1
|
Ye Z, Deng M, Yang Y, Song Y, Weng L, Qi W, Ding P, Huang Y, Yu C, Wang Y, Wu Y, Zhang Y, Yuan S, Nie W, Zhang L, Zeng C. Epithelial mitochondrial fission-mediated PANoptosis is crucial for ulcerative colitis and its inhibition by saquinavir through Drp1. Pharmacol Res 2024; 210:107538. [PMID: 39643069 DOI: 10.1016/j.phrs.2024.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Ulcerative colitis (UC) is characterized by increased cell death in intestinal epithelial cell (IEC), which compromises gut barrier function and activates inflammation. Aberrant mitochondrial dynamics have been implicated in various forms of cell death, but it is currently unclear if they play a role in IEC death and colitis pathogenesis. This study aims to investigate the contribution of aberrant mitochondrial dynamics to colitis progression using cellular models, animal models, and clinical samples. The results revealed that IEC in mice with Dextran sulfate sodium salt (DSS)-induced colitis exhibited dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and Z-DNA binding protein 1 (ZBP1)-dependent PANoptosis, which is a combination of apoptosis, necroptosis, and pyroptosis. However, these processes and the pathogenesis of DSS-induced colitis were significantly attenuated in IEC-specific Drp1 heterozygous knockout mice. Importantly, ZBP1-PANoptosis and Drp1-mediated mitochondrial fission were observed in IEC of UC patients, exhibiting a positive correlation with disease severity. Mechanistically, hyperactivated mitochondrial fission induced mitochondrial reactive oxygen species production leading to PANoptosis through ZBP1 sulfenylation at Cys327 independently of its Zα domain. Saquinavir, an FDA-approved drug identified through in-silico screening alongside in vivo and in vitro experiments, inhibits mitochondrial fission thereby enhancing therapeutic efficacy in mice with colitis.
Collapse
Affiliation(s)
- Zhiming Ye
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingxia Deng
- The Guangzhou Laboratory, Guangzhou 510000, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Yuanming Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liangkun Weng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanchen Qi
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 519000, China
| | - Ping Ding
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihang Huang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Can Yu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Wang
- College of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yixing Wu
- College of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shaoying Yuan
- College of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenkai Nie
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key specialty of Clinical Pharmacy, The first Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, China.
| |
Collapse
|
2
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
3
|
Meng Q, Wei K, Shan Y. E3 ubiquitin ligase gene BIRC3 modulates TNF-induced cell death pathways and promotes aberrant proliferation in rheumatoid arthritis fibroblast-like synoviocytes. Front Immunol 2024; 15:1433898. [PMID: 39301019 PMCID: PMC11410595 DOI: 10.3389/fimmu.2024.1433898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovitis, degradation of articular cartilage, and bone destruction. Fibroblast-like synoviocytes (FLS) play a central role in RA, producing a significant amount of inflammatory mediators such as tumor necrosis factor(TNF)-α and IL-6, which promote inflammatory responses within the joints. Moreover, FLS exhibit tumor-like behavior, including aggressive proliferation and enhanced anti-apoptotic capabilities, which collectively drive chronic inflammation and joint damage in RA. TNF is a major pro-inflammatory cytokine that mediates a series of signaling pathways through its receptor TNFR1, including NF-κB and MAPK pathways, which are crucial for inflammation and cell survival in RA. The abnormal proliferation and anti-apoptotic characteristics of FLS in RA may result from dysregulation in TNF-mediated cell death pathways such as apoptosis and necroptosis. Ubiquitination is a critical post-translational modification regulating these signaling pathways. E3 ubiquitin ligases, such as cIAP1/2, promote the ubiquitination and degradation of target proteins within the TNF receptor complex, modulating the signaling proteins. The high expression of the BIRC3 gene and its encoded protein, cIAP2, in RA regulates various cellular processes, including apoptosis, inflammatory signaling, immune response, MAPK signaling, and cell proliferation, thereby promoting FLS survival and inflammatory responses. Inhibiting BIRC3 expression can reduce the secretion of inflammatory cytokines by RA-FLS under both basal and inflammatory conditions and inhibit their proliferation. Although BIRC3 inhibitors show potential in RA treatment, their possible side effects must be carefully considered. Further research into the specific mechanisms of BIRC3, including its roles in cell signaling, apoptosis regulation, and immune evasion, is crucial for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine (TCM), Zhengzhou, Henan, China
| | - Kai Wei
- Department of Rheumatology and Immunology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Lee YM, Vucic D. The role of autophagy in RIP1 mediated cell death and intestinal inflammation. Adv Immunol 2024; 163:1-20. [PMID: 39271257 DOI: 10.1016/bs.ai.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Autophagy, a highly conserved catabolic process that targets various types of cellular cargoes to lysosomal degradation, is one of the most important biological mechanisms critical for cellular homeostasis. Components of these cellular cargoes can range from individual proteins to invading pathogens, and degrading these materials is important for maintaining organismal health and survival. The process of autophagy is carried out by complex molecular mechanisms, and a growing body of evidence indicates that these mechanisms intersect with those involved in the cell death pathways. In this review, we examine several emerging studies elucidating the role of autophagy in RIP1-mediated cell death signaling, with particular emphasis on impaired autophagy caused by ATG16L1 deficiency. We also discuss how autophagy in RIP1-mediated cell death affects intestinal homeostasis in preclinical models, and the implications of the intersection between RIP1 and autophagy for understanding the intestinal pathologies associated with inflammatory bowel disease (IBD). Finally, we highlight the potential benefits of therapeutic targeting of RIP1 and autophagy proteins, while also proposing areas of research that will likely elucidate new links between autophagy and cell death signaling.
Collapse
Affiliation(s)
| | - Domagoj Vucic
- Immunology Discovery, Genentech, South San Francisco, CA, United States.
| |
Collapse
|
5
|
Liu X, Li Y, Zhang W, Gao N, Chen J, Xiao C, Zhang G. Inhibition of cIAP1/2 reduces RIPK1 phosphorylation in pulmonary endothelial cells and alleviate sepsis-induced lung injury and inflammatory response. Immunol Res 2024; 72:841-850. [PMID: 38748318 DOI: 10.1007/s12026-024-09491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a severe complication of sepsis characterized by acute respiratory distress, hypoxemia, and diffuse bilateral pulmonary infiltrates. The regulation of RIPK1 is an important part of the inflammatory response, and cIAP1/2 serves as the E3 ubiquitin ligase for RIPK1. In this study, we investigated the effect and mechanism of cIAP1/2 inhibition on sepsis-induced lung injury. Our results showed that cIAP1/2 inhibition can alleviate sepsis-induced lung injury and reduce the inflammatory response, which is accompanied by downregulation of RIPK1 phosphorylation and ubiquitination. Additionally, cIAP1/2 inhibition led to the up-regulation of programmed cell death, including apoptosis, necroptosis, and pyroptosis, and inhibiting these three cell death pathways can further reduce the inflammatory response, which is similar to the recently discovered programmed cell death pathway PANoptosis. Our findings suggest that cIAP1/2 and PANoptosis inhibition may be a new strategy for treating sepsis-induced lung injury and provide important references for further exploring the mechanism of sepsis-induced lung injury and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Liu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Yan Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Weijian Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- Peking University, China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Nan Gao
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jie Chen
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Xiao
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Guoqiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
6
|
Shah Zaib Saleem R, Schwalm MP, Knapp S. Expanding the ligand spaces for E3 ligases for the design of protein degraders. Bioorg Med Chem 2024; 105:117718. [PMID: 38621319 DOI: 10.1016/j.bmc.2024.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Targeted protein degradation (TPD) has recently emerged as an exciting new drug modality. However, the strategy of developing small molecule-based protein degraders has evolved over the past two decades and has now established molecular tags that are already in clinical use, as well as chimeric molecules, PROteolysis TArgeting Chimeras (PROTACs), based mainly on ligand systems developed for the two E3 ligases CRBN and VHL. The large size of the human E3 ligase family suggests that PROTACs can be developed by targeting a large diversity of E3 ligases, some of which have restricted expression patterns with the potential to design disease- or tissue-specific degraders. Indeed, many new E3 ligands have been published recently, confirming the druggability of E3 ligases. This review summarises recent data on E3 ligases and highlights the challenges in developing these molecules into efficient PROTACs rivalling the established degrader systems.
Collapse
Affiliation(s)
- Rahman Shah Zaib Saleem
- Department of Chemistry & Chemical Engineering, SBA School of Sciences & Engineering, LUMS, Pakistan
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
7
|
Regoni M, Valtorta F, Sassone J. Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature. Eur J Neurosci 2024; 59:1079-1098. [PMID: 37667848 DOI: 10.1111/ejn.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival. Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor-interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor-interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Seidelin JB, Jensen S, Hansen M, de Carvalho Bronze MR, Cuchet-Lourenҫo D, Nejentsev S, LaCasse EC, Nielsen OH. IAPs and RIPK1 mediate LPS-induced cytokine production in healthy subjects and Crohn's disease. Clin Exp Immunol 2024; 215:291-301. [PMID: 37583360 PMCID: PMC10876114 DOI: 10.1093/cei/uxad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Innate immune activity fuels intestinal inflammation in Crohn's disease (CD), an inflammatory bowel disease. Identification and targeting of new molecular regulators of the innate activity are warranted to control the disease. Inhibitor of apoptosis proteins (IAPs) regulate both cell survival and inflammatory signaling. We investigated the effects of IAP inhibition by second mitochondria-derived activator of caspases (SMAC) mimetics (SMs) on innate responses and cell death to pathogen-associated molecular patterns in peripheral blood mononuclear cells (PBMCs) and monocytes. IAPs inhibited lipopolysaccharide (LPS)-induced expression of proinflammatory interleukin (IL)-1β, IL-6. Likewise, LPS (but not muramyl dipeptide or Escherichia coli) induced TNF-α was inhibited in CD and control PBMCs. The SM effect was partially reversed by inhibition of receptor-interacting serine/threonine-protein kinase 1 (RIPK1). The effect was mainly cell death independent. Thus, IAP inhibition by SMs leads to reduced production of proinflammatory cytokines and may be considered in the efforts to develop new therapeutic strategies to control CD.
Collapse
Affiliation(s)
- Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark
| | - Simone Jensen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark
| | - Morten Hansen
- Department of Oncology, Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Denmark
| | | | | | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Eric Charles LaCasse
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Canada
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Liu X, Chen J, Li Z, Gao N, Zhang G. CIAP1/2 can regulate the inflammatory response and lung injury induced by apoptosis in septic rats. J Investig Med 2024; 72:100-111. [PMID: 37784217 DOI: 10.1177/10815589231207102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), induced by sepsis, is predominantly caused by inflammation injury. However, there is no clear consensus on how to regulate the inflammatory response. The TNF pathway is one of the primary inflammatory pathways activated in sepsis. cIAP1/2, an essential E3 ubiquitin ligase in the TNF pathway, plays a pivotal role in positively regulating the activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways to promote inflammation while inhibiting apoptosis. We found that Birc2 is the only differential expression gene in TNF pathway, and both cIAP1/2 upregulated in lung lysate with worsen lung injury. However, upon inhibiting cIAP1/2 using AZD5582, lung cell apoptosis was reactivated, and a significant improvement in lung injury was observed. Our study shows that cIAP1/2 expression increased in the lung tissue of a CLP rat ALI model. Inhibiting cIAP1/2 with AZD5582, a second mitochondria-derived activator of caspases (SMAC) mimetic, induced increased apoptosis and reduced lung injury. Therefore, inhibiting cIAP1/2 can alleviate sepsis-induced ALI, providing a new target for regulating organ damage induced by sepsis-induced inflammatory responses.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhonghao Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Nan Gao
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoqiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Pandey R, Bisht P, Wal P, Murti K, Ravichandiran V, Kumar N. SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects. Mini Rev Med Chem 2024; 24:1334-1352. [PMID: 38275029 DOI: 10.2174/0113895575269644231120104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION SMAC mimetics acts in a restorative way in the prevention of lung cancer.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| |
Collapse
|
11
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
12
|
Wang X, Lu M, Gu H, Xiao T, Hu G, Luo M, Guo X, Xia Y. Conjugation of the Fn14 Ligand to a SMAC Mimetic Selectively Suppresses Experimental Squamous Cell Carcinoma in Mice. J Invest Dermatol 2023; 143:242-253.e6. [PMID: 36063885 DOI: 10.1016/j.jid.2022.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023]
Abstract
The mimetic of SMAC induced cell death in cancers by depleting the inhibitor of apoptosis proteins. Recent studies showed that Fn14 is overexpressed in the cells of squamous cell carcinoma (SCC), providing a promising candidate target for selective antitumor therapy. In this study, we conjugated a small-molecule SMAC mimetic MV1 to the ligand of Fn14, TWEAK. Our results showed that TWEAK‒MV1 conjugate retained adequate binding specificity to Fn14-positive SCC cells in vitro and accumulated selectively in tumor tissue of cutaneous SCC xenografts mice after intraperitoneal administration. This conjugation compound exhibited remarkable effectiveness in suppressing tumor growth and extending overall survival without causing significant side effects in SCC xenograft mice. Moreover, TWEAK‒MV1 conjugate greatly enhanced both apoptotic and necroptotic cell death both in vitro and in vivo, accompanied by a cellular inhibitor of apoptosis proteins degradation as well as activation of receptor-interacting protein kinase. Taken together, our preclinical data suggested that the designed conjugation compound of TWEAK and MV1 might provide a potential therapeutic strategy for cutaneous SCC with improved antitumor efficacy and negligible toxicity.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mai Luo
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennesse, USA
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
13
|
Shi K, Zhang J, Zhou E, Wang J, Wang Y. Small-Molecule Receptor-Interacting Protein 1 (RIP1) Inhibitors as Therapeutic Agents for Multifaceted Diseases: Current Medicinal Chemistry Insights and Emerging Opportunities. J Med Chem 2022; 65:14971-14999. [DOI: 10.1021/acs.jmedchem.2c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kunyu Shi
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Tianfu Jincheng Laboratory, Chengdu, 610041 Sichuan, China
| | - Enda Zhou
- West China School of Pharmacy, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Tianfu Jincheng Laboratory, Chengdu, 610041 Sichuan, China
| |
Collapse
|
14
|
Wang LY, Wang RX, Wang C, Chen SF, Sun XJ, Li ZY, Chen M, Little MA, Zhao MH. IAPs antagonist SM164 ameliorates experimental MPO-ANCA-associated vasculitis via enhancing fatty acid oxidation in neutrophils. Rheumatology (Oxford) 2022:6779969. [PMID: 36308438 DOI: 10.1093/rheumatology/keac621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of life-threatening autoimmune diseases. Inhibitors of apoptosis proteins (IAPs) are a class of molecules engaged in cell death and inflammation, interventions of which are proven effective in a number of inflammatory diseases. Here we tested whether targeting IAPs could ameliorate AAV and explored the potential mechanism. METHODS We collected 19 kidney specimens from patients with myeloperoxidase (MPO)-AAV to investigate the expression of IAPs. The IAPs pan-inhibitor SM164 was used to treat the experimental autoimmune vasculitis (EAV) rat model of AAV. RNA sequencing of renal cortex and enrichment analysis were developed to interpret gene expression. Functional experiments were performed to investigate the role of SM164 on neutrophils and endothelial cells. RESULTS The expressions of three IAPs (cIAP1, cIAP2 and XIAP) were upregulated in kidneys of AAV patients compared with normal controls. SM164 dramatically reduced renal injury in EAV rats. Transcriptomic analysis revealed prominent alterations in fatty acid oxidation and respiratory burst following SM164 treatment. Functional studies demonstrated that SM164 inhibited neutrophil activation induced by MPO-ANCA positive IgG or serum from MPO-AAV patients, and such inhibitory effect was abolished by gene silencing or pharmacological inhibition of fatty acid oxidation. SM164 also inhibited the adhesion of neutrophils to endothelial cells with little effect on the endothelial injury induced by serum from MPO-AAV patients. CONCLUSION Inhibition of IAPs with SM164 played a protective role in AAV through enhancing intracellular fatty acid oxidation in neutrophils.
Collapse
Affiliation(s)
- Luo-Yi Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| | - Rui-Xue Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Chen Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Fang Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Zhi-Ying Li
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus; Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
15
|
Abstract
Necroptosis, or programmed necrosis, is an inflammatory form of cell death with important functions in host defense against pathogens and tissue homeostasis. The four cytosolic receptor-interacting protein kinase homotypic interaction motif (RHIM)-containing adaptor proteins RIPK1, RIPK3, TRIF (also known as TICAM1) and ZBP1 mediate necroptosis induction in response to infection and cytokine or innate immune receptor activation. Activation of the RHIM adaptors leads to phosphorylation, oligomerization and membrane targeting of the necroptosis effector protein mixed lineage kinase domain-like (MLKL). Active MLKL induces lesions on the plasma membrane, leading to the release of pro-inflammatory damage-associated molecular patterns (DAMPs). Thus, activities of the RHIM adaptors and MLKL are tightly regulated by posttranslational modifications to prevent inadvertent release of immunogenic contents. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the regulatory mechanisms of necroptosis and its biological functions in tissue homeostasis, pathogen infection and other inflammatory diseases.
Collapse
Affiliation(s)
- Kidong Kang
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| | - Christa Park
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| |
Collapse
|
16
|
Tao Y, Murakami Y, Vavvas DG, Sonoda KH. Necroptosis and Neuroinflammation in Retinal Degeneration. Front Neurosci 2022; 16:911430. [PMID: 35844208 PMCID: PMC9277228 DOI: 10.3389/fnins.2022.911430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Necroptosis mediates the chronic inflammatory phenotype in neurodegeneration. Receptor-interacting protein kinase (RIPK) plays a pivotal role in the induction of necroptosis in various cell types, including microglia, and it is implicated in diverse neurodegenerative diseases in the central nervous system and the retina. Targeting RIPK has been proven beneficial for alleviating both neuroinflammation and degeneration in basic/preclinical studies. In this review, we discuss the role of necroptosis in retinal degeneration, including (1) the molecular pathways involving RIPK, (2) RIPK-dependent microglial activation and necroptosis, and (3) the interactions between necroptosis and retinal neuroinflammation/degeneration. This review will contribute to a renewed focus on neuroinflammation induced by necroptosis and to the development of anti-RIPK drugs against retinal degeneration.
Collapse
Affiliation(s)
- Yan Tao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Demetrios G Vavvas
- Ines and Frederick Yeatts Retinal Research Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Wang C, Zhang Y, Shi L, Yang S, Chang J, Zhong Y, Li Q, Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J Enzyme Inhib Med Chem 2022; 37:1437-1453. [PMID: 35589670 PMCID: PMC9122363 DOI: 10.1080/14756366.2022.2074414] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Wang C, Zhang Y, Wang J, Xing D. VHL-based PROTACs as potential therapeutic agents: Recent progress and perspectives. Eur J Med Chem 2022; 227:113906. [PMID: 34656901 DOI: 10.1016/j.ejmech.2021.113906] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Proteolysis targeting chimeras (PROTACs), which hijack proteins of interest (POIs) and recruit E3 ligases for target degradation via the ubiquitin-proteasome pathway, are a novel drug discovery paradigm that has been widely used as biological tools and medicinal molecules with the potential of clinical application value. To date, a wide variety of small molecule PROTACs have been developed. Importantly, VHL-based PROTACs have emerged to be a promising approach for proteins, including those non-druggable ones, such as transcriptional factors and scaffold proteins. VHL-based PRTOACs have been developed for the treatment of diseases that are difficult to be dealt with by conventional methods, such as radiotherapy, chemotherapy, and small molecule inhibitors. In this review, the recent advances of VHL-based PRTOACs were summarized, and the chances and challenges associated with this area were also highlighted.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; School of Pharmacy, Qingdao University, Qingdao, 266021, Shandong, China.
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Liu S, Joshi K, Denning MF, Zhang J. RIPK3 signaling and its role in the pathogenesis of cancers. Cell Mol Life Sci 2021; 78:7199-7217. [PMID: 34654937 PMCID: PMC9044760 DOI: 10.1007/s00018-021-03947-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
RIPK3 (receptor-interacting protein kinase 3) is a serine/threonine-protein kinase. As a key component of necrosomes, RIPK3 is an essential mediator of inflammatory factors (such as TNFα-tumor necrosis factor α) and infection-induced necroptosis, a programmed necrosis. In addition, RIPK3 signaling is also involved in the regulation of apoptosis, cytokine/chemokine production, mitochondrial metabolism, autophagy, and cell proliferation by interacting with and/or phosphorylating the critical regulators of the corresponding signaling pathways. Similar to apoptosis, RIPK3-signaling-mediated necroptosis is inactivated in most types of cancers, suggesting RIPK3 might play a critical suppressive role in the pathogenesis of cancers. However, in some inflammatory types of cancers, such as pancreatic cancers and colorectal cancers, RIPK3 signaling might promote cancer development by stimulating proliferation signaling in tumor cells and inducing an immunosuppressive response in the tumor environment. In this review, we summarize recent research progress in the regulators of RIPK3 signaling, and discuss the function of this pathway in the regulation of mixed lineage kinase domain-like (MLKL)-mediated necroptosis and MLKL-independent cellular behaviors. In addition, we deliberate the potential roles of RIPK3 signaling in the pathogenesis of different types of cancers and discuss the potential strategies for targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Shanhui Liu
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
- Department of Pathology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
20
|
Silke J, O’Reilly LA. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers (Basel) 2021; 13:4510. [PMID: 34572737 PMCID: PMC8469693 DOI: 10.3390/cancers13184510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world's most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials.
Collapse
Affiliation(s)
- John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lorraine Ann O’Reilly
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
21
|
Jaafar RF, Ibrahim Z, Ataya K, Hassanieh J, Ard N, Faraj W. Receptor-Interacting Serine/Threonine-Protein Kinase-2 as a Potential Prognostic Factor in Colorectal Cancer. ACTA ACUST UNITED AC 2021; 57:medicina57070709. [PMID: 34356990 PMCID: PMC8303330 DOI: 10.3390/medicina57070709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022]
Abstract
Background and objectives: Receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is an important mediator in different pathways in the immune and inflammatory response system. RIPK2 was also shown to play different roles in different cancer types; however, in colorectal cancer (CRC), its role is not well established. This study aims at identifying the role of RIPK2 in CRC progression and survival. Materials and methods: Data of patients and mRNA protein expression level of genes associated with CRC (RIPK2, tumor necrosis factor (TNF), TRAF1, TRAF7, KLF6, interlukin-6 (Il6), interlukin-8 (Il8), vascular-endothelial growth factor A (VEGFA), MKI67, TP53, nuclear factor-kappa B (NFKB), NFKB2, BCL2, XIAP, and RELA) were downloaded from the PrognoScan online public database. Patients were divided between low and high RIPK2 expression and different CRC characteristics were studied between the two groups. Survival curves were evaluated using a Kaplan-Meier estimator. The Pearson correlation was used to study the correlation between RIPK2 and the other factors. Statistical analysis was carried out using SPSS version 25.0. The Human Protein Atlas was also used for the relationship between RIPK2 expression in CRC tissues and survival. Differences were considered statistically significant at p < 0.05. Results: A total of 520 patients were downloaded from the PrognoScan database, and RIPK2 was found to correlate with MKI67, TRAF1, KLF6, TNF, Il6, Il8, VEGFA, NFKB2, BCL2, and RELA. High expression of RIPK2 was associated with high expression of VEGFA (p < 0.01) and increased mortality (p < 0.01). Conclusions: In this study, RIPK2 is shown to be a potential prognostic factor in CRC; however, more studies are needed to assess and verify its potential role as a prognostic marker and in targeted therapy.
Collapse
Affiliation(s)
- Rola F. Jaafar
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (R.F.J.); (Z.I.); (J.H.)
| | - Zeid Ibrahim
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (R.F.J.); (Z.I.); (J.H.)
| | - Karim Ataya
- Division of Liver Transplantation, Hepatobiliary and Pancreatic Surgery, Department of General Surgery, American University of Beirut Medical Centre, Beirut 1107 2020, Lebanon;
| | - Joelle Hassanieh
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (R.F.J.); (Z.I.); (J.H.)
| | - Natasha Ard
- Department of General Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Walid Faraj
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (R.F.J.); (Z.I.); (J.H.)
- Division of Liver Transplantation, Hepatobiliary and Pancreatic Surgery, Department of General Surgery, American University of Beirut Medical Centre, Beirut 1107 2020, Lebanon;
- Correspondence: ; Tel.: +961-350-000 (ext. 5714)
| |
Collapse
|
22
|
Jiang N, Zhang WQ, Dong H, Hao YT, Zhang LM, Shan L, Yang XD, Peng CL. SMAC exhibits anti-tumor effects in ECA109 cells by regulating expression of inhibitor of apoptosis protein family. World J Clin Cases 2021; 9:5019-5027. [PMID: 34307552 PMCID: PMC8283620 DOI: 10.12998/wjcc.v9.i19.5019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The poor prognosis and rising incidence of esophageal cancer highlight the need for improved therapeutics that are essential prior to treatment. LCL161 is an SMAC (second mitochondrial activator of caspases) mimic and inhibitor of apoptosis protein (IAP) antagonist which exhibits anti-tumor effects and improves the chemical sensitivity of many cancers.
AIM To ascertain the effects and mechanisms of the SMAC analog LCL161 on esophageal cancer cells.
METHODS MTT assay and TUNEL assay were used to detect cell proliferation and apoptosis, respectively. Western blot analysis was used to study the molecular mechanisms of LCL161-induced death of ECA109 cells.
RESULTS LCL161 decreased ECA109 cell proliferation in dose- and time-dependent manner and induced apoptosis of ECA109 cells in a dose-dependent manner. Also, LCL161 induced a significant decrease in the expression of the XIAP and significant increase in the expression of Caspase-3. In addition, Bax increased significantly with increasing concentrations of LCL161, and the relative expression of Bax was significantly different between groups.
CONCLUSION These findings support the hypothesis that LCL161 can inhibit proliferation and induce apoptosis in esophageal cancer cells by regulating the expression of IAP family members, suggesting that it has potential to be an effective treatment for esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250100, Shandong Province, China
| | - Wei-Quan Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250100, Shandong Province, China
| | - Hong Dong
- Department of Nursing, The Second Hospital of Shandong University, Jinan 250100, Shandong Province, China
| | - Ying-Tao Hao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250100, Shandong Province, China
| | - Li-Ming Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250100, Shandong Province, China
| | - Lei Shan
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250100, Shandong Province, China
| | - Xiao-Dong Yang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250100, Shandong Province, China
| | - Chuan-Liang Peng
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250100, Shandong Province, China
| |
Collapse
|
23
|
Patankar JV, Müller TM, Kantham S, Acera MG, Mascia F, Scheibe K, Mahapatro M, Heichler C, Yu Y, Li W, Ruder B, Günther C, Leppkes M, Mathew MJ, Wirtz S, Neufert C, Kühl AA, Paquette J, Jacobson K, Atreya R, Zundler S, Neurath MF, Young RN, Becker C. E-type prostanoid receptor 4 drives resolution of intestinal inflammation by blocking epithelial necroptosis. Nat Cell Biol 2021; 23:796-807. [PMID: 34239062 DOI: 10.1038/s41556-021-00708-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases present with elevated levels of intestinal epithelial cell (IEC) death, which compromises the gut barrier, activating immune cells and triggering more IEC death. The endogenous signals that prevent IEC death and break this vicious cycle, allowing resolution of intestinal inflammation, remain largely unknown. Here we show that prostaglandin E2 signalling via the E-type prostanoid receptor 4 (EP4) on IECs represses epithelial necroptosis and induces resolution of colitis. We found that EP4 expression correlates with an improved IBD outcome and that EP4 activation induces a transcriptional signature consistent with resolution of intestinal inflammation. We further show that dysregulated necroptosis prevents resolution, and EP4 agonism suppresses necroptosis in human and mouse IECs. Mechanistically, EP4 signalling on IECs converges on receptor-interacting protein kinase 1 to suppress tumour necrosis factor-induced activation and membrane translocation of the necroptosis effector mixed-lineage kinase domain-like pseudokinase. In summary, our study indicates that EP4 promotes the resolution of colitis by suppressing IEC necroptosis.
Collapse
Affiliation(s)
- Jay V Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Tanja M Müller
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Srinivas Kantham
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Fabrizio Mascia
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kristina Scheibe
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christina Heichler
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Yuqiang Yu
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Mano J Mathew
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
- Allianstic Research Laboratory, EFREI Paris, Villejuif, France
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, iPATH.Berlin, Berlin, Germany
| | - Jay Paquette
- Centre for Drug Research and Development, Vancouver, BC, Canada
- adMare BioInnovations, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Raja Atreya
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Robert N Young
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
24
|
Liu L, Tang Z, Zeng Y, Liu Y, Zhou L, Yang S, Wang D. Role of necroptosis in infection-related, immune-mediated, and autoimmune skin diseases. J Dermatol 2021; 48:1129-1138. [PMID: 34109676 DOI: 10.1111/1346-8138.15929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
Regulated necrosis, also termed necroptosis, is another programmed cell death depending on a unique molecular pathway that does not overlap with apoptosis. Tumor necrosis factor and Toll-like receptor family members, interferon, and other mediators are the factors that mainly cause necroptosis. Activating necroptosis by ligands of death receptors requires the kinase activity of receptor-interacting proteins 1 and 3, and a mixed lineage kinase domain-like protein, which is a critical downstream mediator of necroptosis. Increasing evidence has revealed that necroptosis does not only involve physiological regulation but also the occurrence, development, and prognosis of certain diseases, such as septicemia, neurodegenerative diseases, and ischemic-reperfusion injury. Many excellent documented systematic discussions of necroptosis and its role in various skin diseases. In this review, we summarize the molecular mechanism of necroptosis, as well as the current knowledge on the contribution of necroptosis, in infection-related, immune-mediated, autoimmune skin diseases, and malignant skin tumors.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziting Tang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yilan Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanhong Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shengbo Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Small molecules targeting ubiquitination to control inflammatory diseases. Drug Discov Today 2021; 26:2414-2422. [PMID: 33992766 DOI: 10.1016/j.drudis.2021.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
The ubiquitination and deubiquitination of proteins govern signal transduction in every aspect of physiology and pathology, especially in cancer, inflammation, and autoimmune diseases. Rapid progress has been made in obtaining an in-depth understanding of the ubiquitination system since its first discovery during the 1970s. Manipulation of ubiquitination by small molecules is considered a novel therapeutic avenue. In this review, we summarize key applications of small molecules targeting ubiquitination enzymes and currently available technologies applied to the discovery of small molecules that control ubiquitination.
Collapse
|
26
|
Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Targeting RIP Kinases in Chronic Inflammatory Disease. Biomolecules 2021; 11:biom11050646. [PMID: 33924766 PMCID: PMC8146010 DOI: 10.3390/biom11050646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammatory disorders are characterised by aberrant and exaggerated inflammatory immune cell responses. Modes of extrinsic cell death, apoptosis and necroptosis, have now been shown to be potent drivers of deleterious inflammation, and mutations in core repressors of these pathways underlie many autoinflammatory disorders. The receptor-interacting protein (RIP) kinases, RIPK1 and RIPK3, are integral players in extrinsic cell death signalling by regulating the production of pro-inflammatory cytokines, such as tumour necrosis factor (TNF), and coordinating the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which underpin pathological inflammation in numerous chronic inflammatory disorders. In this review, we firstly give an overview of the inflammatory cell death pathways regulated by RIPK1 and RIPK3. We then discuss how dysregulated signalling along these pathways can contribute to chronic inflammatory disorders of the joints, skin, and gastrointestinal tract, and discuss the emerging evidence for targeting these RIP kinases in the clinic.
Collapse
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Tirta M. Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stephanie A. Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-85722700
| |
Collapse
|
27
|
Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J 2021; 40:e106700. [PMID: 33439509 PMCID: PMC7917554 DOI: 10.15252/embj.2020106700] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.
Collapse
Affiliation(s)
- Matthias Kist
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| | - Domagoj Vucic
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| |
Collapse
|
28
|
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ 2021; 28:861-883. [PMID: 33462412 PMCID: PMC7937688 DOI: 10.1038/s41418-020-00722-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a caspase-independent, lytic form of programmed cell death whose errant activation has been widely implicated in many pathologies. The pathway relies on the assembly of the apical protein kinases, RIPK1 and RIPK3, into a high molecular weight cytoplasmic complex, termed the necrosome, downstream of death receptor or pathogen detector ligation. The necrosome serves as a platform for RIPK3-mediated phosphorylation of the terminal effector, the MLKL pseudokinase, which induces its oligomerization, translocation to, and perturbation of, the plasma membrane to cause cell death. Over the past 10 years, knowledge of the post-translational modifications that govern RIPK1, RIPK3 and MLKL conformation, activity, interactions, stability and localization has rapidly expanded. Here, we review current knowledge of the functions of phosphorylation, ubiquitylation, GlcNAcylation, proteolytic cleavage, and disulfide bonding in regulating necroptotic signaling. Post-translational modifications serve a broad array of functions in modulating RIPK1 engagement in, or exclusion from, cell death signaling, whereas the bulk of identified RIPK3 and MLKL modifications promote their necroptotic functions. An enhanced understanding of the modifying enzymes that tune RIPK1, RIPK3, and MLKL necroptotic functions will prove valuable in efforts to therapeutically modulate necroptosis.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
29
|
Kist M, Kőműves LG, Goncharov T, Dugger DL, Yu C, Roose-Girma M, Newton K, Webster JD, Vucic D. Impaired RIPK1 ubiquitination sensitizes mice to TNF toxicity and inflammatory cell death. Cell Death Differ 2021; 28:985-1000. [PMID: 32999468 PMCID: PMC7937686 DOI: 10.1038/s41418-020-00629-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 01/30/2023] Open
Abstract
Receptor-interacting protein 1 (RIP1; RIPK1) is a key regulator of multiple signaling pathways that mediate inflammatory responses and cell death. TNF-TNFR1 triggered signaling complex formation, subsequent NF-κB and MAPK activation and induction of cell death involve RIPK1 ubiquitination at several lysine residues including Lys376 and Lys115. Here we show that mutating the ubiquitination site K376 of RIPK1 (K376R) in mice activates cell death resulting in embryonic lethality. In contrast to Ripk1K376R/K376R mice, Ripk1K115R/K115R mice reached adulthood and showed slightly higher responsiveness to TNF-induced death. Cell death observed in Ripk1K376R/K376R embryos relied on RIPK1 kinase activity as administration of RIPK1 inhibitor GNE684 to pregnant heterozygous mice effectively blocked cell death and prolonged survival. Embryonic lethality of Ripk1K376R/K376R mice was prevented by the loss of TNFR1, or by simultaneous deletion of caspase-8 and RIPK3. Interestingly, elimination of the wild-type allele from adult Ripk1K376R/cko mice was tolerated. However, adult Ripk1K376R/cko mice were exquisitely sensitive to TNF-induced hypothermia and associated lethality. Absence of the K376 ubiquitination site diminished K11-linked, K63-linked, and linear ubiquitination of RIPK1, and promoted the assembly of death-inducing cellular complexes, suggesting that multiple ubiquitin linkages contribute to the stability of the RIPK1 signaling complex that stimulates NF-κB and MAPK activation. In contrast, mutating K115 did not affect RIPK1 ubiquitination or TNF stimulated NF-κB and MAPK signaling. Overall, our data indicate that selective impairment of RIPK1 ubiquitination can lower the threshold for RIPK1 activation by TNF resulting in cell death and embryonic lethality.
Collapse
Affiliation(s)
- Matthias Kist
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - László G Kőműves
- Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tatiana Goncharov
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Debra L Dugger
- Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Charles Yu
- Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Merone Roose-Girma
- Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Domagoj Vucic
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
30
|
Smac-mimetics reduce numbers and viability of human osteoclasts. Cell Death Discov 2021; 7:36. [PMID: 33608503 PMCID: PMC7895921 DOI: 10.1038/s41420-021-00415-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Elevated activity of bone-degrading osteoclasts (OC) contributes to pathological bone degradation in diseases such as multiple myeloma. Several proinflammatory cytokines, including TNF, contribute to osteoclastogenesis. The receptor-interacting protein kinase 1 (RIPK1) regulates inflammation and cell death. It is recruited to the TNF-receptor complex, where it is ubiquitinated, and activates transcription factor NF-κB and mitogen-activated protein kinases (MAPK). Smac-mimetics (SM) is a group of drugs that block RIPK1 ubiquitination and shifts RIPK1 to activation of apoptosis or necroptosis. In this manuscript, we show that the two SM birinapant and LCL-161 reduced the number and viability of primary human OC, and induced TNF-dependent cell death in OC precursors (pre-OC). Birinapant was more cytotoxic than LCL-161 and induced predominantly apoptosis and to some degree necroptosis. Both inhibitors restrained osteoclastogenesis induced by myeloma patient bone-marrow aspirates. SM has gained attention as novel treatment strategies both for cancer and chronic inflammatory pathologies, but limited information has been available on interactions with primary human immune cells. As LCL-161 is in phase 2 clinical studies for multiple myeloma, we propose that SM might possess additional benefits in reducing bone degradation in myeloma patients. Taken together, we show that SM reduces human osteoclastogenesis, and that these compounds may represent promising drug candidates for pathological bone degradation.
Collapse
|
31
|
Samson AL, Garnish SE, Hildebrand JM, Murphy JM. Location, location, location: A compartmentalized view of TNF-induced necroptotic signaling. Sci Signal 2021; 14:14/668/eabc6178. [PMID: 33531383 DOI: 10.1126/scisignal.abc6178] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Necroptosis is a lytic, proinflammatory cell death pathway, which has been implicated in host defense and, when dysregulated, the pathology of many human diseases. The central mediators of this pathway are the receptor-interacting serine/threonine protein kinases RIPK1 and RIPK3 and the terminal executioner, the pseudokinase mixed lineage kinase domain-like (MLKL). Here, we review the chronology of signaling along the RIPK1-RIPK3-MLKL axis and highlight how the subcellular compartmentalization of signaling events controls the initiation and execution of necroptosis. We propose that a network of modulators surrounds the necroptotic signaling core and that this network, rather than acting universally, tunes necroptosis in a context-, cell type-, and species-dependent manner. Such a high degree of mechanistic flexibility is likely an important property that helps necroptosis operate as a robust, emergency form of cell death.
Collapse
Affiliation(s)
- André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah E Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
32
|
Song S, Ding Y, Dai GL, Zhang Y, Xu MT, Shen JR, Chen TT, Chen Y, Meng GL. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin 2021; 42:230-241. [PMID: 32770173 DOI: 10.1038/s41401-020-0490-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Sirtuin 3 (SIRT3) is a potential therapeutic target for cardiovascular, metabolic, and other aging-related diseases. In this study, we investigated the role of SIRT3 in diabetic cardiomyopathy (DCM). Mice were injected with streptozotocin (STZ, 60 mg/kg, ip) to induce diabetes mellitus. Our proteomics analysis revealed that SIRT3 expression in the myocardium of diabetic mice was lower than that of control mice, as subsequently confirmed by real-time PCR and Western blotting. To explore the role of SIRT3 in DCM, SIRT3-knockout mice and 129S1/SvImJ wild-type mice were injected with STZ. We found that diabetic mice with SIRT3 deficiency exhibited aggravated cardiac dysfunction, increased lactate dehydrogenase (LDH) level in the serum, decreased adenosine triphosphate (ATP) level in the myocardium, exacerbated myocardial injury, and promoted myocardial reactive oxygen species (ROS) accumulation. Neonatal rat cardiomyocytes were transfected with SIRT3 siRNA, then exposed to high glucose (HG, 25.5 mM). We found that downregulation of SIRT3 further increased LDH release, decreased ATP level, suppressed the mitochondrial membrane potential, and elevated oxidative stress in HG-treated cardiomyocytes. SIRT3 deficiency further raised expression of necroptosis-related proteins including receptor-interacting protein kinase 1 (RIPK1), RIPK3, and cleaved caspase 3, and upregulated the expression of inflammation-related proteins including NLR family pyrin domain-containing protein 3 (NLRP3), caspase 1 p20, and interleukin-1β both in vitro and in vivo. Collectively, SIRT3 deficiency aggravated hyperglycemia-induced mitochondrial damage, increased ROS accumulation, promoted necroptosis, possibly activated the NLRP3 inflammasome, and ultimately exacerbated DCM in the mice. These results suggest that SIRT3 can be a molecular intervention target for the prevention and treatment of DCM.
Collapse
|
33
|
Varfolomeev E, Goncharov T, Vucic D. Immunoblot Analysis of the Regulation of TNF Receptor Family-Induced NF-κB Signaling by c-IAP Proteins. Methods Mol Biol 2021; 2366:109-123. [PMID: 34236635 DOI: 10.1007/978-1-0716-1669-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proper maintenance of organismal homeostasis, development, and immune defense requires precise regulation of survival and signaling pathways. Inhibitor of apoptosis (IAP) proteins are evolutionarily conserved regulators of cell death and immune signaling that impact numerous cellular processes. Although initially characterized as inhibitors of apoptosis, the ubiquitin ligase activity of IAP proteins is critical for modulating various signaling pathways (e.g., NF-κB, MAPK) and cell survival. Cellular IAP1 and 2 regulate the pro-survival canonical NF-κB pathway by ubiquitinating RIP1 and themselves thus enabling recruitment of kinase (IKK) and E3 ligase (LUBAC) complexes. On the other hand, c-IAP1 and c-IAP2 are negative regulators of noncanonical NF-κB signaling by promoting ubiquitination and consequent proteasomal degradation of the NF-κB-inducing kinase NIK. Here we describe the involvement of c-IAP1 and c-IAP2 in NF-κB signaling and provide detailed methodology for examining functional roles of c-IAPs in these pathways.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
34
|
Topal Y, Gyrd-Hansen M. RIPK2 NODs to XIAP and IBD. Semin Cell Dev Biol 2021; 109:144-150. [DOI: 10.1016/j.semcdb.2020.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
|
35
|
Sigma-2 Receptor-A Potential Target for Cancer/Alzheimer's Disease Treatment via Its Regulation of Cholesterol Homeostasis. Molecules 2020; 25:molecules25225439. [PMID: 33233619 PMCID: PMC7699687 DOI: 10.3390/molecules25225439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
The sigma receptors were classified into sigma-1 and sigma-2 receptor based on their different pharmacological profiles. In the past two decades, our understanding of the biological and pharmacological properties of the sigma-1 receptor is increasing; however, little is known about the sigma-2 receptor. Recently, the molecular identity of the sigma-2 receptor has been identified as TMEM97. Although more and more evidence has showed that sigma-2 ligands have the ability to treat cancer and Alzheimer’s disease (AD), the mechanisms connecting these two diseases are unknown. Data obtained over the past few years from human and animal models indicate that cholesterol homeostasis is altered in AD and cancer, underscoring the importance of cholesterol homeostasis in AD and cancer. In this review, based on accumulated evidence, we proposed that the beneficial roles of sigma-2 ligands in cancer and AD might be mediated by their regulation of cholesterol homeostasis.
Collapse
|
36
|
Jiayong Z, Shengchen W, Xiaofang H, Gang S, Shiwen X. The antagonistic effect of selenium on lead-induced necroptosis via MAPK/NF-κB pathway and HSPs activation in the chicken spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111049. [PMID: 32758698 DOI: 10.1016/j.ecoenv.2020.111049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Recent studies identified a novel programmed and regulated cell death that was characterized by a necrotic cell death morphology, termed necroptosis. Lead (Pb) is known as a persistent inorganic environmental pollutant that affects the health of humans and animals worldwide. However, there are no detailed reports of Pb-induced necroptosis of immune tissue. Selenium (Se) is a trace element that antagonizes the toxicity of heavy metals. Here, chickens were randomly divided into four groups, treated with Pb ((CH3OO)2Pb, 150 mg/kg) and/or Se (Na2SeO3, 2 mg/kg), aim to study the effect and mechanism of necroptosis in Pb-induced spleen injury and the antagonistic effects of Se on Pb toxicity. Our results showed that Pb exposure evidently increased the accumulation of Pb in spleen and caused necroptosis by upregulating the expression of RIP1, RIP3 and MLKL, and decreasing Caspase8 expression. Meanwhile, Pb treatment inhibited the activities of SOD, GPX, and CAT, caused the accumulation of NO and MDA, and induced oxidative stress, which promoted the expression of MAPK/NF-κB pathway genes (ERK, JNK, P38, NF-κB and TNF-α) and activated HSPs (HSP27, HSP40, HSP60, HSP70 and HSP90). However, the increased content of Pb in spleen and Pb-caused necroptosis were inhibited by Se cotreatment. Overall, we conclude that Se can prevent Pb-induced necroptosis by restoring antioxidant functions and blocking the MAPK/NF-κB pathway and HSPs activation in chicken spleen.
Collapse
Affiliation(s)
- Zhang Jiayong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Wang Shengchen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Xiaofang
- Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Sun Gang
- Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China.
| | - Xu Shiwen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
37
|
Webster JD, Vucic D. The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Front Cell Dev Biol 2020; 8:365. [PMID: 32671059 PMCID: PMC7326080 DOI: 10.3389/fcell.2020.00365] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor alpha (TNF; TNFα) is a critical regulator of immune responses in healthy organisms and in disease. TNF is involved in the development and proper functioning of the immune system by mediating cell survival and cell death inducing signaling. TNF stimulated signaling pathways are tightly regulated by a series of phosphorylation and ubiquitination events, which enable timely association of TNF receptors-associated intracellular signaling complexes. Disruption of these signaling events can disturb the balance and the composition of signaling complexes, potentially resulting in severe inflammatory diseases.
Collapse
Affiliation(s)
- Joshua D Webster
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| | - Domagoj Vucic
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| |
Collapse
|
38
|
Taking aim with IAP antagonists at triple-negative breast cancer: a moving target no more? Cell Death Dis 2020; 11:350. [PMID: 32393742 PMCID: PMC7214455 DOI: 10.1038/s41419-020-2533-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
|