1
|
Nardi F, Del Prete R, Drago R, Di Rita A, Vallone FE, Ciofini S, Malchiodi M, Pezzella L, Tinti L, Cicaloni V, Salvini L, Licastro D, Pezacki AT, Chang CJ, Marotta G, Naldini A, Deaglio S, Vaisitti T, Gozzetti A, Bocchia M, Kabanova A. Apoliprotein E-mediated ferroptosis controls cellular proliferation in chronic lymphocytic leukemia. Leukemia 2024:10.1038/s41375-024-02442-0. [PMID: 39443737 DOI: 10.1038/s41375-024-02442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Unraveling vulnerabilities in chronic lymphocytic leukemia (CLL) represents a key approach to understand molecular basis for its indolence and a path toward developing tailored therapeutic approaches. In this study, we found that CLL cells are particularly sensitive to the inhibitory action of abundant serum protein, apolipoprotein E (ApoE). Physiological concentrations of ApoE affect CLL cell viability and inhibit CD40-driven proliferation. Transcriptomics of ApoE-treated CLL cells revealed a signature of redox and metal disbalance which prompted us to explore the underlying mechanism of cell death. We discover, on one hand, that ApoE treatment of CLL cells induces lipid peroxidation and ferroptosis. On the other hand, we find that ApoE is a copper-binding protein and that intracellular copper regulates ApoE toxicity. ApoE regulation tends to be lost in aggressive CLL. CLL cells from patients with high leukocyte counts are less sensitive to ApoE inhibition, while resistance to ApoE is possible in transformed CLL cells from patients with Richter syndrome (RS). Nevertheless, both aggressive CLL and RS cells maintain sensitivity to drug-induced ferroptosis. Our findings suggest a natural suppression axis that mediates ferroptotic disruption of CLL cell proliferation, building up the rationale for choosing ferroptosis as a therapeutic target in CLL and RS.
Collapse
Affiliation(s)
- Federica Nardi
- Fondazione Toscana Life Sciences, Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Roberta Drago
- Fondazione Toscana Life Sciences, Siena, Italy
- PhD program in Translational and Precision Medicine, University of Siena, Siena, Italy
| | - Anthea Di Rita
- Fondazione Toscana Life Sciences, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Sara Ciofini
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Margherita Malchiodi
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Laura Tinti
- Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | | | - Aidan T Pezacki
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital of Siena, Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Gozzetti
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Monica Bocchia
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | |
Collapse
|
2
|
Jo Y, Sim HI, Yun B, Park Y, Jin HS. Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2. Exp Mol Med 2024:10.1038/s12276-024-01317-9. [PMID: 39349829 DOI: 10.1038/s12276-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Cancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment. However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy. This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses. The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy.
Collapse
Affiliation(s)
- Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Hye-In Sim
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Bohwan Yun
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Shao D, Bai T, Zhu B, Guo X, Dong K, Shi J, Huang Q, Kong J. Construction and Mechanism of IL-15-Based Coactivated Polymeric Micelles for NK Cell Immunotherapy. Adv Healthc Mater 2024; 13:e2302589. [PMID: 37897328 DOI: 10.1002/adhm.202302589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Natural killer (NK) cells are an important contributor to cancer immunotherapy, but their antitumor efficacy remains suboptimal. While cytokine-based priming shows promise in enhancing NK-cell activity, its clinical translation faces many challenges, including coactivation of multiple cytokines, poor pharmacokinetics, and limited mechanistic understanding. Here, this work develops a polymeric micelle-based IL-15/IL-2 codelivery system (IL-15/2-PEG-PTMC) for NK-cell activation. In vivo studies demonstrate that half-life of IL-15 and IL-2 and the recruitment of NK cell within tumor tissue are significantly increased after PEG-PTMC loading. Coupled with the coactivation effect of IL-15 and IL-2 conferred by this system, it noticeably delays the growth of tumors compared to conventional NK-cell activation approach, that is free IL-15 and IL-2. It is also surprisingly found that cholesterol metabolism is highly involved in the NK cell activation by IL-15/2-PEG-PTMC. Following stimulation with IL-15/2-PEG-PTMC or IL-15, NK cells undergo a series of cholesterol metabolism reprogramming, which elevates the cholesterol levels on NK cell membrane. This in turn promotes the formation of lipid rafts and activates immune synapses, effectively contributing to the enhancement of NK cell's antitumor activity. It is believed that it will open a new avenue for improving the efficacy of NK cell immunotherapy by regulating cholesterol metabolism.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Bai
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Bobo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaojia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kai Dong
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
4
|
Volkmar M, Fakhr E, Zens S, Bury A, Offringa R, Gordon J, Huduti E, Wölfel T, Wölfel C. Identification of TRDV-TRAJ V domains in human and mouse T-cell receptor repertoires. Front Immunol 2023; 14:1286688. [PMID: 38077312 PMCID: PMC10702483 DOI: 10.3389/fimmu.2023.1286688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Here, we describe the identification of two T-cell receptors (TRs) containing TRDV genes in their TRA chains, the first one in human and the second one in mouse. First, using 5'RACE on a mixed lymphocyte-tumor cell culture (MLTC), we identified TRDV1 5'-untranslated region (UTR) and complete coding sequence rearranged productively to TRAJ24. Single-cell TR RNA sequencing (RNA-seq) of the MLTC, conducted to identify additional clonotypes, revealed that the analysis software detected the hybrid TRDV-TRAJ TRA (TRA) chain but excluded it from the final results. In a separate project, we performed TR sequencing of tumor-infiltrating lymphocytes (TILs) in a murine tumor model. Here, the predominant clonotype contained a TRA chain with a TRDV2-2-TRAJ49 rearrangement. Again, the hybrid TRA chain was not reported in the final results. Transfection of both TR cDNAs resulted in cell surface localization of TR together with CD3, suggesting a productive protein in both cases. Tumor recognition of the Homo sapiens (Homsap) TRDV1-containing TR could be demonstrated by IFN Gamma ELISA ELISpot kit, whereas the Mus musculus (Musmus) TR did not recognize a tumor-derived cell line. To determine whether the TRDV-containing TRA chains we detected were rare events or whether TRDV genes are commonly incorporated into TRA chains, we queried the NCBI Sequence Read Archive for TR single-cell RNA-seq data and analyzed 21 human and 23 murine datasets. We found that especially Homsap TRDV1, Musmus TRDV1, and to some extent Musmus TRDV2-2 are more commonly incorporated into TRA chains than several TRAV genes, making those TRDV genes a relevant contribution to TRA diversity. TRDV-containing TRA chains are currently excluded from the final results of V-(D)-J dataset analyses with the CellRanger software. We provide a work-around to avoid exclusion of those hybrid TRA chains from the final analysis results.
Collapse
Affiliation(s)
- Michael Volkmar
- TCR Discovery Platform, Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
| | - Elham Fakhr
- TCR Discovery Platform, Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
| | - Stefan Zens
- Department D200, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alice Bury
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
| | - Rienk Offringa
- Department D200, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jessica Gordon
- BioNtech, Deptartment Immunotherapies & Preclinical Research, Cellular Biomarker and Immunology Research Team, Mainz, Germany
| | - Enes Huduti
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
| | - Thomas Wölfel
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University Mainz and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Catherine Wölfel
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University Mainz and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| |
Collapse
|
5
|
Kashyap MP, Mishra B, Sinha R, Jin L, Kumar N, Goliwas KF, Deshane J, Elewski BE, Elmets CA, Athar M, Shahid Mukhtar M, Raman C. NK and NKT cells in the pathogenesis of Hidradenitis suppurativa: Novel therapeutic strategy through targeting of CD2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565057. [PMID: 37961206 PMCID: PMC10634971 DOI: 10.1101/2023.10.31.565057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic debilitating inflammatory skin disease with poorly understood pathogenesis. Single-cell RNAseq analysis of HS lesional and healthy individual skins revealed that NKT and NK cell populations were greatly expanded in HS, and they expressed elevated CD2, an activation receptor. Immunohistochemistry analyses confirmed significantly expanded numbers of CD2+ cells distributed throughout HS lesional tissue, and many co-expressed the NK marker, CD56. While CD4+ T cells were expanded in HS, CD8 T cells were rare. CD20+ B cells in HS were localized within tertiary follicle like structures. Immunofluorescence microscopy showed that NK cells (CD2 + CD56 dim ) expressing perforin, granzymes A and B were enriched within the hyperplastic follicular epidermis and tunnels of HS and juxtaposed with apoptotic cells. In contrast, NKT cells (CD2 + CD3 + CD56 bright ) primarily expressed granzyme A and were associated with α-SMA expressing fibroblasts within the fibrotic regions of the hypodermis. Keratinocytes and fibroblasts expressed high levels of CD58 (CD2 ligand) and they interacted with CD2 expressing NKT and NK cells. The NKT/NK maturation and activating cytokines, IL-12, IL-15 and IL-18, were significantly elevated in HS. Inhibition of cognate CD2-CD58 interaction with blocking anti-CD2 mAb in HS skin organotypic cultures resulted in a profound reduction of the inflammatory gene signature and secretion of inflammatory cytokines and chemokines in the culture supernate. In summary, we show that a cellular network of heterogenous NKT and NK cell populations drives inflammation, tunnel formation and fibrosis in the pathogenesis of HS. Furthermore, CD2 blockade is a viable immunotherapeutic approach for the management of HS.
Collapse
|
6
|
Banerjee A, Narasimhulu CA, Singla DK. Immune interactions in pembrolizumab (PD-1 inhibitor) cancer therapy and cardiovascular complications. Am J Physiol Heart Circ Physiol 2023; 325:H751-H767. [PMID: 37594487 PMCID: PMC10659324 DOI: 10.1152/ajpheart.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The use of immunotherapies like pembrolizumab (PEM) is increasingly common for the management of numerous cancer types. The use of PEM to bolster T-cell response against tumor growth is well documented. However, the interactions PEM has on other immune cells to facilitate tumor regression and clearance is unknown and warrants further investigation. In this review, we present literature findings that have reported the interactions of PEM in stimulating innate and adaptive immune cells, which enhance cytotoxic phenotypes. This triggers secretion of cytokines and chemokines, which have both beneficial and detrimental effects. We also describe how this leads to the development of rare but underreported occurrence of PEM-induced immune-related cardiovascular complications that arise suddenly and progress rapidly to debilitating and fatal consequences. This review encourages further research and investigation of PEM-induced cardiovascular complications and other immune cell interactions in patients with cancer. As PEM therapy in treating cancer types is expanding, we expect that this review will inform health care professionals of diverse specializations of medicine like dermatology (melanoma skin cancers), ophthalmology (eye cancers), and pathology (hematological malignancies) about PEM-induced cardiac complications.
Collapse
Affiliation(s)
- Abha Banerjee
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
7
|
Zhong X, Lv M, Ma M, Huang Q, Hu R, Li J, Yi J, Sun J, Zhou X. State of CD8 + T cells in progression from nonalcoholic steatohepatitis to hepatocellular carcinoma: From pathogenesis to immunotherapy. Biomed Pharmacother 2023; 165:115131. [PMID: 37429231 DOI: 10.1016/j.biopha.2023.115131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
With the obesity epidemic, nonalcoholic steatohepatitis (NASH) is emerging as the fastest growing potential cause of hepatocellular carcinoma (HCC). NASH has been demonstrated to establish a tumor-prone liver microenvironment where both innate and adaptive immune systems are involved. As the most typical anti-tumor effector, the cell function of CD8+ T cells is remodeled by chronic inflammation, metabolic alteration, lipid toxicity and oxidative stress in the liver microenvironment along the NASH to HCC transition. Unexpectedly, NASH may blunt the effect of immune checkpoint inhibitor therapy against HCC due to the dysregulated CD8+ T cells. Growing evidence has supported that NASH is likely to facilitate the state transition of CD8+ T cells with changes in cell motility, effector function, metabolic reprogramming and gene transcription according to single-cell sequencing. However, the mechanistic insight of CD8+ T cell states in the NASH-driven HCC is not comprehensive. Herein, we focus on the characterization of state phenotypes of CD8+ T cells with both functional and metabolic signatures in NASH-driven fibrosis and HCC. The NASH-specific CD8+ T cells are speculated to mainly have a dualist effect, where its aberrant activated phenotype sustains chronic inflammation in NASH but subsequently triggers its exhaustion in HCC. As the exploration of CD8+ T cells on the distribution and phenotypic shifts will provide a new direction for the intervention strategies against HCC, we also discuss the implications for targeting different phenotypes of CD8+ T cells, shedding light on the personalized immunotherapy for NASH-driven HCC.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - MengQing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qi Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Hu
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinyu Yi
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Jenkins E, Körbel M, O'Brien-Ball C, McColl J, Chen KY, Kotowski M, Humphrey J, Lippert AH, Brouwer H, Santos AM, Lee SF, Davis SJ, Klenerman D. Antigen discrimination by T cells relies on size-constrained microvillar contact. Nat Commun 2023; 14:1611. [PMID: 36959206 PMCID: PMC10036606 DOI: 10.1038/s41467-023-36855-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
T cells use finger-like protrusions called 'microvilli' to interrogate their targets, but why they do so is unknown. To form contacts, T cells must overcome the highly charged, barrier-like layer of large molecules forming a target cell's glycocalyx. Here, T cells are observed to use microvilli to breach a model glycocalyx barrier, forming numerous small (<0.5 μm diameter) contacts each of which is stabilized by the small adhesive protein CD2 expressed by the T cell, and excludes large proteins including CD45, allowing sensitive, antigen dependent TCR signaling. In the absence of the glycocalyx or when microvillar contact-size is increased by enhancing CD2 expression, strong signaling occurs that is no longer antigen dependent. Our observations suggest that, modulated by the opposing effects of the target cell glycocalyx and small adhesive proteins, the use of microvilli equips T cells with the ability to effect discriminatory receptor signaling.
Collapse
Affiliation(s)
- Edward Jenkins
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Markus Körbel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Caitlin O'Brien-Ball
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - James McColl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin Y Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Mateusz Kotowski
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Jane Humphrey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Anna H Lippert
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Heather Brouwer
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
9
|
Castoldi A, Lee J, de Siqueira Carvalho D, Souto FO. CD8 + T cell metabolic changes in breast cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166565. [PMID: 36220587 DOI: 10.1016/j.bbadis.2022.166565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Immunometabolism has advanced our understanding of how the cellular environment and nutrient availability regulates immune cell fate. Not only are metabolic pathways closely tied to cell signaling and differentiation, but can induce different subsets of immune cells to adopt unique metabolic programs, influencing disease progression. Dysregulation of immune cell metabolism plays an essential role in the progression of several diseases including breast cancer (BC). Metabolic reprogramming plays a critical role in regulating T cell functions. CD8+ T cells are an essential cell type within the tumor microenvironment (TME). To induce antitumor responses, CD8+ T cells need to adapt their metabolism to fulfill their energy requirement for effective function. However, different markers and immunologic techniques have made identifying specific CD8+ T cells subtypes in BC a challenge to the field. This review discusses the immunometabolic processes of CD8+ T cell in the TME in the context of BC and highlights the role of CD8+ T cell metabolic changes in tumor progression.
Collapse
Affiliation(s)
- Angela Castoldi
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Brazil; Programa de Pós-Graduação em Biologia Aplicada à Saúde, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | - Fabrício Oliveira Souto
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Brazil; Programa de Pós-Graduação em Biologia Aplicada à Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
10
|
Shen Q, He Y, Qian J, Wang X. Identifying tumor immunity-associated molecular features in liver hepatocellular carcinoma by multi-omics analysis. Front Mol Biosci 2022; 9:960457. [PMID: 36339710 PMCID: PMC9632276 DOI: 10.3389/fmolb.2022.960457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Although current immunotherapies have achieved some successes for hepatocellular carcinoma (HCC) patients, their benefits are limited for most HCC patients. Therefore, the identification of biomarkers for promoting immunotherapeutic responses in HCC is urgently needed. Methods: Using the TCGA HCC cohort, we investigated correlations of various molecular features with antitumor immune signatures (CD8+ T cell infiltration and cytolytic activity) and an immunosuppressive signature (PD-L1 expression) in HCC. These molecular features included mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins, and pathways. Results: We found that the mutations of several oncogenes and tumor suppressor genes significantly correlated with reduced antitumor immune signatures, including TTN, CTNNB1, RB1, ZFHX4, and TP53. It indicates that these genes’ mutations may inhibit antitumor immune responses in HCC. Four proteins (Syk, Lck, STAT5, and Caspase-7) had significant positive expression correlations with CD8+ T cell enrichment, cytolytic activity, and PD-L1 expression in HCC. It suggests that these proteins’ expression could be useful biomarkers for the response to immune checkpoint inhibitors Similiarly, we identified other types of biomarkers potentially useful for predicting the response to ICIs, including miRNAs (hsa-miR-511-5p, 150-3p, 342-3p, 181a-3p, 625-5p, 4772-3p, 155-3p, 142-5p, 142-3p, 155-5p, 625-3p, 1976, 7702), many lncRNAs, and pathways (apoptosis, cytokine-cytokine receptor interaction, Jak-STAT signaling, MAPK signaling, PI3K-AKT signaling, HIF-1 signaling, ECM receptor interaction, focal adhesion, and estrogen signaling). Further, tumor mutation burden showed no significant correlation with antitumor immunity, while tumor aneuploidy levels showed a significant negative correlation with antitumor immunity. Conclusion: The molecular features significantly associated with HCC immunity could be predictive biomarkers for immunotherapeutic responses in HCC patients. They could also be potential intervention targets for boosting antitumor immunity and immunotherapeutic responses in HCC.
Collapse
Affiliation(s)
- Qianyun Shen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Jiajie Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- *Correspondence: Xiaosheng Wang,
| |
Collapse
|
11
|
Li B, Lu Y, Zhong MC, Qian J, Li R, Davidson D, Tang Z, Zhu K, Argenty J, de Peredo AG, Malissen B, Roncagalli R, Veillette A. Cis interactions between CD2 and its ligands on T cells are required for T cell activation. Sci Immunol 2022; 7:eabn6373. [PMID: 35930657 DOI: 10.1126/sciimmunol.abn6373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CD2 is largely described to promote T cell activation when engaged by its ligands, CD48 in mice and CD58 in humans, that are present on antigen-presenting cells (APCs). However, both CD48 and CD58 are also expressed on T cells. By generating new knockout mouse strains lacking CD2 or CD48 in the C57BL/6 background, we determined that whereas CD2 was necessary on T cells for T cell activation, its ligand CD48 was not required on APCs. Rather, CD48 was also needed on T cells. One exception was during cytotoxicity, which required CD48 on T cells and APCs. Fluorescence resonance energy transfer (FRET) studies in nonimmune cells provided evidence that cis interactions between CD2 and CD48 existed within individual cells. CD2-CD48 interactions on T cells enabled more robust T cell receptor (TCR) signals, including protein tyrosine phosphorylation. Using T cells from a CD2 knock-in mouse in which a tag was inserted at the carboxyl terminus of CD2, mass spectrometry analyses revealed that the role of CD2 in T cell activation correlated with its ability to interact with components of the TCR complex and the protein tyrosine kinase Lck. CD2-CD58 provided a similar function in human T cells. Thus, our data imply that T cell-intrinsic cis interactions of CD2 with its ligands are required for TCR signaling and T cell activation. Interactions with ligands on APCs contribute during cytotoxicity.
Collapse
Affiliation(s)
- Bin Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Molecular Biology Program, University of Montréal, Montréal, Québec H3T 1J4, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Rui Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Zhenghai Tang
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Kaiwen Zhu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Jérémy Argenty
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS UPS, Toulouse, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Molecular Biology Program, University of Montréal, Montréal, Québec H3T 1J4, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
12
|
Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol Immunol 2022; 19:944-956. [PMID: 35821253 PMCID: PMC9338301 DOI: 10.1038/s41423-022-00894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/11/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have an increased risk of cancer. The effect of glucose metabolism on γδ T cells and their impact on tumor surveillance remain unknown. Here, we showed that high glucose induced Warburg effect type of bioenergetic profile in Vγ9Vδ2 T cells, leading to excessive lactate accumulation, which further inhibited lytic granule secretion by impairing the trafficking of cytolytic machinery to the Vγ9Vδ2 T-cell-tumor synapse by suppressing AMPK activation and resulted in the loss of antitumor activity in vitro, in vivo and in patients. Strikingly, activating the AMPK pathway through glucose control or metformin treatment reversed the metabolic abnormalities and restored the antitumor activity of Vγ9Vδ2 T cells. These results suggest that the impaired antitumor activity of Vγ9Vδ2 T cells induced by dysregulated glucose metabolism may contribute to the increased cancer risk in T2DM patients and that metabolic reprogramming by targeting the AMPK pathway with metformin may improve tumor immunosurveillance.
Collapse
|
13
|
Chakraborty S, Khamaru P, Bhattacharyya A. Regulation of immune cell metabolism in health and disease: Special focus on T and B cell subsets. Cell Biol Int 2022; 46:1729-1746. [PMID: 35900141 DOI: 10.1002/cbin.11867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Metabolism is a dynamic process and keeps changing from time to time according to the demand of a particular cell to meet its bio-energetic requirement. Different immune cells rely on distinct metabolic programs which allow the cell to balance its requirements for energy, molecular biosynthesis, and effector activity. In the aspect of infection and cancer immunology, effector T and B cells get exhausted and help tumor cells to evade immunosurveillance. On the other hand, T cells become hyperresponsive in the scenario of autoimmune diseases. In this article, we have explored the uniqueness and distinct metabolic features of key CD4+ T and B helper cell subsets, CD4+ T, B regulatory cell subsets and CD8+ T cells regarding health and disease. Th1 cells rely on glycolysis and glutaminolysis; inhibition of these metabolic pathways promotes Th1 cells in Treg population. However, Th2 cells are also dependent on glycolysis but an abundance of lactate within TME shifts their metabolic dependency to fatty acid metabolism. Th17 cells depend on HIF-1α mediated glycolysis, ablation of HIF-1α reduces Th17 cells but enhance Treg population. In contrast to effector T cells which are largely dependent on glycolysis for their differentiation and function, Treg cells mainly rely on FAO for their function. Therefore, it is of utmost importance to understand the metabolic fates of immune cells and how it facilitates their differentiation and function for different disease models. Targeting metabolic pathways to restore the functionality of immune cells in diseased conditions can lead to potent therapeutic measures.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Poulomi Khamaru
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
15
|
Xie B, Song X. The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo. Pigment Cell Melanoma Res 2021; 35:6-17. [PMID: 34333860 DOI: 10.1111/pcmr.13006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Vitiligo is an autoimmune skin disease, characterized by depigmentation and epidermal melanocytes loss. The specific mechanisms underlying vitiligo have not been fully understood. As a result, treating vitiligo is a dermatological challenge. Recently, much attention has been paid to the dysfunction and interaction of organelles under environmental stress. The impaired organelles could generate misfolded proteins, particularly accumulated toxic premelanosome protein (PMEL) amyloid oligomers, activating the autoimmune system and cause melanocyte damage. Unfolded protein response (UPR) dysfunction accelerates toxic PMEL accumulation. Herein, we presented a narrative review on UPR's role in vitiligo, the misfolded PMEL-induced attack of the autoimmune system under autophagy dysfunction caused by abnormal activation of transient receptor potential (TRP) channels and the background of UPR system defects in melanocytes. All of these mechanisms were integrated to form UPR/PMEL-TRP channels/autophagy axis, providing a new understanding of vitiligo pathogenesis.
Collapse
Affiliation(s)
- Bo Xie
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|
17
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Tang JJJ, Sung AP, Guglielmo MJ, Navarrete-Galvan L, Redelman D, Smith-Gagen J, Hudig D. Natural Killer (NK) Cell Expression of CD2 as a Predictor of Serial Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC). Antibodies (Basel) 2020; 9:antib9040054. [PMID: 33081115 PMCID: PMC7709134 DOI: 10.3390/antib9040054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
NK cell ADCC supports monoclonal antibody anti-tumor therapies. We investigated serial ADCC and whether it could be predicted by NK phenotypes, including expression of CD16A, CD2 and perforin. CD16A, the NK receptor for antibodies, has AA158 valine or phenylalanine variants with different affinities for IgG. CD2, a costimulatory protein, associates with CD16A and can augment CD16A-signaling. Pore-forming perforin is essential for rapid NK-mediated killing. NK cells were monitored for their ADCC serial killing frequency (KF). KF is the average number of target cells killed per cell by a cytotoxic cell population. KF comparisons were made at 1:4 CD16pos NK effector:target ratios. ADCC was toward Daudi cells labeled with 51Cr and obinutuzumab anti-CD20 antibody. CD16A genotypes were determined by DNA sequencing. CD2, CD16A, and perforin expression was monitored by flow cytometry. Serial killing KFs varied two-fold among 24 donors and were independent of CD16A genotypes and perforin levels. However, high percentages of CD2pos of the CD16Apos NK cells and high levels of CD16A were associated with high KFs. ROC analysis indicated that the %CD2pos of CD16Apos NK cells can predict KFs. In conclusion, the extent of serial ADCC varies significantly among donors and appears predictable by the CD2posCD16Apos NK phenotype.
Collapse
Affiliation(s)
- Jennifer J.-J. Tang
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
| | - Alexander P. Sung
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
| | - Michael J. Guglielmo
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
| | - Lydia Navarrete-Galvan
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
| | - Doug Redelman
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA;
| | - Julie Smith-Gagen
- School of Community Health Sciences, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA;
| | - Dorothy Hudig
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
- Correspondence: ; Tel.: +1-775-784-4430
| |
Collapse
|
19
|
Binder C, Cvetkovski F, Sellberg F, Berg S, Paternina Visbal H, Sachs DH, Berglund E, Berglund D. CD2 Immunobiology. Front Immunol 2020; 11:1090. [PMID: 32582179 PMCID: PMC7295915 DOI: 10.3389/fimmu.2020.01090] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023] Open
Abstract
The glycoprotein CD2 is a costimulatory receptor expressed mainly on T and NK cells that binds to LFA3, a cell surface protein expressed on e.g., antigen-presenting cells. CD2 has an important role in the formation and organization of the immunological synapse that is formed between T cells and antigen-presenting cells upon cell-cell conjugation and associated intracellular signaling. CD2 expression is upregulated on memory T cells as well as activated T cells and plays an important role in activation of memory T cells despite the coexistence of several other costimulatory pathways. Anti-CD2 monoclonal antibodies have been shown to induce immune modulatory effects in vitro and clinical studies have proven the safety and efficacy of CD2-targeting biologics. Investigators have highlighted that the lack of attention to the CD2/LFA3 costimulatory pathway is a missed opportunity. Overall, CD2 is an attractive target for monoclonal antibodies intended for treatment of pathologies characterized by undesired T cell activation and offers an avenue to more selectively target memory T cells while favoring immune regulation.
Collapse
Affiliation(s)
- Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | | | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Stefan Berg
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Horacio Paternina Visbal
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - David H Sachs
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Erik Berglund
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Division of Transplantation Surgery, CLINTEC, Karolinska Institute, and Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| |
Collapse
|