1
|
Sies H. Dynamics of intracellular and intercellular redox communication. Free Radic Biol Med 2024; 225:933-939. [PMID: 39491734 DOI: 10.1016/j.freeradbiomed.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cell and organ metabolism is organized through various signaling mechanisms, including redox, Ca2+, kinase and electrochemical pathways. Redox signaling operates at multiple levels, from interactions between individual molecules in their microenvironment to communication among subcellular organelles, single cells, organs, and the entire organism. Redox communication is a dynamic and ongoing spatiotemporal process. This article focuses on hydrogen peroxide (H2O2), a key second messenger that targets redox-active protein cysteine thiolates. H2O2 gradients across cell membranes are controlled by peroxiporins, specialized aquaporins. Redox-active endosomes, known as redoxosomes, form at the plasma membrane. Cell-to-cell redox communication involves direct contacts, such as per gap junctions that connect cells for transfer of molecules via connexons. Moreover, signaling occurs through the release of redox-active molecules and enzymes into the surrounding space, as well as through various types of extracellular vesicles (EVs) that transport these signals to nearby or distant target cells.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Ho SJ, Chaput D, Sinkey RG, Garces AH, New EP, Okuka M, Sang P, Arlier S, Semerci N, Steffensen TS, Rutherford TJ, Alsina AE, Cai J, Anderson ML, Magness RR, Uversky VN, Cummings DAT, Tsibris JCM. Proteomic studies of VEGFR2 in human placentas reveal protein associations with preeclampsia, diabetes, gravidity, and labor. Cell Commun Signal 2024; 22:221. [PMID: 38594674 PMCID: PMC11003095 DOI: 10.1186/s12964-024-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.
Collapse
Grants
- Department of Obstetrics and Gynecology, University of South Florida
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida
- Lisa Muma Weitz Microscopy Laboratory, University of South Florida
- Department of Chemistry, University of South Florida
- Tampa General Hospital, Tampa, Florida
- Teasley Foundation
- Department of Molecular Medicine, University of South Florida
- Department of Biology, University of Florida
- Emerging Pathogens Institute, University of Florida
Collapse
Affiliation(s)
- Shannon J Ho
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Rachel G Sinkey
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Amanda H Garces
- Lisa Muma Weitz Microscopy Laboratory, University of South Florida, Tampa, FL, USA
| | - Erika P New
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Maja Okuka
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | | | - Thomas J Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
- Cancer Center, Tampa General Hospital, Tampa, FL, USA
| | - Angel E Alsina
- Transplant Surgery Center, Tampa General Hospital, Tampa, FL, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Matthew L Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
- Cancer Center, Tampa General Hospital, Tampa, FL, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Derek A T Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - John C M Tsibris
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA.
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
Zhou BY, Liu H, Pu YY, Wang LF, Sun YK, Yin HH, Lu D, Ye X, Hu XY, Wang X, Han H, Xia HS, Zhao CK, Xu HX. Quantitative analysis of pre-treatment dynamic contrast-enhanced ultrasound for assessing the response of colorectal liver metastases to chemotherapy plus targeted therapy: a dual-institutional study. Abdom Radiol (NY) 2024; 49:414-424. [PMID: 37853236 DOI: 10.1007/s00261-023-04055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To investigate the clinical value of pre-treatment quantitative contrast-enhanced ultrasound (CEUS) in assessing the response of colorectal liver metastases (CRLM) to chemotherapy plus targeted therapy. METHODS This study retrospectively enrolled 50 CRLM patients from the Zhongshan Hospital, Fudan University as the training cohort and 14 patients from Shanghai Tenth People's Hospital as the testing cohort. Patients underwent the CEUS examination before receiving chemotherapy (CAPOX, FOLFOX, FOLFIRI, or FOLFOXIRI) plus targeted therapy (Bevacizumab or Cetuximab). The therapy response was determined according to Response Evaluation Criteria in Solid Tumors version 1.1 based on pre-treatment CT and 3-month follow-up CT after therapy. Dynamic analysis was performed by VueBox® software. Time-intensity curves with quantitative perfusion parameters were obtained. In the training cohort, univariable and multivariable logistic regression analyses were used to develop the predictive model of therapy response. The predictive performance of the developed model was validated in the testing cohort. RESULTS After the logistic regression analyses, the peak enhancement (PE) (odds ratio = 1.640; 95% confidence intervals [CI] 1.022-2.633) and time to peak (TTP) (odds ratio = 0.495; 95% CI 0.246-0.996) were determined as independent predictive factors. PE and TTP generated from VueBox® were not affected by ultrasound instruments and contrast agent dosage in therapy response evaluation (P > 0.05). The logistic regression model achieved satisfactory prediction performance (area under the curve: 0.923 in the training cohort and 0.854 in the testing cohort). CONCLUSION CEUS with dynamic quantitative perfusion analysis, which presents high consistency, has potential practical value in predicting the response of CRLM to chemotherapy plus targeted therapy.
Collapse
Affiliation(s)
- Bo-Yang Zhou
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Hui Liu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China
| | - Yin-Ying Pu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Li-Fan Wang
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yi-Kang Sun
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hao-Hao Yin
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Dan Lu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Xing Ye
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Xin-Yuan Hu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Xi Wang
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hong Han
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Han-Sheng Xia
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| | - Chong-Ke Zhao
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| |
Collapse
|
4
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
5
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
6
|
Adnani L, Rak J. Intercellular Molecular Transfer Mediated by Extracellular Vesicles in Cancer. Results Probl Cell Differ 2024; 73:327-352. [PMID: 39242385 DOI: 10.1007/978-3-031-62036-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among multiple pathways of intercellular communication operative in multicellular organisms, the trafficking of extracellular vesicles (EVs) and particles (EP) represents a unique mode of cellular information exchange with emerging roles in health and disease, including cancer. A distinctive feature of EV/EP-mediated cell-cell communication is that it involves simultaneous short- or long-range transfer of numerous molecular constituents (cargo) from donor to recipient cells. EV/EP uptake by donor cells elicits signalling or metabolic responses, or else leads to EV-re-emission or degradation. EVs are heterogeneous membranous structures released from cells via increasingly defined mechanisms involving either formation of multivesicular endosomes (exosomes) or budding from the plasma membrane (ectosomes). EPs (exomeres, supermeres) are membraneless complex particles, smaller than EVs and of less defined biogenesis and function. EVs/EPs carry complex assemblies of proteins, lipids and nucleic acids (RNA, DNA), which they shuttle into intercellular milieu, body fluids and recipient cells, via surface contact, fusion and different forms of internalization (endocytosis, micropinocytosis). While the physiological functions of EVs/EPs communication pathways continue to be investigated, their roles in cancer are increasingly well-defined. For example, EVs are involved in the transmission of cancer-specific molecular cargo, including mutant, oncogenic, transforming, or regulatory macromolecules to indolent, or normal cells, sometimes triggering their quasi-transformation-like states, or phenotypic alterations. Conversely, a reciprocal and avid uptake of stromal EVs by cancer cells may be responsible for modulating their oncogenic repertoire, as exemplified by the angiocrine effects of endothelial EVs influencing cancer cell stemness. EV exchanges during cancer progression have also been implicated in the formation of tumour stroma, angiogenesis and non-angiogenic neovascularization processes, immunosuppression, colonization of metastatic organ sites (premetastatic niche), paraneoplastic and systemic pathologies (thrombosis, diabetes, hepatotoxicity). Thus, an EV/EP-mediated horizontal transfer of cellular content emerges as a new dimension in cancer pathogenesis with functional, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Lata Adnani
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada.
| |
Collapse
|
7
|
Schiano C, Balbi C, de Nigris F, Napoli C. Basic Pathogenic Mechanisms and Epigenetic Players Promoted by Extracellular Vesicles in Vascular Damage. Int J Mol Sci 2023; 24:ijms24087509. [PMID: 37108672 PMCID: PMC10138986 DOI: 10.3390/ijms24087509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138 Naples, Italy
| |
Collapse
|