, and cell death, posing a threat to the kidney. However, in addition to causing injury to the kidney in several cases, mitochondria also exhibit protective effect on the kidney. In recent years, accumulating evidence indicated that mitochondria play a crucial role in adaptive repair following kidney diseases caused by various etiologies. In this article, we comprehensively reviewed the current understanding about the multifaceted effects of mitochondria on kidney diseases and their therapeutic potential.
Collapse
Affiliation(s)
- Jia-Le Xue
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Borisov V, Shkil F. Effects and phenotypic consequences of transient thyrotoxicosis and hypothyroidism at different stages of zebrafish Danio rerio (Teleostei; Cyprinidae) skeleton development. Anat Rec (Hoboken) 2024. [PMID: 39431292 DOI: 10.1002/ar.25592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
The effects and consequences of changes in thyroid hormones (THs) level are among the actively studied topics in teleost developmental and evolutionary biology. In most of the experimental models used, the altered hormonal status (either hypo- or hyperthyroidism) is a stable characteristic of the developing organism, and the observed phenotypic outcomes are the cumulative consequences of multiple TH-induced developmental changes. Meanwhile, the influence of the transient fluctuations of TH content on skeleton development has been much less studied. Here, we present experimental data on the developmental effects and phenotypic consequences of transient, pharmacologically induced thyrotoxicosis and hypothyroidism at different stages of ossified skeleton patterning in zebrafish. According to the results, the skeleton structures differed in TH sensitivity. Some showed a notable shift in the developmental timing and rate, while other demonstrated little or no response to changes in TH content. The developmental stages also differed in TH sensitivity. We identified a relatively short developmental period, during which changes in TH level significantly increased the developmental instability and plasticity, leading to phenotypic consequences comparable to those in fish with a persistent hypo- or hyperthyroidism. These findings allow this period to be considered as a critical developmental window.
Collapse
Affiliation(s)
- Vasily Borisov
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
| | - Fedor Shkil
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
- N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| |
Collapse
|
7
|
Ratziu V, Scanlan TS, Bruinstroop E. Thyroid hormone receptor-β analogs for the treatment of Metabolic Dysfunction-Associated Steatohepatitis (MASH). J Hepatol 2024:S0168-8278(24)02639-4. [PMID: 39428045 DOI: 10.1016/j.jhep.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The association between suboptimal thyroid function ((sub)clinical hypothyroidism or low normal thyroid function) and the metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD) is clearly established. Furthermore, in MASLD, thyroid hormones have low intracellular concentrations and the activation of the thyroid hormone receptor (THR) is reduced. Administration of thyroid hormone has been shown to reduce liver triglycerides by stimulating fatty acid disposal through lipophagy and beta-oxidation, and to lower LDL-cholesterol. As thyroid hormone exerts it's effects in many different organs, including heart and bone, several drug candidates have been developed acting as selective thyromimetics for the THR-β nuclear receptor with potent and targeted liver actions. Importantly, these compounds have reduced affinity for the THR-α nuclear receptor and tissue distribution profiles that differ from endogenous thyroid hormones thereby reducing unwanted cardiovascular side effects. The most advanced compound, resmetirom, is an oral drug that demonstrated, in a large phase 3 trial in MASH patients, the ability to remove liver fat, reduce aminotransferase levels and improve atherogenic dyslipidemia with a good tolerability profile. This translated into histological improvement that led to accelerated approval of this drug for active fibrotic steatohepatitis, a milestone achievement as a first MASH drug.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, ICAN Institute for Cardiometabolism and Nutrition, INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Yang Y, Xiao J, Qiu W, Jiang L. Cross-Talk Between Thyroid Disorders and Nonalcoholic Fatty Liver Disease: From Pathophysiology to Therapeutics. Horm Metab Res 2024; 56:697-705. [PMID: 38408595 DOI: 10.1055/a-2276-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The medical community acknowledges the presence of thyroid disorders and nonalcoholic fatty liver disease (NAFLD). Nevertheless, the interconnection between these two circumstances is complex. Thyroid hormones (THs), including triiodothyronine (T3) and thyroxine (T4), and thyroid-stimulating hormone (TSH), are essential for maintaining metabolic balance and controlling the metabolism of lipids and carbohydrates. The therapeutic potential of THs, especially those that target the TRβ receptor isoform, is generating increasing interest. The review explores the pathophysiology of these disorders, specifically examining the impact of THs on the metabolism of lipids in the liver. The purpose of this review is to offer a thorough analysis of the correlation between thyroid disorders and NAFLD, as well as suggest potential therapeutic approaches for the future.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiyuan Xiao
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Qiu
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Luxia Jiang
- Department of Cardiac Surgery ICU, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
Sinha RA. Thyroid Hormone-Mediated Selective Autophagy and Its Implications in Countering Metabolic Dysfunction-Associated Steatotic Liver Disease. Endocrinol Metab (Seoul) 2024; 39:686-692. [PMID: 39397515 PMCID: PMC11525703 DOI: 10.3803/enm.2024.2068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/15/2024] Open
Abstract
The influence of thyroid hormone (TH) on liver metabolism has attracted the attention of pharmacologists seeking new treatments for metabolic dysfunction-associated steatotic liver disease (MASLD), an increasingly common metabolic disorder. In this context, the selective induction of autophagy by TH in preclinical models has been identified as a promising mechanism. In this process, TH clears intrahepatic fat through lipophagy while protecting against inflammation and mitochondrial damage in hepatocytes via mitophagy. Furthermore, TH-induced aggrephagy may represent a protective mechanism to mitigate the development of MASLD-associated hepatocellular carcinoma. Considering the defects in autophagy observed during the progression of human MASLD, the induction of autophagy by TH, its metabolites, and its analogs represent a novel strategy to combat hepatic damage across the MASLD spectrum.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
10
|
Huang L, Guo Z, Huang M, Zeng X, Huang H. Triiodothyronine (T3) promotes browning of white adipose through inhibition of the PI3K/AKT signalling pathway. Sci Rep 2024; 14:20370. [PMID: 39223267 PMCID: PMC11369215 DOI: 10.1038/s41598-024-71591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity arises from an imbalance between energy consumption and energy expenditure, and thyroid hormone levels serve as a determinant of energy expenditure. We conducted experiments at the animal and cellular levels and combined those findings with clinical data to elucidate the role of triiodothyronine (T3) in facilitating the browning of white adipose tissue (WAT) and its underlying mechanism. The results showed (i) the impaired metabolic function of local WAT and the compensatory elevation of systemic thermogenesis in obesity; (ii) T3 treatment of white adipocytes in vitro and local WAT in vivo induced a shift towards a morphologically "brown" phenotype, accompanied by upregulation of mRNA and protein expression of browning-related and mitochondrial function markers, which suggest that T3 intervention promotes the browning of WAT; and (iii) the aforementioned processes could be modulated through inhibition of the PI3K/AKT signalling pathway; however, whether T3 affects the PI3K/AKT signalling pathway by affecting insulin signalling remains to be studied and clarified. The results of our study indicate that T3 treatment promotes browning of WAT through inhibition of the PI3K/AKT signalling pathway; these findings offer novel perspectives regarding the potential of localised therapies for addressing WAT volume in individuals with obesity.
Collapse
Affiliation(s)
- LingHong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - ZhiFeng Guo
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - MingJing Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - XiYing Zeng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
11
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
12
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Guptta P, Sakthivel S, Teo WW, Naing YT, Arul K, Tikno K, Park SH, Wu Y, Wang L, Bay BH, Sun L, Giguere V, Chow PKH, Ghosh S, McDonnell DP, Yen PM, Singh BK. Esrra regulates Rplp1-mediated translation of lysosome proteins suppressed in metabolic dysfunction-associated steatohepatitis and reversed by alternate day fasting. Mol Metab 2024; 87:101997. [PMID: 39032642 PMCID: PMC11327444 DOI: 10.1016/j.molmet.2024.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Currently, little is known about the mechanism(s) regulating global and specific protein translation during metabolic dysfunction-associated steatohepatitis (MASH; previously known as non-alcoholic steatohepatitis, NASH). METHODS Unbiased label-free quantitative proteome, puromycin-labelling and polysome profiling were used to understand protein translation activity in vitro and in vivo. RESULTS We observed a global decrease in protein translation during lipotoxicity in human primary hepatocytes, mouse hepatic AML12 cells, and livers from a dietary mouse model of MASH. Interestingly, proteomic analysis showed that Rplp1, which regulates ribosome and translation pathways, was one of the most downregulated proteins. Moreover, decreased Esrra expression and binding to the Rplp1 promoter, diminished Rplp1 gene expression during lipotoxicity. This, in turn, reduced global protein translation and Esrra/Rplp1-dependent translation of lysosome (Lamp2, Ctsd) and autophagy (sqstm1, Map1lc3b) proteins. Of note, Esrra did not increase its binding to these gene promoters or their gene transcription, confirming its regulation of their translation during lipotoxicity. Notably, hepatic Esrra-Rplp1-dependent translation of lysosomal and autophagy proteins also was impaired in MASH patients and liver-specific Esrra knockout mice. Remarkably, alternate day fasting induced Esrra-Rplp1-dependent expression of lysosomal proteins, restored autophagy, and reduced lipotoxicity, inflammation, and fibrosis in hepatic cell culture and in vivo models of MASH. CONCLUSIONS Esrra regulation of Rplp1-mediated translation of lysosome/autolysosome proteins was downregulated during MASH. Alternate day fasting activated this novel pathway and improved MASH, suggesting that Esrra and Rplp1 may serve as therapeutic targets for MASH. Our findings also provided the first example of a nuclear hormone receptor, Esrra, to not only regulate transcription but also protein translation, via induction of Rplp1.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie 69364 Lyon Cedex 07, France
| | - Reddemma Sandireddy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Priyanka Guptta
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Suganya Sakthivel
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Wei Wen Teo
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Kabilesh Arul
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Keziah Tikno
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Pierce K H Chow
- Dept of Surgery, Singapore General Hospital and Dept. of Surgical Oncology, National Cancer Centre 169608, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Duke Molecular Physiology Institute and Dept. of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| |
Collapse
|
13
|
Hantusch B, Kenner L, Stanulović VS, Hoogenkamp M, Brown G. Targeting Androgen, Thyroid Hormone, and Vitamin A and D Receptors to Treat Prostate Cancer. Int J Mol Sci 2024; 25:9245. [PMID: 39273194 PMCID: PMC11394715 DOI: 10.3390/ijms25179245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear hormone family of receptors regulates gene expression. The androgen receptor (AR), upon ligand binding and homodimerization, shuttles from the cytosol into the nucleus to activate gene expression. Thyroid hormone receptors (TRs), retinoic acid receptors (RARs), and the vitamin D receptor (VDR) are present in the nucleus bound to chromatin as a heterodimer with the retinoid X receptors (RXRs) and repress gene expression. Ligand binding leads to transcription activation. The hormonal ligands for these receptors play crucial roles to ensure the proper conduct of very many tissues and exert effects on prostate cancer (PCa) cells. Androgens support PCa proliferation and androgen deprivation alone or with chemotherapy is the standard therapy for PCa. RARγ activation and 3,5,3'-triiodo-L-thyronine (T3) stimulation of TRβ support the growth of PCa cells. Ligand stimulation of VDR drives growth arrest, differentiation, and apoptosis of PCa cells. Often these receptors are explored as separate avenues to find treatments for PCa and other cancers. However, there is accumulating evidence to support receptor interactions and crosstalk of regulatory events whereby a better understanding might lead to new combinatorial treatments.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Christian Doppler Laboratory for Applied Metabolomics, Medical University Vienna, 1090 Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Vesna S. Stanulović
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
15
|
Raza S, Rajak S, Yen PM, Sinha RA. Autophagy and hepatic lipid metabolism: mechanistic insight and therapeutic potential for MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:19. [PMID: 39100919 PMCID: PMC11296953 DOI: 10.1038/s44324-024-00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) originates from a homeostatic imbalance in hepatic lipid metabolism. Increased fat deposition in the liver of people suffering from MASLD predisposes them to develop further metabolic derangements, including diabetes mellitus, metabolic dysfunction-associated steatohepatitis (MASH), and other end-stage liver diseases. Unfortunately, only limited pharmacological therapies exist for MASLD to date. Autophagy, a cellular catabolic process, has emerged as a primary mechanism of lipid metabolism in mammalian hepatocytes. Furthermore, preclinical studies with autophagy modulators have shown promising results in resolving MASLD and mitigating its progress into deleterious liver pathologies. In this review, we discuss our current understanding of autophagy-mediated hepatic lipid metabolism, its therapeutic modulation for MASLD treatment, and current limitations and scope for clinical translation.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| |
Collapse
|
16
|
Wang TT, Alston TA. Beta-Blockers for Shelter From the Storm. Crit Care Med 2024; 52:1158-1160. [PMID: 38869392 DOI: 10.1097/ccm.0000000000006317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Affiliation(s)
- Tim T Wang
- Division of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA
| | - Theodore A Alston
- Department of Physical Therapy, Office of Graduate Study, Northeastern University, Boston, MA
| |
Collapse
|
17
|
Wang ZH, Wang J, Liu F, Sun S, Zheng Q, Hu X, Yin Z, Xie C, Wang H, Wang T, Zhang S, Wang YP. THAP3 recruits SMYD3 to OXPHOS genes and epigenetically promotes mitochondrial respiration in hepatocellular carcinoma. FEBS Lett 2024; 598:1513-1531. [PMID: 38664231 DOI: 10.1002/1873-3468.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria harbor the oxidative phosphorylation (OXPHOS) system to sustain cellular respiration. However, the transcriptional regulation of OXPHOS remains largely unexplored. Through the cancer genome atlas (TCGA) transcriptome analysis, transcription factor THAP domain-containing 3 (THAP3) was found to be strongly associated with OXPHOS gene expression. Mechanistically, THAP3 recruited the histone methyltransferase SET and MYND domain-containing protein 3 (SMYD3) to upregulate H3K4me3 and promote OXPHOS gene expression. The levels of THAP3 and SMYD3 were altered by metabolic cues. They collaboratively supported liver cancer cell proliferation and colony formation. In clinical human liver cancer, both of them were overexpressed. THAP3 positively correlated with OXPHOS gene expression. Together, THAP3 cooperates with SMYD3 to epigenetically upregulate cellular respiration and liver cancer cell proliferation.
Collapse
Affiliation(s)
- Zi-Hao Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Sijun Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaotian Hu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zihan Yin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, China
| | - Shengjie Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yi-Ping Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
18
|
Sheng Y, Zhu X, Wei L, Zou Y, Qi X, Shi R, Xu W, Wang X, Ding G, Duan Y. Aberrant expression of thyroidal hormone receptor α exasperating mitochondrial dysfunction induced sarcopenia in aged mice. Aging (Albany NY) 2024; 16:7141-7152. [PMID: 38643465 PMCID: PMC11087121 DOI: 10.18632/aging.205748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
Disrupted mitochondrial dynamics and mitophagy contribute to functional deterioration of skeletal muscle (SM) during aging, but the regulatory mechanisms are poorly understood. Our previous study demonstrated that the expression of thyroid hormone receptor α (TRα) decreased significantly in aged mice, suggesting that the alteration of thyroidal elements, especially the decreased TRα, might attenuate local THs action thus to cause the degeneration of SM with aging, while the underlying mechanism remains to be further explored. In this study, decreased expression of myogenic regulators Myf5, MyoD1, mitophagy markers Pink1, LC3II/I, p62, as well as mitochondrial dynamic factors Mfn1 and Opa1, accompanied by increased reactive oxygen species (ROS), showed concomitant changes with reduced TRα expression in aged mice. Further TRα loss- and gain-of-function studies in C2C12 revealed that silencing of TRα not only down-regulated the expression of above-mentioned myogenic regulators, mitophagy markers and mitochondrial dynamic factors, but also led to a significant decrease in mitochondrial activity and maximum respiratory capacity, as well as more mitochondrial ROS and damaged mitochondria. Notedly, overexpression of TRα could up-regulate the expression of those myogenic regulators, mitophagy markers and mitochondrial dynamic factors, meanwhile also led to an increase in mitochondrial activity and number. These results confirmed that TRα could concertedly regulate mitochondrial dynamics, autophagy, and activity, and myogenic regulators rhythmically altered with TRα expression. Summarily, these results suggested that the decline of TRα might cause the degeneration of SM with aging by regulating mitochondrial dynamics, mitophagy and myogenesis.
Collapse
Affiliation(s)
- Yunlu Sheng
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xiaoxia Zhu
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Lijun Wei
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Yuxin Zou
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xinyu Qi
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Runqing Shi
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Wenli Xu
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xiaodong Wang
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Yu Duan
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| |
Collapse
|
19
|
Sinha RA, Yen PM. Metabolic Messengers: Thyroid Hormones. Nat Metab 2024; 6:639-650. [PMID: 38671149 PMCID: PMC7615975 DOI: 10.1038/s42255-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/15/2024] [Indexed: 04/28/2024]
Abstract
Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Div. Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
21
|
Vanacker JM, Forcet C. ERRα: unraveling its role as a key player in cell migration. Oncogene 2024; 43:379-387. [PMID: 38129506 DOI: 10.1038/s41388-023-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Cell migration is essential throughout the life of multicellular organisms, and largely depends on the spatial and temporal regulation of cytoskeletal dynamics, cell adhesion and signal transduction. Interestingly, Estrogen-related receptor alpha (ERRα) has been identified as a major regulator of cell migration in both physiological and pathological conditions. ERRα is an orphan member of the nuclear hormone receptor superfamily of transcription factors and displays many biological functions. ERRα is a global regulator of energy metabolism, and it is also highly involved in bone homeostasis, development, differentiation, immunity and cancer progression. Importantly, in some instances, the regulation of these biological processes relies on the ability to orchestrate cell movements. Therefore, this review describes how ERRα-mediated cell migration contributes not only to tissue homeostasis but also to tumorigenesis and metastasis, and highlights the molecular and cellular mechanisms by which ERRα finely controls the cell migratory potential.
Collapse
Affiliation(s)
- Jean-Marc Vanacker
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
22
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Gupta P, Sakthivel S, Jiemin N, Arul K, Tikno K, Park SH, Wang L, Ho L, Giguere V, Ghosh S, McDonnell DP, Yen PM, Singh BK. Estrogen receptor-related receptor (Esrra) induces ribosomal protein Rplp1-mediated adaptive hepatic translation during prolonged starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574937. [PMID: 38260502 PMCID: PMC10802477 DOI: 10.1101/2024.01.09.574937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods in vitro and in vivo to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, estrogen-related receptor alpha (Esrra) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating 60S acidic ribosomal protein P1 (Rplp1) gene expression. Overexpression or siRNA knockdown of Esrra expression in vitro or in vivo led to parallel changes in Rplp1 gene expression, lysosome/autophagy protein translation, and autophagy. Remarkably, we have found that Esrra had dual functions by not only regulating transcription but also controling adaptive translation via the Esrra/Rplp1/lysosome/autophagy pathway during prolonged starvation.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Reddemma Sandireddy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Priyanka Gupta
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Suganya Sakthivel
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Nah Jiemin
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Kabilesh Arul
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Keziah Tikno
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Duke Molecular Physiology Institute and Dept. of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| |
Collapse
|
24
|
Terekhina OL, Kirova YI. [The effect of ethylmethylhydroxypyridine succinate on the parameters of chronic neuroinflammation and plastic processes in the brain of old rats during course of dexamethasone administration]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:115-121. [PMID: 39435787 DOI: 10.17116/jnevro2024124091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
OBJECTIVE To study was to evaluate the potential modulatory impact of succinate/SUCNR1 signaling on the non-genomic immunosuppressive and gene-mediated inflammatory-degenerative effects of glucocorticoid receptor (GR) activation in the cerebral cortex (CC) of aging rats. MATERIAL AND METHODS Using Western blot analysis, we assessed the expression level of pro-inflammatory (TNF-α, IL-1β), anti-inflammatory cytokines (IL-10, TGF-β1), mitochondriogenesis markers (PGC-1α, NDUFV2, SDHA, cyt c1, COX2, ATP5A), angiogenesis marker VEGF, neurotrophin BDNF, GR, succinate receptor SUCNR1 in the CC of 18-month-old rats with isolated administration of the highly specific GR ligand dexamethasone (1 mg/kg, i.p., daily, 10 days) and its combined administration with the succinate-containing drug Mexidol (100 mg/kg, i.p., daily, 10 days). RESULTS Dexamethasone caused a decrease in the content of all detectable parameters in the CC of 18-month-old rats, including anti-inflammatory IL-10, TGF-β1, PGC-1α, VEGF, BDNF, which progressed by 10 days, amounting to 40-60%, which is consistent with the literature data on transrepression by GR of key pro-inflammatory (NFkB, AP1, STAT1), anti-inflammatory (PPARγ, ERRα), pro-anabolic transcription factors (estrogen, androgen receptors). The administration of Mexidol daily an hour after the injection of dexamethasone did not affect the dexamethasone-induced suppression of pro-inflammatory cytokines, but increased the expression levels of anti-inflammatory cytokines, protein markers of mitochondrio-, angio- and synaptogenesis. CONCLUSION The study demonstrates for the first time the prospect and pathogenetic foundation of the combined use of dexamethasone and Mexidol in an aging body in order to minimize the activity of GC aimed at suppressing pro-anabolic programs and mechanisms for resolving inflammation.
Collapse
Affiliation(s)
- O L Terekhina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Yu I Kirova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
25
|
Ramanathan R, Patwa SA, Ali AH, Ibdah JA. Thyroid Hormone and Mitochondrial Dysfunction: Therapeutic Implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cells 2023; 12:2806. [PMID: 38132126 PMCID: PMC10741470 DOI: 10.3390/cells12242806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly termed nonalcoholic fatty liver disease (NAFLD), is a widespread global health concern that affects around 25% of the global population. Its influence is expanding, and it is anticipated to overtake alcohol as the leading cause of liver failure and liver-related death worldwide. Unfortunately, there are no approved therapies for MASLD; as such, national and international regulatory health agencies undertook strategies and action plans designed to expedite the development of drugs for treatment of MASLD. A sedentary lifestyle and an unhealthy diet intake are important risk factors. Western countries have a greater estimated prevalence of MASLD partly due to lifestyle habits. Mitochondrial dysfunction is strongly linked to the development of MASLD. Further, it has been speculated that mitophagy, a type of mitochondrial quality control, may be impaired in MASLD. Thyroid hormone (TH) coordinates signals from the nuclear and mitochondrial genomes to control mitochondrial biogenesis and function in hepatocytes. Mitochondria are known TH targets, and preclinical and clinical studies suggest that TH, thyroid receptor β (TR-β) analogs, and synthetic analogs specific to the liver could be of therapeutic benefit in treating MASLD. In this review, we highlight how mitochondrial dysfunction contributes to development of MASLD, and how understanding the role of TH in improving mitochondrial function paved the way for innovative drug development programs of TH-based therapies targeting MASLD.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Sohum A. Patwa
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
26
|
Wang Y, Sun S, Zhai J, Liu Y, Song C, Sun C, Li Q, Liu J, Jiang H, Liu Y. scAAV9-VEGF alleviates symptoms of amyotrophic lateral sclerosis (ALS) mice through regulating aromatase. Exp Brain Res 2023; 241:2817-2827. [PMID: 37882882 DOI: 10.1007/s00221-023-06721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, chronic, progressive, and fatal neurodegenerative disease that leads to progressive atrophy and weakness of the muscles throughout the body. Herein, we found that the intrathecal injection of adeno-associated virus (AAV)-delivered VEGF in SOD1-G93A transgenic mice, as well as ALS mice, could significantly delay disease onset and preserve motor functions and neurological functions, thus prolonging the survival of mice models. Moreover, we found that VEGF treatment could induce the elevated expression of aromatase, which is a key enzyme in estrogen synthesis, in neurons but not in astrocytes. On the other hand, the changes in the expression of oxidative stress-related factors HO-1 and GCLM and autophagy-related proteins p62 and LC3II upon the administration of VEGF revealed the involvement of oxidative stress and autophagy underlying the downstream of the VEGF-induced mitigation of ALS. In conclusion, this study proved the protective effects of VEGF in the onset and development of ALS and revealed the involvement of estrogen, oxidative stress and autophagy in the VEGF-induced alleviation of ALS. Our results highlighted the potential of VEGF as a promising therapeutic agent in the treatment of ALS.
Collapse
Affiliation(s)
- Ying Wang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Shuo Sun
- Department of Neurosurgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jingxu Zhai
- The Third Department of Pediatrics, Xingtai People's Hospital, 16 Hongxing Street, Xingtai, Hebei, People's Republic of China
| | - Yuanyuan Liu
- General practice department, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, Hebei, People's Republic of China
| | - Chaoyuan Song
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Cuimei Sun
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Qiang Li
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jianqiang Liu
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Hong Jiang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
27
|
Luo L, Zhang H, Chen W, Zheng Z, He Z, Wang H, Wang K, Zhang Y. Angelica sinensis polysaccharide ameliorates nonalcoholic fatty liver disease via restoring estrogen-related receptor α expression in liver. Phytother Res 2023; 37:5407-5417. [PMID: 37563852 DOI: 10.1002/ptr.7982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Angelica sinensis polysaccharide (ASP) showed increasingly recognized hepatoprotective effects and lipid regulation. Because polysaccharides are typically degraded into fragments or short-chain fatty acids in the gut, rather than being absorbed in their intact form, it is worth pondering why ASP can regulate hepatic lipid metabolism and protect the liver from damage caused by lipid accumulation. In vivo and in vitro nonalcoholic fatty liver disease (NAFLD) models with lipid accumulation were established to investigate the effect and potential mechanisms of ASP on hepatic fat accumulation. Our results showed that ASP remodeled the composition and abundance of the gut microbiota in high-fat diet-fed mice and increased their levels of propionate (0.92 ± 0.30 × 107 vs. 2.13 ± 0.52 × 107 ) and butyrate (1.83 ± 1.31 × 107 vs. 6.39 ± 1.44 × 107 ). Sodium propionate significantly increased the expression of estrogen-related receptor α (ERRα) in liver cells (400 mM sodium propionate for 2.19-fold increase) and alleviated the progress of NAFLD in methionine-choline-deficient diet model. Taken together, our study demonstrated that ASP can regulate hepatic lipid metabolism via propionate/ERRα pathway and ultimately relieving NAFLD. Our findings demonstrate that ASP can be used as a health care product or food supplement to prevent NAFLD.
Collapse
Affiliation(s)
- Li Luo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Huazhong University of Science and Technology, Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Huafeng Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiliang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Huazhong University of Science and Technology, Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Huazhong University of Science and Technology, Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
28
|
Zhang L, Zhou M, Gao X, Xie Y, Xiao J, Liu T, Zeng X. Estrogen-related genes for thyroid cancer prognosis, immune infiltration, staging, and drug sensitivity. BMC Cancer 2023; 23:1048. [PMID: 37907864 PMCID: PMC10619281 DOI: 10.1186/s12885-023-11556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Thyroid cancer (THCA) has become increasingly common in recent decades, and women are three to four times more likely to develop it than men. Evidence shows that estrogen has a significant impact on THCA proliferation and growth. Nevertheless, the effects of estrogen-related genes (ERGs) on THCA stages, immunological infiltration, and treatment susceptibility have not been well explored. METHODS Clinicopathological and transcriptome data of patients with THCA from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were cleaned before consensus clustering. Differential expression analysis was performed on the genes expressed between THCA and paraneoplastic tissues in TCGA, and Wayne analysis was performed on the ERGs obtained from the Gene Set Enrichment Analysis MsigDB and differentially expressed genes (DEGs). Univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were used to identify the set of estrogen-related differentially expressed genes (ERDEGs) associated with progression-free intervals (PFI) and to establish a prediction model. Receiver operating characteristic curves were plotted to calculate the risk scores and PFI status to validate the predictive effect of the model. Enrichment analyses and immune infiltration analyses were performed to analyze DEGs between the high- and low-risk groups, and a nomogram plot was used in the risk model to predict the PFI of THCA. RESULTS The expression of 120 ERDEGs differed significantly between the two groups (P < 0.05). Five (CD24, CAV1, TACC1, TIPARP, and HSD17B10) of the eight ERDEGs identified using univariate Cox and LASSO regression were validated via RT-qPCR and immunohistochemistry analysis of clinical tissue samples and were used for clinical staging and drug sensitivity analysis. Risk-DEGs were shown to be associated with immune modulation and tumor immune evasion, as well as defense systems, signal transduction, the tumor microenvironment, and immunoregulation. In 19 of the 28 immune cells, infiltration levels differed between the high- and low-risk groups. High-risk patients in the immunotherapy dataset had considerably shorter survival times than low-risk patients. CONCLUSION We identified and confirmed eight ERDEGs using a systematic analysis and screened sensitive drugs for ERDEGs. These results provide molecular evidence for the involvement of ERGs in controlling the immunological microenvironment and treatment response in THCA.
Collapse
Affiliation(s)
- Leiying Zhang
- Suzhou Medical College of Soochow University, Suzhou, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Man Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiaoni Gao
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yang Xie
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China
| | - Junqi Xiao
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tao Liu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Beijing Business University, Beijing, China
| | - Xiangtai Zeng
- Suzhou Medical College of Soochow University, Suzhou, China.
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China.
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China.
| |
Collapse
|
29
|
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci 2023; 30:86. [PMID: 37821940 PMCID: PMC10568841 DOI: 10.1186/s12929-023-00975-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Yanjun Li
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
30
|
Jackson KG, Way GW, Zeng J, Lipp MK, Zhou H. The Dynamic Role of Endoplasmic Reticulum Stress in Chronic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1389-1399. [PMID: 37028592 PMCID: PMC10548273 DOI: 10.1016/j.ajpath.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Chronic liver disease (CLD) is a major worldwide public health threat, with an estimated prevalence of 1.5 billion individuals with CLD in 2020. Chronic activation of endoplasmic reticulum (ER) stress-related pathways is recognized as substantially contributing to the pathologic progression of CLD. The ER is an intracellular organelle that folds proteins into their correct three-dimensional shapes. ER-associated enzymes and chaperone proteins highly regulate this process. Perturbations in protein folding lead to misfolded or unfolded protein accumulation in the ER lumen, resulting in ER stress and concomitant activation of the unfolded protein response (UPR). The adaptive UPR is a set of signal transduction pathways evolved in mammalian cells that attempts to reestablish ER protein homeostasis by reducing protein load and increasing ER-associated degradation. However, maladaptive UPR responses in CLD occur due to prolonged UPR activation, leading to concomitant inflammation and cell death. This review assesses the current understanding of the cellular and molecular mechanisms that regulate ER stress and the UPR in the progression of various liver diseases and the potential pharmacologic and biological interventions that target the UPR.
Collapse
Affiliation(s)
- Kaitlyn G Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Grayson W Way
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jing Zeng
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marissa K Lipp
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Central Virginia Veterans Healthcare System, Richmond, Virginia.
| |
Collapse
|
31
|
Dubois‐Chevalier J, Gheeraert C, Berthier A, Boulet C, Dubois V, Guille L, Fourcot M, Marot G, Gauthier K, Dubuquoy L, Staels B, Lefebvre P, Eeckhoute J. An extended transcription factor regulatory network controls hepatocyte identity. EMBO Rep 2023; 24:e57020. [PMID: 37424431 PMCID: PMC10481658 DOI: 10.15252/embr.202357020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.
Collapse
Affiliation(s)
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Clémence Boulet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Vanessa Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical SciencesGhent UniversityGhentBelgium
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Marie Fourcot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 – UAR 2014 – PLBSLilleFrance
| | - Guillemette Marot
- Univ. Lille, Inria, CHU Lille, ULR 2694 – METRICS: Évaluation des technologies de santé et des pratiques médicalesLilleFrance
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, INRAE USC 1370, École Normale Supérieure de LyonLyonFrance
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in InflammationLilleFrance
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| |
Collapse
|
32
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
33
|
Xing Y, Xuan F, Wang K, Zhang H. Aging under endocrine hormone regulation. Front Endocrinol (Lausanne) 2023; 14:1223529. [PMID: 37600699 PMCID: PMC10433899 DOI: 10.3389/fendo.2023.1223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Aging is a biological process in which the environment interacts with the body to cause a progressive decline in effective physiological function. Aging in the human body can lead to a dysfunction of the vital organ systems, resulting in the onset of age-related diseases, such as neurodegenerative and cardiovascular diseases, which can seriously affect an individual's quality of life. The endocrine system acts on specific targets through hormones and related major functional factors in its pathways, which play biological roles in coordinating cellular interactions, metabolism, growth, and aging. Aging is the result of a combination of many pathological, physiological, and psychological processes, among which the endocrine system can achieve a bidirectional effect on the aging process by regulating the hormone levels in the body. In this paper, we explored the mechanisms of growth hormone, thyroid hormone, and estrogen in the aging process to provide a reference for the exploration of endocrine mechanisms related to aging.
Collapse
Affiliation(s)
| | | | | | - Huifeng Zhang
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Li M, Yu Y, Xue K, Li J, Son G, Wang J, Qian W, Wang S, Zheng J, Yang C, Ge J. Genistein mitigates senescence of bone marrow mesenchymal stem cells via ERRα-mediated mitochondrial biogenesis and mitophagy in ovariectomized rats. Redox Biol 2023; 61:102649. [PMID: 36871183 PMCID: PMC9995482 DOI: 10.1016/j.redox.2023.102649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
Senescence of bone marrow mesenchymal stem cells (BMMSCs) induced by chronic oxidative stress is an important factor contributes to the postmenopausal osteoporosis (PMOP). Mitochondrial quality control takes a pivotal role in regulating oxidative stress and cell senescence. Genistein is a major isoflavone in soy products, which is best known for its ability to inhibit bone loss in both postmenopausal women and ovariectomized (OVX) rodents. Here we show that OVX-BMMSCs displayed premature senescence, elevated reactive oxygen species (ROS) level and mitochondria dysfunction, while genistein rescued these phenotypes. Using network pharmacology and molecular docking, we identified estrogen-related receptor α (ERRα) as the potential target of genistein. Knockdown of ERRα greatly abolished the anti-senescence effect of genistein on OVX-BMMSCs. Further, the mitochondrial biogenesis and mitophagy induced by genistein were inhibited by ERRα knockdown in OVX-BMMSCs. In vivo, genistein inhibited trabecular bone loss and p16INK4a expression, upregulated sirtuin 3 (SIRT3) and peroxisome proliferator-activated receptor gamma coactivator one alpha (PGC1α) expression in the trabecular bone area of proximal tibia in OVX rats. Together, this study revealed that genistein ameliorates senescence of OVX-BMMSCs through ERRα-mediated mitochondrial biogenesis and mitophagy, which provided a molecular basis for advancement and development of therapeutic strategies against PMOP.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yejia Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke Xue
- Department of Pastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Geehun Son
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiajia Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wentao Qian
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiawei Zheng
- Department of Oromaxillofacial Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
35
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
36
|
Tripathi M, Singh BK. Metabolic switching of estrogen-related receptor alpha in breast cancer aggression. FEBS J 2023; 290:1473-1476. [PMID: 36853086 DOI: 10.1111/febs.16750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Orphan nuclear receptor estrogen-related receptor alpha (ERRα) is an important regulator of energy metabolism, whereas its hyperactivation in breast cancer has been shown to regulate cell migration, proliferation, and tumour development. These findings suggest a fine balance in the status of ERRα in regulating metabolic homeostasis or promoting cancer progression. In this issue, Brindisi et al. have shown that ERRα is endogenously activated by cholesterol and caused breast cancer aggressiveness. This study also supports the anti-tumour mechanisms of cholesterol-lowering drugs such as statins.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore City, Singapore
| | - Brijesh Kumar Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
37
|
Sopariwala DH, Rios AS, Pei G, Roy A, Tomaz da Silva M, Thi Thu Nguyen H, Saley A, Van Drunen R, Kralli A, Mahan K, Zhao Z, Kumar A, Narkar VA. Innately expressed estrogen-related receptors in the skeletal muscle are indispensable for exercise fitness. FASEB J 2023; 37:e22727. [PMID: 36583689 DOI: 10.1096/fj.202201518r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Transcriptional determinants in the skeletal muscle that govern exercise capacity, while poorly defined, could provide molecular insights into how exercise improves fitness. Here, we have elucidated the role of nuclear receptors, estrogen-related receptor alpha and gamma (ERRα/γ) in regulating myofibrillar composition, contractility, and exercise capacity in skeletal muscle. We used muscle-specific single or double (DKO) ERRα/γ knockout mice to investigate the effect of ERRα/γ deletion on muscle and exercise parameters. Individual knockout of ERRα/γ did not have a significant impact on the skeletal muscle. On the other hand, DKO mice exhibit pale muscles compared to wild-type (WT) littermates. RNA-seq analysis revealed a predominant decrease in expression of genes linked to mitochondrial and oxidative metabolism in DKO versus WT muscles. DKO muscles exhibit marked repression of oxidative enzymatic capacity, as well as mitochondrial number and size compared to WT muscles. Mitochondrial function is also impaired in single myofibers isolated from DKO versus WT muscles. In addition, mutant muscles exhibit reduced angiogenic gene expression and decreased capillarity. Consequently, DKO mice have a significantly reduced exercise capacity, further reflected in poor fatigue resistance of DKO mice in in vivo contraction assays. These results show that ERRα and ERRγ together are a critical link between muscle aerobic capacity and exercise tolerance. The ERRα/γ mutant mice could be valuable for understanding the long-term impact of impaired mitochondria and vascular supply on the pathogenesis of muscle-linked disorders.
Collapse
Affiliation(s)
- Danesh H Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Andrea S Rios
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Guangsheng Pei
- Center for Precision Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Hao Thi Thu Nguyen
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Addison Saley
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Rachel Van Drunen
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Anastasia Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristin Mahan
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Vihang A Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences at UTHealth, Houston, Texas, USA
| |
Collapse
|
38
|
Liang K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front Pharmacol 2023; 14:1160440. [PMID: 37033619 PMCID: PMC10076611 DOI: 10.3389/fphar.2023.1160440] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Carnitine Palmitoyl-Transferase1A (CPT1A) is the rate-limiting enzyme in the fatty acid β-oxidation, and its deficiency or abnormal regulation can result in diseases like metabolic disorders and various cancers. Therefore, CPT1A is a desirable drug target for clinical therapy. The deep comprehension of human CPT1A is crucial for developing the therapeutic inhibitors like Etomoxir. CPT1A is an appealing druggable target for cancer therapies since it is essential for the survival, proliferation, and drug resistance of cancer cells. It will help to lower the risk of cancer recurrence and metastasis, reduce mortality, and offer prospective therapy options for clinical treatment if the effects of CPT1A on the lipid metabolism of cancer cells are inhibited. Targeted inhibition of CPT1A can be developed as an effective treatment strategy for cancers from a metabolic perspective. However, the pathogenic mechanism and recent progress of CPT1A in diseases have not been systematically summarized. Here we discuss the functions of CPT1A in health and diseases, and prospective therapies targeting CPT1A. This review summarizes the current knowledge of CPT1A, hoping to prompt further understanding of it, and provide foundation for CPT1A-targeting drug development.
Collapse
|
39
|
Sun J, Guan X, Niu C, Chen P, Li Y, Wang X, Luo L, Liu M, Shou Y, Huang X, Cai Y, Zhu J, Fan J, Li X, Jin L, Cong W. FGF13-Sensitive Alteration of Parkin Safeguards Mitochondrial Homeostasis in Endothelium of Diabetic Nephropathy. Diabetes 2023; 72:97-111. [PMID: 36256844 DOI: 10.2337/db22-0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Studies of diabetic glomerular injury have raised the possibility of developing useful early biomarkers and therapeutic approaches for the treatment of type 2 diabetic nephropathy (T2DN). In this study, we found that FGF13 expression is induced in glomerular endothelial cells (GECs) during T2DN progression. Endothelial-specific deletion of Fgf13 potentially alleviates T2DN damage, while Fgf13 overexpression has the opposite effect. Mechanistically, Fgf13 deficiency results in improved mitochondrial homeostasis and endothelial barrier integrity in T2DN. Moreover, FGF13-sensitive alteration of Parkin safeguards mitochondrial homeostasis in endothelium of T2DN through promotion of mitophagy and inhibition of apoptosis. Additionally, it is confirmed that the beneficial effects of Fgf13 deficiency on T2DN are abolished by endothelial-specific double deletion of Fgf13 and Prkn. The effects of Fgf13 deficiency on mitophagy and apoptosis through Parkin-dependent regulation may be distinct and separable events under diabetic conditions. These data show that the bifunctional role of Fgf13 deficiency in promoting mitophagy and inhibiting apoptosis through Parkin can shape mitochondrial homeostasis regulation in GECs and T2DN progression. As a potential therapeutic target for prevention and control of T2DN, a mechanistic understanding of the biofunction of FGF13 may also be relevant to the pathogenesis of other FGF13- and Parkin-associated diseases.
Collapse
Affiliation(s)
- Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, People's Republic of China
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chao Niu
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, People's Republic of China
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yuankuan Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Korea
| | - Xuejiao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lan Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Mengxue Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanni Shou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yan Cai
- Ningbo Ninth Hospital, Ningbo, People's Republic of China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
40
|
Dings MP, van der Zalm AP, Bootsma S, van Maanen TF, Waasdorp C, van den Ende T, Liu D, Bailey P, Koster J, Zwijnenburg DA, Spek CA, Klomp JP, Oubrie A, Hooijer GK, Meijer SL, van Berge Henegouwen MI, Hulshof MC, Bergman J, Oyarce C, Medema JP, van Laarhoven HW, Bijlsma MF. Estrogen-related receptor alpha drives mitochondrial biogenesis and resistance to neoadjuvant chemoradiation in esophageal cancer. Cell Rep Med 2022; 3:100802. [PMID: 36334593 PMCID: PMC9729822 DOI: 10.1016/j.xcrm.2022.100802] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Neoadjuvant chemoradiotherapy (nCRT) improves outcomes in resectable esophageal adenocarcinoma (EAC), but acquired resistance precludes long-term efficacy. Here, we delineate these resistance mechanisms. RNA sequencing on matched patient samples obtained pre-and post-neoadjuvant treatment reveal that oxidative phosphorylation was the most upregulated of all biological programs following nCRT. Analysis of patient-derived models confirms that mitochondrial content and oxygen consumption strongly increase in response to nCRT and that ionizing radiation is the causative agent. Bioinformatics identifies estrogen-related receptor alpha (ESRRA) as the transcription factor responsible for reprogramming, and overexpression and silencing of ESRRA functionally confirm that its downstream metabolic rewiring contributes to resistance. Pharmacological inhibition of ESRRA successfully sensitizes EAC organoids and patient-derived xenografts to radiation. In conclusion, we report a profound metabolic rewiring following chemoradiation and demonstrate that its inhibition resensitizes EAC cells to radiation. These findings hold broader relevance for other cancer types treated with radiation as well.
Collapse
Affiliation(s)
- Mark P.G. Dings
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Oncode Institute, Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Amber P. van der Zalm
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Oncode Institute, Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Tatum F.J. van Maanen
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Oncode Institute, Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Tom van den Ende
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands,Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Dajia Liu
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands,Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Peter Bailey
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Danny A. Zwijnenburg
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - C. Arnold Spek
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | | | | | - Gerrit K.J. Hooijer
- Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Sybren L. Meijer
- Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | | | - Maarten C. Hulshof
- Amsterdam UMC Location University of Amsterdam, Department of Radiotherapy, Amsterdam, the Netherlands
| | - Jacques Bergman
- Amsterdam UMC Location University of Amsterdam, Department of Gastroenterology, Amsterdam, the Netherlands
| | - Cesar Oyarce
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands,Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Oncode Institute, Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Hanneke W.M. van Laarhoven
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands,Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Maarten F. Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands,Oncode Institute, Amsterdam, the Netherlands,Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands,Corresponding author
| |
Collapse
|
41
|
Hatziagelaki E, Paschou SA, Schön M, Psaltopoulou T, Roden M. NAFLD and thyroid function: pathophysiological and therapeutic considerations. Trends Endocrinol Metab 2022; 33:755-768. [PMID: 36171155 DOI: 10.1016/j.tem.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide rising challenge because of hepatic, but also extrahepatic, complications. Thyroid hormones are master regulators of energy and lipid homeostasis, and the presence of abnormal thyroid function in NAFLD suggests pathogenic relationships. Specifically, persons with hypothyroidism feature dyslipidemia and lower hepatic β-oxidation, which favors accumulation of triglycerides and lipotoxins, insulin resistance, and subsequently de novo lipogenesis. Recent studies indicate that liver-specific thyroid hormone receptor β agonists are effective for the treatment of NAFLD, likely due to improved lipid homeostasis and mitochondrial respiration, which, in turn, may contribute to a reduced risk of NAFLD progression. Taken together, the possible coexistence of thyroid disease and NAFLD calls for increased awareness and optimized strategies for mutual screening and management.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Diabetes Center, Second Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
42
|
Ohba K, Iwaki T. Role of thyroid hormone in an experimental model of atherosclerosis: the potential mediating role of immune response and autophagy. Endocr J 2022; 69:1043-1052. [PMID: 35871569 DOI: 10.1507/endocrj.ej22-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence has revealed that several conditions related to abnormal thyroid hormone status, such as dyslipidemia, hypertension, or hypercoagulable state, can exacerbate atherosclerotic vascular disease. Thyroid hormone effects on vascular smooth muscle cells and endothelial cells have also been studied extensively. However, only limited information is available on thyroid hormone-mediated immune response in current review articles on the pathophysiology of atherosclerosis. This report thus presents an overview of the recent advances in the understanding of the dynamic interactions taking place between thyroid hormone status and immune response in the pathogenesis of atherosclerosis. In particular, we focus on macrophages and T-lymphocytes, which have been recognized as important determinants for the initiation and development of atherosclerosis. Numerous studies have revealed the role of autophagy in immune cells produced in atherosclerosis. In addition, thyroid hormones induce autophagy in several cells and tissues, such as liver, skeletal muscles, lungs, and brown adipose tissue. Our research group, among others, have reported different targets of thyroid hormone-mediated autophagy, including lipid droplets (lipophagy), mitochondria (mitophagy), and aggregated proteins (aggrephagy). Based on these findings, thyroid hormone-mediated autophagy could serve as a novel therapeutic approach for atherosclerosis. We also consider the limitations of the current murine models for studies on atherosclerosis, especially in relation to low-density lipoprotein-cholesterol driven atherosclerotic plaque.
Collapse
Affiliation(s)
- Kenji Ohba
- Medical Education Center, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| |
Collapse
|
43
|
Relationship between thyroid hormones and central nervous system metabolism in physiological and pathological conditions. Pharmacol Rep 2022; 74:847-858. [PMID: 35771431 DOI: 10.1007/s43440-022-00377-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Thyroid hormones (THs) play an important role in the regulation of energy metabolism. They also take part in processes associated with the central nervous system (CNS), including survival and differentiation of neurons and energy expenditure. It has been reported that a correlation exists between the functioning of the thyroid gland and the symptoms of CNS such as cognitive impairment, depression, and dementia. Literature data also indicate the influence of THs on the pathogenesis of CNS diseases, such as Alzheimer's disease, epilepsy, depression, and Parkinson's disease. This review describes the relationship between THs and metabolism in the CNS, the effect of THs on the pathological conditions of the CNS, and novel options for treating these conditions with TH derivatives.
Collapse
|
44
|
Affortit C, Blanc F, Nasr J, Ceccato JC, Markossian S, Guyot R, Puel JL, Flamant F, Wang J. A disease-associated mutation in thyroid hormone receptor α1 causes hearing loss and sensory hair cell patterning defects in mice. Sci Signal 2022; 15:eabj4583. [PMID: 35700264 DOI: 10.1126/scisignal.abj4583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Resistance to thyroid hormone due to mutations in THRA, which encodes the thyroid hormone receptor α (TRα1), shows variable clinical presentation. Mutations affecting TRβ1 and TRβ2 cause deafness in mice and have been associated with deafness in humans. To test whether TRα1 also affects hearing function, we used mice heterozygous for a frameshift mutation in Thra that is similar to human THRA mutations (ThraS1/+ mice) and reduces tissue sensitivity to thyroid hormone. Compared to wild-type littermates, ThraS1/+ mice showed moderate high-frequency sensorineural hearing loss as juveniles and increased age-related hearing loss. Ultrastructural examination revealed aberrant orientation of ~20% of sensory outer hair cells (OHCs), as well as increased numbers of mitochondria with fragmented morphology and autophagic vacuoles in both OHCs and auditory nerve fibers. Molecular dissection of the OHC lateral wall components revealed that the potassium ion channel Kcnq4 was aberrantly targeted to the cytoplasm of mutant OHCs. In addition, mutant cochleae showed increased oxidative stress, autophagy, and mitophagy associated with greater age-related cochlear cell damage, demonstrating that TRα1 is required for proper development of OHCs and for maintenance of OHC function. These findings suggest that patients with THRA mutations may present underdiagnosed, mild hearing loss and may be more susceptible to age-related hearing loss.
Collapse
Affiliation(s)
- Corentin Affortit
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Fabian Blanc
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France.,Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, Montpellier, France
| | - Jamal Nasr
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Jean-Charles Ceccato
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Suzy Markossian
- Institut de Génomique Fonctionnelle de Lyon (IGFL), INRAE USC1370, CNRS (UMR5242), ENS, Lyon, France
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon (IGFL), INRAE USC1370, CNRS (UMR5242), ENS, Lyon, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon (IGFL), INRAE USC1370, CNRS (UMR5242), ENS, Lyon, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France.,Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
45
|
Zhou J, Tripathi M, Ho JP, Widjaja AA, Shekeran SG, Camat MD, James A, Wu Y, Ching J, Kovalik JP, Lim KH, Cook SA, Bay BH, Singh BK, Yen PM. Thyroid Hormone Decreases Hepatic Steatosis, Inflammation, and Fibrosis in a Dietary Mouse Model of Nonalcoholic Steatohepatitis. Thyroid 2022; 32:725-738. [PMID: 35317606 DOI: 10.1089/thy.2021.0621] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, lobular inflammation, and fibrosis. Thyroid hormone (TH) reduces steatosis; however, the therapeutic effect of TH on NASH-associated inflammation and fibrosis is not known. This study examined the therapeutic effect of TH on hepatic inflammation and fibrosis during NASH and investigated THs molecular actions on autophagy and mitochondrial biogenesis. Methods: HepG2-TRβ cells were treated with bovine serum albumin-conjugated palmitic acid (PA) to mimic lipotoxic conditions in vitro. Mice with NASH were established by feeding C57BL/6J mice Western diet with 15% fructose in drinking water for 16 weeks. These mice were administered triiodothyronine (T3)/thyroxine (T4) supplemented in drinking water for the next eight weeks. Results: In cultured HepG2-TRβ cells, TH treatment increased mitochondrial respiration and fatty acid oxidation under basal and PA-treated conditions, as well as decreased lipopolysaccharides and PA-stimulated inflammatory and fibrotic responses. In a dietary mouse model of NASH, TH administration decreased hepatic triglyceride content (3.19 ± 0.68 vs. 8.04 ± 0.42 mM/g liver) and hydroxyproline (1.44 ± 0.07 vs. 2.58 ± 0.30 mg/g liver) when compared with mice with untreated NASH. Metabolomics profiling of lipid metabolites showed that mice with NASH had increased triacylglycerol, diacylglycerol, monoacylglycerol, and hepatic cholesterol esters species, and these lipid species were decreased by TH treatment. Mice with NASH also showed decreased autophagic degradation as evidenced by decreased transcription Factor EB and lysosomal protease expression, and accumulation of LC3B-II and p62. TH treatment restored the level of lysosomal proteins and resolved the accumulation of LC3B-II and p62. Impaired mitochondrial biogenesis was also restored by TH. The simultaneous restoration of autophagy and mitochondrial biogenesis by TH increased β-oxidation of fatty acids. Additionally, the elevated oxidative stress and inflammasome activation in NASH liver were also decreased by TH. Conclusions: In a mouse model of NASH, TH restored autophagy and mitochondrial biogenesis to increase β-oxidation of fatty acids and to reduce lipotoxicity, oxidative stress, hepatic inflammation, and fibrosis. Activating thyroid hormone receptor in the liver may represent an effective strategy for NASH treatment.
Collapse
Affiliation(s)
- Jin Zhou
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Madhulika Tripathi
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Jia Pei Ho
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Anissa Anindya Widjaja
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Shamini Guna Shekeran
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | | | - Anne James
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianhong Ching
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Kiat-Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Stuart Alexander Cook
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Medical Research Council, London Institute for Medical Sciences, Imperial College London, London, United Kingdom
- National Heart Centre Singapore, Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brijesh Kumar Singh
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Paul Michael Yen
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, North Carolina, USA
- Endocrinology, Diabetes, and Metabolism Division, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
46
|
Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol 2022; 23:750-770. [DOI: 10.1038/s41580-022-00486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|
47
|
Ranhotra HS. Estrogen-related receptor alpha in select host functions and cancer: new frontiers. Mol Cell Biochem 2022; 477:1349-1359. [PMID: 35138514 DOI: 10.1007/s11010-022-04380-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is under the tight control of transcription factors, which includes the estrogen-related receptor alpha (ERRα). The endogenous ligand(s) acting as ERRα agonist has not been identified and confirmed. ERRα is a prominent member of the nuclear receptors super-family with major roles in energy metabolism, including immunity, cell growth, proliferation and differentiation and a host of other functions in animals. The actions exerted by ERRα towards gene expression regulation are often in association with other transcriptional factors, receptors and signal mediators. Metabolic regulation by ERRα is known for some time that has tremendous impact on host biology like autophagy, angiogenesis, mitochondrial activity, including lipid metabolism. Cellular metabolism and cancer has intricate relationship. On account of the participation of ERRα in metabolism, it has been implicated in various types of cancer onset and progression. In a number of findings, ERRα has been demonstrated to influence several types of cancers, exhibiting as a negative prognostic marker for many. Such diverse role associated with ERRα is due to its interaction with numerous transcriptional factors and other signalling pathways that culminate in providing optimal gene regulation. These observations points to the crucial regulatory roles of ERRα in health and disease. In this article, some of the new findings on the influence of ERRα in host metabolism and biology including cancer, shall be reviewed that will provide a concise understanding of this receptor.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
48
|
Xia H, Scholtes C, Dufour CR, Ouellet C, Ghahremani M, Giguère V. Insulin action and resistance are dependent on a GSK3β-FBXW7-ERRα transcriptional axis. Nat Commun 2022; 13:2105. [PMID: 35440636 PMCID: PMC9019090 DOI: 10.1038/s41467-022-29722-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance, a harbinger of the metabolic syndrome, is a state of compromised hormonal response resulting from the dysregulation of a wide range of insulin-controlled cellular processes. However, how insulin affects cellular energy metabolism via long-term transcriptional regulation and whether boosting mitochondrial function alleviates insulin resistance remains to be elucidated. Herein we reveal that insulin directly enhances the activity of the nuclear receptor ERRα via a GSK3β/FBXW7 signaling axis. Liver-specific deletion of GSK3β or FBXW7 and mice harboring mutations of ERRα phosphosites (ERRα3SA) co-targeted by GSK3β/FBXW7 result in accumulated ERRα proteins that no longer respond to fluctuating insulin levels. ERRα3SA mice display reprogrammed liver and muscle transcriptomes, resulting in compromised energy homeostasis and reduced insulin sensitivity despite improved mitochondrial function. This crossroad of insulin signaling and transcriptional control by a nuclear receptor offers a framework to better understand the complex cellular processes contributing to the development of insulin resistance.
Collapse
Affiliation(s)
- Hui Xia
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Catherine R Dufour
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Carlo Ouellet
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Majid Ghahremani
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada.
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
49
|
Oe S, Hayashi S, Tanaka S, Koike T, Hirahara Y, Seki-Omura R, Kakizaki R, Sakamoto S, Nakano Y, Noda Y, Yamada H, Kitada M. Cytoplasmic Polyadenylation Element-Binding Protein 1 Post-transcriptionally Regulates Fragile X Mental Retardation 1 Expression Through 3′ Untranslated Region in Central Nervous System Neurons. Front Cell Neurosci 2022; 16:869398. [PMID: 35496917 PMCID: PMC9051318 DOI: 10.3389/fncel.2022.869398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual disability caused by a deficiency in Fragile X mental retardation 1 (Fmr1) gene expression. Recent studies have proposed the importance of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in FXS pathology; however, the molecular interaction between Fmr1 mRNA and CPEB1 has not been fully investigated. Here, we revealed that CPEB1 co-localized and interacted with Fmr1 mRNA in hippocampal and cerebellar neurons and culture cells. Furthermore, CPEB1 knockdown upregulated Fmr1 mRNA and protein levels and caused aberrant localization of Fragile X mental retardation protein in neurons. In an FXS cell model, CPEB1 knockdown upregulated the mRNA levels of several mitochondria-related genes and rescued the intracellular heat shock protein family A member 9 distribution. These findings suggest that CPEB1 post-transcriptionally regulated Fmr1 expression through the 3′ untranslated region, and that CPEB1 knockdown might affect mitochondrial function.
Collapse
Affiliation(s)
- Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- *Correspondence: Souichi Oe,
| | - Shinichi Hayashi
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | | | - Rio Kakizaki
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Sumika Sakamoto
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yosuke Nakano
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yasuko Noda
- Department of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Japan
| | - Hisao Yamada
- Biwako Professional University of Rehabilitation, Higashiomi, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- Masaaki Kitada,
| |
Collapse
|
50
|
Ren B, Zhu Y. A New Perspective on Thyroid Hormones: Crosstalk with Reproductive Hormones in Females. Int J Mol Sci 2022; 23:ijms23052708. [PMID: 35269847 PMCID: PMC8911152 DOI: 10.3390/ijms23052708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that thyroid hormones (THs) are vital for female reproductive system homeostasis. THs regulate the reproductive functions through thyroid hormone receptors (THRs)-mediated genomic- and integrin-receptor-associated nongenomic mechanisms, depending on TH ligand status and DNA level, as well as transcription and extra-nuclear signaling transduction activities. These processes involve the binding of THs to intracellular THRs and steroid hormone receptors or membrane receptors and the recruitment of hormone-response elements. In addition, THs and other reproductive hormones can activate common signaling pathways due to their structural similarity and shared DNA consensus sequences among thyroid, peptide, and protein hormones and their receptors, thus constituting a complex and reciprocal interaction network. Moreover, THs not only indirectly affect the synthesis, secretion, and action of reproductive hormones, but are also regulated by these hormones at the same time. This crosstalk may be one of the pivotal factors regulating female reproductive behavior and hormone-related diseases, including tumors. Elucidating the interaction mechanism among the aforementioned hormones will contribute to apprehending the etiology of female reproductive diseases, shedding new light on the treatment of gynecological disorders.
Collapse
Affiliation(s)
- Bingtao Ren
- School of Pharmacy, Fudan University, Shanghai 200032, China;
| | - Yan Zhu
- Laboratory of Reproductive Pharmacology, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-21-64438416
| |
Collapse
|