1
|
Serebrenik YV, Mani D, Maujean T, Burslem GM, Shalem O. Pooled endogenous protein tagging and recruitment for systematic profiling of protein function. CELL GENOMICS 2024; 4:100651. [PMID: 39255790 DOI: 10.1016/j.xgen.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
The emerging field of induced proximity therapeutics, which involves designing molecules to bring together an effector and target protein-typically to induce target degradation-is rapidly advancing. However, its progress is constrained by the lack of scalable and unbiased tools to explore effector-target protein interactions. We combine pooled endogenous gene tagging using a ligand-binding domain with generic small-molecule-based recruitment to screen for induction of protein proximity. We apply this methodology to identify effectors for degradation in two orthogonal screens: using fluorescence to monitor target levels and a cellular growth that depends on the degradation of an essential protein. Our screens revealed new effector proteins for degradation, including previously established examples, and converged on members of the C-terminal-to-LisH (CTLH) complex. We introduce a platform for pooled induction of endogenous protein-protein interactions to expand our toolset of effector proteins for protein degradation and other forms of induced proximity.
Collapse
Affiliation(s)
- Yevgeniy V Serebrenik
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepak Mani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothé Maujean
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Ibba R, Sestito S, Ambrosio FA, Marchese E, Costa G, Fiorentino FP, Fusi F, Marchesi I, Polini B, Chiellini G, Alcaro S, Piras S, Carta A. Discovery of pyridoquinoxaline-based new P-gp inhibitors as coadjutant against Multi Drug Resistance in cancer. Eur J Med Chem 2024; 276:116647. [PMID: 38981337 DOI: 10.1016/j.ejmech.2024.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Multi-drug resistance (MDR) is a serious challenge in contemporary clinical practice and is mostly responsible for the failure of cancer medication therapies. Several experimental evidence links MDR to the overexpression of the drug efflux transporter P-gp, therefore, the discovery of novel P-glycoprotein inhibitors is required to treat or prevent MDR and to improve the absorption of chemotherapy drugs via the gastrointestinal system. In this work, we explored a series of novel pyridoquinoxaline-based derivatives designed from parental compounds, previously proved active in enhancing anticancer drugs in MDR nasopharyngeal carcinoma (KB). Among them, derivative 10d showed the most potent and selective inhibition of fluorescent dye efflux, if compared to reference compounds (MK-571, Novobiocin, Verapamil), and the highest MDR reversal activity when co-administered with the chemotherapeutic agents Vincristine and Etoposide, at non-cytotoxic concentrations. Molecular modelling predicted the two compound 10d binding mode in a ratio of 2:1 with the target protein. No cytotoxicity was observed in healthy microglia cells and off-target investigations showed the absence of CaV1.2 channel blockade. In summary, our findings indicated that 10d could potentially be a novel therapeutic coadjutant by inhibiting P-gp transport function in vitro, thereby reversing cancer multidrug resistance.
Collapse
Affiliation(s)
- Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy.
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| | | | - Emanuela Marchese
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy.
| | - Giosuè Costa
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy.
| | | | - Fabio Fusi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
| | | | - Beatrice Polini
- Department of Pathology, University of Pisa, 56100, Pisa, Italy.
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100, Pisa, Italy.
| | - Stefano Alcaro
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy.
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy.
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
3
|
Dong J, Ma F, Cai M, Cao F, Li H, Liang H, Li Y, Ding G, Li J, Cheng X, Qin JJ. Heat Shock Protein 90 Interactome-Mediated Proteolysis Targeting Chimera (HIM-PROTAC) Degrading Glutathione Peroxidase 4 to Trigger Ferroptosis. J Med Chem 2024; 67:16712-16736. [PMID: 39230973 DOI: 10.1021/acs.jmedchem.4c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic paradigm aimed at eliminating the disease-causing protein with aberrant expression. Herein, we report a new approach to inducing intracellular glutathione peroxidase 4 (GPX4) protein degradation to trigger ferroptosis by bridging the target protein to heat shock protein 90 (HSP90), termed HSP90 interactome-mediated proteolysis targeting chimera (HIM-PROTAC). Different series of HIM-PROTACs were synthesized and evaluated, and two of them, GDCNF-2/GDCNF-11 potently induced ferroptosis via HSP90-mediated ubiquitin-proteasomal degradation of GPX4 in HT-1080 cells with DC50 values of 0.18 and 0.08 μM, respectively. In particular, GDCNF-11 showed 15-fold more ferroptosis selectivity over GPX4 inhibitor ML162. Moreover, these two degraders effectively suppress tumor growth in the mice model with relatively low toxicity as compared to the combination therapy of GPX4 and HSP90 inhibitors. In general, this study demonstrated the feasibility of degrading GPX4 via HSP90 interactome, and thus provided a significant complement to existing TPD strategies.
Collapse
Affiliation(s)
- Jinyun Dong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Furong Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Maohua Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fei Cao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haobin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hui Liang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guangyu Ding
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| |
Collapse
|
4
|
Li K, Krone MW, Butrin A, Bond MJ, Linhares BM, Crews CM. Development of Ligands and Degraders Targeting MAGE-A3. J Am Chem Soc 2024; 146:24884-24891. [PMID: 39190582 DOI: 10.1021/jacs.4c05393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Type I melanoma antigen (MAGE) family members are detected in numerous tumor types, and expression is correlated with poor prognosis, high tumor grade, and increased metastasis. Type I MAGE proteins are typically restricted to reproductive tissues, but expression can recur during tumorigenesis. Several biochemical functions have been elucidated for them, and notably, MAGEs regulate proteostasis by serving as substrate recognition modules for E3 ligase complexes. The repertoire of E3 ligase complexes that can be hijacked for targeted protein degradation continues to expand, and MAGE-E3 complexes are an especially attractive platform given their cancer-selective expression. Additionally, type I MAGE-derived peptides are presented on cancer cell surfaces, so targeted MAGE degradation may increase antigen presentation and improve immunotherapy outcomes. Motivated by these applications, we developed novel, small-molecule ligands for MAGE-A3, a type I MAGE that is widely expressed in tumors and associates with TRIM28, a RING E3 ligase. Chemical matter was identified through DNA-encoded library (DEL) screening, and hit compounds were validated for in vitro binding to MAGE-A3. We obtained a cocrystal structure with a DEL analog and hypothesize that the small molecule binds at a dimer interface. We utilized this ligand to develop PROTAC molecules that induce MAGE-A3 degradation through VHL recruitment and inhibit the proliferation of MAGE-A3 positive cell lines. These ligands and degraders may serve as valuable probes for investigating MAGE-A3 biology and as foundations for the ongoing development of tumor-specific PROTACs.
Collapse
Affiliation(s)
- Ke Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Mackenzie W Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Arseniy Butrin
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Michael J Bond
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Brian M Linhares
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Department of Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
5
|
Tsai JM, Nowak RP, Ebert BL, Fischer ES. Targeted protein degradation: from mechanisms to clinic. Nat Rev Mol Cell Biol 2024; 25:740-757. [PMID: 38684868 DOI: 10.1038/s41580-024-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases - the principal waste disposal machines of a cell - and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.
Collapse
Affiliation(s)
- Jonathan M Tsai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Yang X, Li M, Jia ZC, Liu Y, Wu SF, Chen MX, Hao GF, Yang Q. Unraveling the secrets: Evolution of resistance mediated by membrane proteins. Drug Resist Updat 2024; 77:101140. [PMID: 39244906 DOI: 10.1016/j.drup.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, Jiangsu 210095, China.
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
7
|
Yadav J, Maldonato BJ, Roesner JM, Vergara AG, Paragas EM, Aliwarga T, Humphreys S. Enzyme-mediated drug-drug interactions: a review of in vivo and in vitro methodologies, regulatory guidance, and translation to the clinic. Drug Metab Rev 2024:1-33. [PMID: 39057923 DOI: 10.1080/03602532.2024.2381021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Enzyme-mediated pharmacokinetic drug-drug interactions can be caused by altered activity of drug metabolizing enzymes in the presence of a perpetrator drug, mostly via inhibition or induction. We identified a gap in the literature for a state-of-the art detailed overview assessing this type of DDI risk in the context of drug development. This manuscript discusses in vitro and in vivo methodologies employed during the drug discovery and development process to predict clinical enzyme-mediated DDIs, including the determination of clearance pathways, metabolic enzyme contribution, and the mechanisms and kinetics of enzyme inhibition and induction. We discuss regulatory guidance and highlight the utility of in silico physiologically-based pharmacokinetic modeling, an approach that continues to gain application and traction in support of regulatory filings. Looking to the future, we consider DDI risk assessment for targeted protein degraders, an emerging small molecule modality, which does not have recommended guidelines for DDI evaluation. Our goal in writing this report was to provide early-career researchers with a comprehensive view of the enzyme-mediated pharmacokinetic DDI landscape to aid their drug development efforts.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Joseph M Roesner
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Rahway, NJ, USA
| | - Erickson M Paragas
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Theresa Aliwarga
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Sara Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
8
|
Mori Y, Akizuki Y, Honda R, Takao M, Tsuchimoto A, Hashimoto S, Iio H, Kato M, Kaiho-Soma A, Saeki Y, Hamazaki J, Murata S, Ushijima T, Hattori N, Ohtake F. Intrinsic signaling pathways modulate targeted protein degradation. Nat Commun 2024; 15:5379. [PMID: 38956052 PMCID: PMC11220168 DOI: 10.1038/s41467-024-49519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Targeted protein degradation is a groundbreaking modality in drug discovery; however, the regulatory mechanisms are still not fully understood. Here, we identify cellular signaling pathways that modulate the targeted degradation of the anticancer target BRD4 and related neosubstrates BRD2/3 and CDK9 induced by CRL2VHL- or CRL4CRBN -based PROTACs. The chemicals identified as degradation enhancers include inhibitors of cellular signaling pathways such as poly-ADP ribosylation (PARG inhibitor PDD00017273), unfolded protein response (PERK inhibitor GSK2606414), and protein stabilization (HSP90 inhibitor luminespib). Mechanistically, PARG inhibition promotes TRIP12-mediated K29/K48-linked branched ubiquitylation of BRD4 by facilitating chromatin dissociation of BRD4 and formation of the BRD4-PROTAC-CRL2VHL ternary complex; by contrast, HSP90 inhibition promotes BRD4 degradation after the ubiquitylation step. Consequently, these signal inhibitors sensitize cells to the PROTAC-induced apoptosis. These results suggest that various cell-intrinsic signaling pathways spontaneously counteract chemically induced target degradation at multiple steps, which could be liberated by specific inhibitors.
Collapse
Affiliation(s)
- Yuki Mori
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yoshino Akizuki
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Rikuto Honda
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Miyu Takao
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Ayaka Tsuchimoto
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Sota Hashimoto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroaki Iio
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masakazu Kato
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, 1648530, Japan
| | - Ai Kaiho-Soma
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yasushi Saeki
- Division of Protein Metabolism, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Toshikazu Ushijima
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Hattori
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Fumiaki Ohtake
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
9
|
Morais TS. Recent Advances in the Development of Hybrid Drugs. Pharmaceutics 2024; 16:889. [PMID: 39065586 PMCID: PMC11279447 DOI: 10.3390/pharmaceutics16070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
In the search for innovative, selective, effective, and safer treatment strategies, hybrid drugs have gained worldwide momentum [...].
Collapse
Affiliation(s)
- Tânia S. Morais
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
He S, Fang Y, Zhu Y, Ma Z, Dong G, Sheng C. Drugtamer-PROTAC Conjugation Strategy for Targeted PROTAC Delivery and Synergistic Antitumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401623. [PMID: 38639391 PMCID: PMC11220662 DOI: 10.1002/advs.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy for targeted protein degradation and drug discovery. To overcome the inherent limitations of conventional PROTACs, an innovative drugtamer-PROTAC conjugation approach is developed to enhance tumor targeting and antitumor potency. Specifically, a smart prodrug is designed by conjugating "drugtamer" to a nicotinamide phosphoribosyltransferase (NAMPT) PROTAC using a tumor microenvironment responsible linker. The "drugtamer" consists of fluorouridine nucleotide and DNA-like oligomer. Compared to NAMPT PROTAC and the combination of PROTAC + fluorouracil, the designed prodrug AS-2F-NP demonstrates superior tumor targeting, efficient cellular uptake, improved in vivo potency and reduced side effects. This study provides a promising strategy for the precise delivery of PROTAC and synergistic antitumor agents.
Collapse
Affiliation(s)
- Shipeng He
- Institute of Translational MedicineShanghai University99 Shangda RoadShanghai200444P. R. China
| | - Yuxin Fang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE)School of PharmacySecond Military Medical University (Naval Medical University)325 Guohe RoadShanghai200433P. R. China
| | - Yaojin Zhu
- Institute of Translational MedicineShanghai University99 Shangda RoadShanghai200444P. R. China
| | - Ziyang Ma
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE)School of PharmacySecond Military Medical University (Naval Medical University)325 Guohe RoadShanghai200433P. R. China
| | - Guoqiang Dong
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE)School of PharmacySecond Military Medical University (Naval Medical University)325 Guohe RoadShanghai200433P. R. China
| | - Chunquan Sheng
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE)School of PharmacySecond Military Medical University (Naval Medical University)325 Guohe RoadShanghai200433P. R. China
| |
Collapse
|
11
|
Ji Y, Chen W, Wang X. Bromodomain and Extraterminal Domain Protein 2 in Multiple Human Diseases. J Pharmacol Exp Ther 2024; 389:277-288. [PMID: 38565308 DOI: 10.1124/jpet.123.002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Bromodomain and extraterminal domain protein 2 (BRD2), a member of the bromodomain and extraterminal domain (BET) protein family, is a crucial epigenetic regulator with significant function in various diseases and cellular processes. The central function of BRD2 is modulating gene transcription by binding to acetylated lysine residues on histones and transcription factors. This review highlights key findings on BRD2 in recent years, emphasizing its roles in maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. BRD2's diverse functions are underscored by its involvement in diseases such as malignant tumors, neurologic disorders, inflammatory conditions, metabolic diseases, and virus infection. Notably, the potential role of BRD2 as a diagnostic marker and therapeutic target is discussed in the context of various diseases. Although pan inhibitors targeting the BET family have shown promise in preclinical studies, a critical need exists for the development of highly selective BRD2 inhibitors. In conclusion, this review offers insights into the multifaceted nature of BRD2 and calls for continued research to unravel its intricate mechanisms and harness its therapeutic potential. SIGNIFICANCE STATEMENT: BRD2 is involved in the occurrence and development of diseases through maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. Targeting BRD2 through protein degradation-targeting complexes technology is emerging as a promising therapeutic approach for malignant cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| |
Collapse
|
12
|
Zhang D, Ma B, Dragovich PS, Ma L, Chen S, Chen EC, Ye X, Liu J, Pizzano J, Bortolon E, Chan E, Zhang X, Chen YC, Levy ES, Yauch RL, Khojasteh SC, Hop CECA. Tissue distribution and retention drives efficacy of rapidly clearing VHL-based PROTACs. COMMUNICATIONS MEDICINE 2024; 4:87. [PMID: 38755248 PMCID: PMC11099041 DOI: 10.1038/s43856-024-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Proteolysis-targeting chimeras (PROTACs) are being developed for therapeutic use. However, they have poor pharmacokinetic profiles and their tissue distribution kinetics are not known. METHODS A typical von Hippel-Lindau tumor suppressor (VHL)-PROTAC 14C-A947 (BRM degrader)-was synthesized and its tissue distribution kinetics was studied by quantitative whole-body autoradiography (QWBA) and tissue excision in rats following IV dosing. Bile duct-cannulated (BDC) rats allowed the elucidation of in vivo clearance pathways. Distribution kinetics was evaluated in the tissues and tumors of mice to support PK-PD correlation. In vitro studies enabled the evaluation of cell uptake mechanisms and cell retention properties. RESULTS Here, we show that A947 quickly distributes into rat tissues after IV dosing, where it accumulates and is retained in tissues such as the lung and liver although it undergoes fast clearance from circulation. Similar uptake/retention kinetics enable tumor growth inhibition over 2-3 weeks in a lung cancer model. A947 quickly excretes in the bile of rats. Solute carrier (SLC) transporters are involved in hepatocyte uptake of PROTACs. Sustained BRM protein degradation is seen after extensive washout that supports prolonged cell retention of A947 in NCI-H1944 cells. A947 tissue exposure and pharmacodynamics are inversely correlated in tumors. CONCLUSIONS Plasma sampling for VHL-PROTAC does not represent the tissue concentrations necessary for efficacy. Understanding of tissue uptake and retention could enable less frequent IV administration to be used for therapeutic dosing.
Collapse
Affiliation(s)
- Donglu Zhang
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Bin Ma
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Li Ma
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Shu Chen
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Eugene C Chen
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xiaofen Ye
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joyce Liu
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennifer Pizzano
- Arvinas; 5 Science Park, 395 Winchester Ave, New Haven, CT, 06511, USA
| | | | - Emily Chan
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xing Zhang
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yi-Chen Chen
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Robert L Yauch
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | | |
Collapse
|
13
|
Toure MA, Motoyama K, Xiang Y, Urgiles J, Kabinger F, Koglin AS, Iyer RS, Gagnon K, Kumar A, Ojeda S, Harrison DA, Rees MG, Roth JA, Ott CJ, Schiavoni R, Whittaker CA, Levine SS, White FM, Calo E, Richters A, Koehler AN. Targeted Degradation of CDK9 Potently Disrupts the MYC Transcriptional Network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593352. [PMID: 38952800 PMCID: PMC11216368 DOI: 10.1101/2024.05.14.593352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) coordinates signaling events that regulate RNA polymerase II (Pol II) pause-release states. It is an important co-factor for transcription factors, such as MYC, that drive aberrant cell proliferation when their expression is deregulated. CDK9 modulation offers an approach for attenuating dysregulation in such transcriptional programs. As a result, numerous drug development campaigns to inhibit CDK9 kinase activity have been pursued. More recently, targeted degradation has emerged as an attractive approach. However, comprehensive evaluation of degradation versus inhibition is still critically needed to assess the biological contexts in which degradation might offer superior therapeutic benefits. We validated that CDK9 inhibition triggers a compensatory mechanism that dampens its effect on MYC expression and found that this feedback mechanism was absent when the kinase is degraded. Importantly, CDK9 degradation is more effective than its inhibition for disrupting MYC transcriptional regulatory circuitry likely through the abrogation of both enzymatic and scaffolding functions of CDK9. Highlights - KI-CDK9d-32 is a highly potent and selective CDK9 degrader. - KI-CDK9d-32 leads to rapid downregulation of MYC protein and mRNA transcripts levels. - KI-CDK9d-32 represses canonical MYC pathways and leads to a destabilization of nucleolar homeostasis. - Multidrug resistance ABCB1 gene emerged as the strongest resistance marker for the CDK9 PROTAC degrader.
Collapse
|
14
|
Zhang R, Xie S, Ran J, Li T. Restraining the power of Proteolysis Targeting Chimeras in the cage: A necessary and important refinement for therapeutic safety. J Cell Physiol 2024; 239:e31255. [PMID: 38501341 DOI: 10.1002/jcp.31255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Proteolysis Targeting Chimeras (PROTACs) represent a significant advancement in therapeutic drug development by leveraging the ubiquitin-proteasome system to enable targeted protein degradation, particularly impacting oncology. This review delves into the various types of PROTACs, such as peptide-based, nucleic acid-based, and small molecule PROTACs, each addressing distinct challenges in protein degradation. It also discusses innovative strategies like bridged PROTACs and conditional switch-activated PROTACs, offering precise targeting of previously "undruggable" proteins. The potential of PROTACs extends beyond oncology, with ongoing research and technological advancements needed to maximize their therapeutic potential. Future progress in this field relies on interdisciplinary collaboration and the integration of advanced computational tools to open new treatment avenues across various diseases.
Collapse
Affiliation(s)
- Renshuai Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Te Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
15
|
He T, Cheng C, Qiao Y, Cho H, Young E, Mannan R, Mahapatra S, Miner SJ, Zheng Y, Kim N, Zeng VZ, Wisniewski JP, Hou S, Jackson B, Cao X, Su F, Wang R, Chang Y, Kuila B, Mukherjee S, Dukare S, Aithal KB, D.S. S, Abbineni C, Vaishampayan U, Lyssiotis CA, Parolia A, Xiao L, Chinnaiyan AM. Development of an orally bioavailable mSWI/SNF ATPase degrader and acquired mechanisms of resistance in prostate cancer. Proc Natl Acad Sci U S A 2024; 121:e2322563121. [PMID: 38557192 PMCID: PMC11009648 DOI: 10.1073/pnas.2322563121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan410008, China
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI48109
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Hanbyul Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Victoria Z. Zeng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Jasmine P. Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI48109
| | - Bailey Jackson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- HHMI, University of Michigan, Ann Arbor, MI48109
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Bilash Kuila
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | | | - Sandeep Dukare
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | - Kiran B. Aithal
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | - Samiulla D.S.
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | | | - Ulka Vaishampayan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Medical Oncology, University of Michigan, Ann Arbor, MI48109
| | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Ash LJ, Busia-Bourdain O, Okpattah D, Kamel A, Liberchuk A, Wolfe AL. KRAS: Biology, Inhibition, and Mechanisms of Inhibitor Resistance. Curr Oncol 2024; 31:2024-2046. [PMID: 38668053 PMCID: PMC11049385 DOI: 10.3390/curroncol31040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
KRAS is a small GTPase that is among the most commonly mutated oncogenes in cancer. Here, we discuss KRAS biology, therapeutic avenues to target it, and mechanisms of resistance that tumors employ in response to KRAS inhibition. Several strategies are under investigation for inhibiting oncogenic KRAS, including small molecule compounds targeting specific KRAS mutations, pan-KRAS inhibitors, PROTACs, siRNAs, PNAs, and mutant KRAS-specific immunostimulatory strategies. A central challenge to therapeutic effectiveness is the frequent development of resistance to these treatments. Direct resistance mechanisms can involve KRAS mutations that reduce drug efficacy or copy number alterations that increase the expression of mutant KRAS. Indirect resistance mechanisms arise from mutations that can rescue mutant KRAS-dependent cells either by reactivating the same signaling or via alternative pathways. Further, non-mutational forms of resistance can take the form of epigenetic marks, transcriptional reprogramming, or alterations within the tumor microenvironment. As the possible strategies to inhibit KRAS expand, understanding the nuances of resistance mechanisms is paramount to the development of both enhanced therapeutics and innovative drug combinations.
Collapse
Affiliation(s)
- Leonard J. Ash
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Daniel Okpattah
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Avrosina Kamel
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Ariel Liberchuk
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
17
|
Begovich K, Schoolmeesters A, Rajapakse N, Martinez-Terroba E, Kumar M, Shakya A, Lai C, Greene S, Whitefield B, Okano A, Mali V, Huang S, Chourasia AH, Fung L. Cereblon-based Bifunctional Degrader of SOS1, BTX-6654, Targets Multiple KRAS Mutations and Inhibits Tumor Growth. Mol Cancer Ther 2024; 23:407-420. [PMID: 38224565 DOI: 10.1158/1535-7163.mct-23-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Mutations within the oncogene KRAS drive an estimated 25% of all cancers. Only allele-specific KRAS G12C inhibitors are currently available and are associated with the emergence of acquired resistance, partly due to upstream pathway reactivation. Given its upstream role in the activation of KRAS, son of sevenless homolog 1 (SOS1), has emerged as an attractive therapeutic target. Agents that target SOS1 for degradation could represent a potential pan-KRAS modality that may be capable of circumventing certain acquired resistance mechanisms. Here, we report the development of two SOS1 cereblon-based bifunctional degraders, BTX-6654 and BTX-7312, cereblon-based bifunctional SOS1 degraders. Both compounds exhibited potent target-dependent and -specific SOS1 degradation. BTX-6654 and BTX-7312 reduced downstream signaling markers, pERK and pS6, and displayed antiproliferative activity in cells harboring various KRAS mutations. In two KRAS G12C xenograft models, BTX-6654 degraded SOS1 in a dose-dependent manner correlating with tumor growth inhibition, additionally exhibiting synergy with KRAS and MEK inhibitors. Altogether, BTX-6654 provided preclinical proof of concept for single-agent and combination use of bifunctional SOS1 degraders in KRAS-driven cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chon Lai
- BioTheryx, Inc., San Diego, California
| | | | | | | | | | | | | | - Leah Fung
- BioTheryx, Inc., San Diego, California
| |
Collapse
|
18
|
Guo X, Bian X, Li Y, Zhu X, Zhou X. The intricate dance of tumor evolution: Exploring immune escape, tumor migration, drug resistance, and treatment strategies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167098. [PMID: 38412927 DOI: 10.1016/j.bbadis.2024.167098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Recent research has unveiled fascinating insights into the intricate mechanisms governing tumor evolution. These studies have illuminated how tumors adapt and proliferate by exploiting various factors, including immune evasion, resistance to therapeutic drugs, genetic mutations, and their ability to adapt to different environments. Furthermore, investigations into tumor heterogeneity and chromosomal aberrations have revealed the profound complexity that underlies the evolution of cancer. Emerging findings have also underscored the role of viral influences in the development and progression of cancer, introducing an additional layer of complexity to the field of oncology. Tumor evolution is a dynamic and complex process influenced by various factors, including immune evasion, drug resistance, tumor heterogeneity, and viral influences. Understanding these elements is indispensable for developing more effective treatments and advancing cancer therapies. A holistic approach to studying and addressing tumor evolution is crucial in the ongoing battle against cancer. The main goal of this comprehensive review is to explore the intricate relationship between tumor evolution and critical aspects of cancer biology. By delving into this complex interplay, we aim to provide a profound understanding of how tumors evolve, adapt, and respond to treatment strategies. This review underscores the pivotal importance of comprehending tumor evolution in shaping effective approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaojun Guo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaonan Bian
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yitong Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
19
|
Lin IL, Lin YT, Chang YC, Kondapuram SK, Lin KH, Chen PC, Kuo CY, Coumar MS, Cheung CHA. The SMAC mimetic GDC-0152 is a direct ABCB1-ATPase activity modulator and BIRC5 expression suppressor in cancer cells. Toxicol Appl Pharmacol 2024; 485:116888. [PMID: 38452945 DOI: 10.1016/j.taap.2024.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Upregulation of the multidrug efflux pump ABCB1/MDR1 (P-gp) and the anti-apoptotic protein BIRC5/Survivin promotes multidrug resistance in various human cancers. GDC-0152 is a DIABLO/SMAC mimetic currently being tested in patients with solid tumors. However, it is still unclear whether GDC-0152 is therapeutically applicable for patients with ABCB1-overexpressing multidrug-resistant tumors, and the molecular mechanism of action of GDC-0152 in cancer cells is still incompletely understood. In this study, we found that the potency of GDC-0152 is unaffected by the expression of ABCB1 in cancer cells. Interestingly, through in silico and in vitro analysis, we discovered that GDC-0152 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multidrug efflux activity at sub-cytotoxic concentrations (i.e., 0.25×IC50 or less). Further investigation revealed that GDC-0152 also decreases BIRC5 expression, induces mitophagy, and lowers intracellular ATP levels in cancer cells at low cytotoxic concentrations (i.e., 0.5×IC50). Co-treatment with GDC-0152 restored the sensitivity to the known ABCB1 substrates, including paclitaxel, vincristine, and YM155 in ABCB1-expressing multidrug-resistant cancer cells, and it also restored the sensitivity to tamoxifen in BIRC5-overexpressing tamoxifen-resistant breast cancer cells in vitro. Moreover, co-treatment with GDC-0152 restored and potentiated the anticancer effects of paclitaxel in ABCB1 and BIRC5 co-expressing xenograft tumors in vivo. In conclusion, GDC-0152 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide essential information to physicians for designing a more patient-specific GDC-0152 clinical trial program in the future.
Collapse
Affiliation(s)
- I-Li Lin
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Yu-Ting Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Chieh Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University 701, Tainan, Taiwan
| | - Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Kai-Hsuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University 701, Tainan, Taiwan
| | - Pin-Chen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chung-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University 701, Tainan, Taiwan.
| |
Collapse
|
20
|
Casan JML, Seymour JF. Degraders upgraded: the rise of PROTACs in hematological malignancies. Blood 2024; 143:1218-1230. [PMID: 38170175 DOI: 10.1182/blood.2023022993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
ABSTRACT Targeted protein degradation (TPD) is a revolutionary approach to targeted therapy in hematological malignancies that potentially circumvents many constraints of existing small-molecule inhibitors. Heterobifunctional proteolysis-targeting chimeras (PROTACs) are the leading TPD drug class, with numerous agents now in clinical trials for a range of blood cancers. PROTACs harness the cell-intrinsic protein recycling infrastructure, the ubiquitin-proteasome system, to completely degrade target proteins. Distinct from targeted small-molecule inhibitor therapies, PROTACs can eliminate critical but conventionally "undruggable" targets, overcome resistance mechanisms to small-molecule therapies, and can improve tissue specificity and off-target toxicity. Orally bioavailable, PROTACs are not dependent on the occupancy-driven pharmacology inherent to inhibitory therapeutics, facilitating substoichiometric dosing that does not require an active or allosteric target binding site. Preliminary clinical data demonstrate promising therapeutic activity in heavily pretreated populations and novel technology platforms are poised to exploit a myriad of permutations of PROTAC molecular design to enhance efficacy and targeting specificity. As the field rapidly progresses and various non-PROTAC TPD drug candidates emerge, this review explores the scientific and preclinical foundations of PROTACs and presents them within common clinical contexts. Additionally, we examine the latest findings from ongoing active PROTAC clinical trials.
Collapse
Affiliation(s)
- Joshua M L Casan
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - John F Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
He T, Cheng C, Qiao Y, Cho H, Young E, Mannan R, Mahapatra S, Miner SJ, Zheng Y, Kim N, Zeng VZ, Wisniewski JP, Hou S, Jackson B, Cao X, Su F, Wang R, Chang Y, Kuila B, Mukherjee S, Dukare S, Aithal KB, D.S. S, Abbineni C, Lyssiotis CA, Parolia A, Xiao L, Chinnaiyan AM. Development of an orally bioavailable mSWI/SNF ATPase degrader and acquired mechanisms of resistance in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582768. [PMID: 38464081 PMCID: PMC10925251 DOI: 10.1101/2024.02.29.582768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mammalian switch/sucrose non-fermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, a first-in-class, orally bioavailable proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 (BRD4) and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- These authors contributed equally
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Hanbyul Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Victoria Z. Zeng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine P. Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bailey Jackson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Dziubańska-Kusibab PJ, Nevedomskaya E, Haendler B. Preclinical Anticipation of On- and Off-Target Resistance Mechanisms to Anti-Cancer Drugs: A Systematic Review. Int J Mol Sci 2024; 25:705. [PMID: 38255778 PMCID: PMC10815614 DOI: 10.3390/ijms25020705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The advent of targeted therapies has led to tremendous improvements in treatment options and their outcomes in the field of oncology. Yet, many cancers outsmart precision drugs by developing on-target or off-target resistance mechanisms. Gaining the ability to resist treatment is the rule rather than the exception in tumors, and it remains a major healthcare challenge to achieve long-lasting remission in most cancer patients. Here, we discuss emerging strategies that take advantage of innovative high-throughput screening technologies to anticipate on- and off-target resistance mechanisms before they occur in treated cancer patients. We divide the methods into non-systematic approaches, such as random mutagenesis or long-term drug treatment, and systematic approaches, relying on the clustered regularly interspaced short palindromic repeats (CRISPR) system, saturated mutagenesis, or computational methods. All these new developments, especially genome-wide CRISPR-based screening platforms, have significantly accelerated the processes for identification of the mechanisms responsible for cancer drug resistance and opened up new avenues for future treatments.
Collapse
Affiliation(s)
| | | | - Bernard Haendler
- Research and Early Development Oncology, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany; (P.J.D.-K.); (E.N.)
| |
Collapse
|
23
|
Lima EN, Lamichhane S, KC P, Ferreira ES, Koul S, Koul HK. Tetrandrine for Targeting Therapy Resistance in Cancer. Curr Top Med Chem 2024; 24:1035-1049. [PMID: 38445699 PMCID: PMC11259026 DOI: 10.2174/0115680266282360240222062032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
During the last five decades, there has been tremendous development in our understanding of cancer biology and the development of new and novel therapeutics to target cancer. However, despite these advances, cancer remains the second leading cause of death across the globe. Most cancer deaths are attributed to the development of resistance to current therapies. There is an urgent and unmet need to address cancer therapy resistance. Tetrandrine, a bis-benzyl iso-quinoline, has shown a promising role as an anti-cancer agent. Recent work from our laboratory and others suggests that tetrandrine and its derivatives could be an excellent adjuvant to the current arsenal of anti-cancer drugs. Herein, we provide an overview of resistance mechanisms to current therapeutics and review the existing literature on the anti-cancer effects of tetrandrine and its potential use for overcoming therapy resistance in cancer.
Collapse
Affiliation(s)
- Ellen Nogueira Lima
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Santosh Lamichhane
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pramod KC
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Elisa Silva Ferreira
- Brazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas, SP, Brazil
| | - Sweaty Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Hari K Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Biochemistry & Molecular Biology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
24
|
Mancarella C, Morrione A, Scotlandi K. PROTAC-Based Protein Degradation as a Promising Strategy for Targeted Therapy in Sarcomas. Int J Mol Sci 2023; 24:16346. [PMID: 38003535 PMCID: PMC10671294 DOI: 10.3390/ijms242216346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
25
|
Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, Liang N, Shabiti S, Zhang X, Wang Z, Yang Z, Mi P, Zheng X, Li W, Chen H. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorg Med Chem 2023; 95:117486. [PMID: 37847948 DOI: 10.1016/j.bmc.2023.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.
Collapse
Affiliation(s)
- Shiwen Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yujue Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan Province 425101, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China.
| |
Collapse
|
26
|
Sajid A, Rahman H, Ambudkar SV. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 2023; 23:762-779. [PMID: 37714963 DOI: 10.1038/s41568-023-00612-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR-Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Thilakan AT, Nandakumar N, Balakrishnan AR, Pooleri GK, Nair SV, Sathy BN. Development and characterisation of suitably bioengineered microfibrillar matrix-based 3D prostate cancer model for in vitrodrug testing. Biomed Mater 2023; 18:065016. [PMID: 37738986 DOI: 10.1088/1748-605x/acfc8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Bioengineered 3D models that can mimic patient-specific pathologiesin vitroare valuable tools for developing and validating anticancer therapeutics. In this study, microfibrillar matrices with unique structural and functional properties were fabricated as 3D spherical and disc-shaped scaffolds with highly interconnected pores and the potential of the newly developed scaffolds for developing prostate cancer model has been investigated. The newly developed scaffolds showed improved cell retention upon seeding with cancer cells compared to conventional electrospun scaffolds. They facilitated rapid growth and deposition of cancer-specific extracellular matrix through-the-thickness of the scaffold. Compared to the prostate cancer cells grown in 2D culture, the newly developed prostate cancer model showed increased resistance to the chemodrug Docetaxel regardless of the drug concentration or the treatment frequency. A significant reduction in the cell number was observed within one week after the drug treatment in the 2D culture for both PC3 and patient-derived cells. Interestingly, almost 20%-30% of the cancer cells in the newly developed 3D model survived the drug treatment, and the patient-derived cells were more resistant than the tested cell line PC3. The results from this study indicate the potential of the newly developed prostate cancer model forin vitrodrug testing.
Collapse
Affiliation(s)
- Akhil T Thilakan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Niji Nandakumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Arvind R Balakrishnan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Ginil K Pooleri
- Department of Urology and Renal Transplantation, Amrita Institute of Medical Sciences and Research, Kochi, Kerala, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Binulal N Sathy
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
28
|
Serebrenik YV, Mani D, Maujean T, Burslem GM, Shalem O. Pooled endogenous protein tagging and recruitment for scalable discovery of effectors for induced proximity therapeutics. RESEARCH SQUARE 2023:rs.3.rs-3161717. [PMID: 37790450 PMCID: PMC10543026 DOI: 10.21203/rs.3.rs-3161717/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The field of induced proximity therapeutics is in its ascendancy but is limited by a lack of scalable tools to systematically explore effector-target protein pairs in an unbiased manner. Here, we combined Scalable POoled Targeting with a LIgandable Tag at Endogenous Sites (SPOTLITES) for the high-throughput tagging of endogenous proteins, with generic small molecule-based protein recruitment to screen for novel proximity-based effectors. We apply this methodology in two orthogonal screens for targeted protein degradation: the first using fluorescence to monitor target protein levels directly, and the second using a cellular growth phenotype that depends on the degradation of an essential protein. Our screens revealed a multitude of potential new effector proteins for degradation and converged on members of the CTLH complex which we demonstrate potently induce degradation. Altogether, we introduce a platform for pooled induction of endogenous protein-protein interactions that can be used to expand our toolset of effector proteins for targeted protein degradation and other forms of induced proximity.
Collapse
Affiliation(s)
- Yevgeniy V. Serebrenik
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepak Mani
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothé Maujean
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M. Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Dong J, Yuan L, Hu C, Cheng X, Qin JJ. Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): An updated review. Pharmacol Ther 2023; 249:108488. [PMID: 37442207 DOI: 10.1016/j.pharmthera.2023.108488] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently in many chemotherapeutic agents. The overexpression of the ATP-binding cassette (ABC) transporters is involved in MDR. P-glycoprotein (P-gp)/ABCB1 is a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. Therefore, targeting P-gp with small molecule inhibitors is an effective therapeutic strategy to overcome MDR. Over the past four decades, diverse compounds with P-gp inhibitory activity have been identified to sensitize drug-resistant cells, but none of them has been proven clinically useful to date. Research efforts continue to discover an effective approach for circumventing MDR. This review has provided an overview of the most recent advances (last three years) in various strategies for circumventing MDR mediated by P-gp. It may be helpful for the scientists working in the field of drug discovery to further synthesize and discover new chemical entities/therapeutic modalities with less toxicity and more efficacies to overcome MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Can Hu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
30
|
Garcia Jimenez D, Vallaro M, Rossi Sebastiano M, Apprato G, D’Agostini G, Rossetti P, Ermondi G, Caron G. Chamelogk: A Chromatographic Chameleonicity Quantifier to Design Orally Bioavailable Beyond-Rule-of-5 Drugs. J Med Chem 2023; 66:10681-10693. [PMID: 37490408 PMCID: PMC10424176 DOI: 10.1021/acs.jmedchem.3c00823] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 07/27/2023]
Abstract
New chemical modalities in drug discovery include molecules belonging to the bRo5 chemical space. Because of their complex and flexible structure, bRo5 compounds often suffer from a poor solubility/permeability profile. Chameleonicity describes the capacity of a molecule to adapt to the environment through conformational changes; the design of molecular chameleons is a medicinal chemistry strategy simultaneously optimizing solubility and permeability. A default method to quantify chameleonicity in early drug discovery is still missing. Here we introduce Chamelogk, an automated, fast, and cheap chromatographic descriptor of chameleonicity. Moreover, we report measurements for 55 Ro5 and bRo5 compounds and validate our method with literature data. Then, selected case studies (macrocycles, nonmacrocyclic compounds, and PROTACs) are used to illustrate the application of Chamelogk in combination with lipophilicity (BRlogD) and polarity (Δ log kwIAM) descriptors. Overall, we show how Chamelogk deserves being included in property-based drug discovery strategies to design oral bioavailable bRo5 compounds.
Collapse
Affiliation(s)
- Diego Garcia Jimenez
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Maura Vallaro
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Matteo Rossi Sebastiano
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Apprato
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia D’Agostini
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Paolo Rossetti
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Caron
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| |
Collapse
|
31
|
Serebrenik YV, Mani D, Maujean T, Burslem GM, Shalem O. Pooled endogenous protein tagging and recruitment for scalable discovery of effectors for induced proximity therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548759. [PMID: 37503056 PMCID: PMC10369964 DOI: 10.1101/2023.07.13.548759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The field of induced proximity therapeutics is in its ascendancy but is limited by a lack of scalable tools to systematically explore effector-target protein pairs in an unbiased manner. Here, we combined Scalable POoled Targeting with a LIgandable Tag at Endogenous Sites (SPOTLITES) for the high-throughput tagging of endogenous proteins, with generic small molecule-based protein recruitment to screen for novel proximity-based effectors. We apply this methodology in two orthogonal screens for targeted protein degradation: the first using fluorescence to monitor target protein levels directly, and the second using a cellular growth phenotype that depends on the degradation of an essential protein. Our screens revealed a multitude of potential new effector proteins for degradation and converged on members of the CTLH complex which we demonstrate potently induce degradation. Altogether, we introduce a platform for pooled induction of endogenous protein-protein interactions that can be used to expand our toolset of effector proteins for targeted protein degradation and other forms of induced proximity.
Collapse
|
32
|
Komarla A, Dufresne S, Towers CG. Recent Advances in the Role of Autophagy in Endocrine-Dependent Tumors. Endocr Rev 2023; 44:629-646. [PMID: 36631217 PMCID: PMC10335171 DOI: 10.1210/endrev/bnad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Autophagy plays a complex role in several cancer types, including endocrine-dependent cancers, by fueling cellular metabolism and clearing damaged substrates. This conserved recycling process has a dual function across tumor types where it can be tumor suppressive at early stages but tumor promotional in established disease. This review highlights the controversial roles of autophagy in endocrine-dependent tumors regarding cancer initiation, tumorigenesis, metastasis, and treatment response. We summarize clinical trial results thus far and highlight the need for additional mechanistic, preclinical, and clinical studies in endocrine-dependent tumors, particularly in breast cancer and prostate cancer.
Collapse
Affiliation(s)
- Anvita Komarla
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Suzanne Dufresne
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christina G Towers
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
33
|
Tashima T. Proteolysis-Targeting Chimera (PROTAC) Delivery into the Brain across the Blood-Brain Barrier. Antibodies (Basel) 2023; 12:43. [PMID: 37489365 PMCID: PMC10366925 DOI: 10.3390/antib12030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
Drug development for neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease has challenging difficulties due to the pharmacokinetic impermeability based on the blood-brain barrier (BBB) as well as the blurriness of pharmacodynamic targets based on their unclarified pathogenesis and complicated progression mechanisms. Thus, in order to produce innovative central nervous system (CNS) agents for patients suffering from CNS diseases, effective, selective delivery of CNS agents into the brain across the BBB should be developed. Currently, proteolysis-targeting chimeras (PROTACs) attract rising attention as a new modality to degrade arbitrary intracellular proteins by the ubiquitin-proteasome system. The internalizations of peptide-based PROTACs by cell-penetrating peptides and that of small molecule-based PROTACs through passive diffusion lack cell selectivity. Therefore, these approaches may bring off-target side effects due to wrong distribution. Furthermore, efflux transporters such as multiple drug resistance 1 (MDR1) expressed at the BBB might interrupt the entry of small molecule-based PROTACs into the brain. Nonetheless, intelligent delivery using machinery systems to absorb the nutrition into the brain for homeostasis, such as carrier-mediated transport (CMT) or receptor-mediated transcytosis (RMT), can be established. PROTACs with N-containing groups that are recognized by the proton-coupled organic cation antiporter might cross the BBB through CMT. PROTAC-antibody conjugates (PACs) might cross the BBB through RMT. Subsequently, such small molecule-based PROTACs released in the brain interstitial fluid would be transported into cells such as neurons through passive diffusion and then demonstrate arbitrary protein degradation. In this review, I introduce the potential and advantages of PROTAC delivery into the brain across the BBB through CMT or RMT using PACs in a non-invasive way.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
34
|
Chirnomas D, Hornberger KR, Crews CM. Protein degraders enter the clinic - a new approach to cancer therapy. Nat Rev Clin Oncol 2023; 20:265-278. [PMID: 36781982 DOI: 10.1038/s41571-023-00736-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 165.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Heterobifunctional protein degraders, such as PROteolysis TArgeting Chimera (PROTAC) protein degraders, constitute a novel therapeutic modality that harnesses the cell's natural protein-degradation machinery - that is, the ubiquitin-proteasome system - to selectively target proteins involved in disease pathogenesis for elimination. Protein degraders have several potential advantages over small-molecule inhibitors that have traditionally been used for cancer treatment, including their event-driven (rather than occupancy-driven) pharmacology, which permits sub-stoichiometric drug concentrations for activity, their capacity to act iteratively and target multiple copies of a protein of interest, and their potential to target nonenzymatic proteins that were previously considered 'undruggable'. Following numerous innovations in protein degrader design and rigorous evaluation in preclinical models, protein degraders entered clinical testing in 2019. Currently, 18 protein degraders are in phase I or phase I/II clinical trials that involve patients with various tumour types, with a phase III trial of one initiated in 2022. The first safety, efficacy and pharmacokinetic data from these studies are now materializing and, although considerably more evidence is needed, protein degraders are showing promising activity as cancer therapies. Herein, we review advances in protein degrader development, the preclinical research that supported their entry into clinical studies, the available data for protein degraders in patients and future directions for this new class of drugs.
Collapse
Affiliation(s)
| | | | - Craig M Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
- Department of Pharmacology, Yale University, New Haven, CT, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
35
|
Cereblon-Recruiting PROTACs: Will New Drugs Have to Face Old Challenges? Pharmaceutics 2023; 15:pharmaceutics15030812. [PMID: 36986673 PMCID: PMC10053963 DOI: 10.3390/pharmaceutics15030812] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The classical low-molecular-weight drugs are designed to bind with high affinity to the biological targets endowed with receptor or enzymatic activity, and inhibit their function. However, there are many non-receptor or non-enzymatic disease proteins that seem undruggable using the traditional drug approach. This limitation has been overcome by PROTACs, bifunctional molecules that are able to bind the protein of interest and the E3 ubiquitin ligase complex. This interaction results in the ubiquitination of POI and subsequent proteolysis in the cellular proteasome. Out of hundreds of proteins serving as substrate receptors in E3 ubiquitin ligase complexes, current PROTACs recruit only a few of them, including CRBN, cIAP1, VHL or MDM-2. This review will focus on PROTACs recruiting CRBN E3 ubiquitin ligase and targeting various proteins involved in tumorigenesis, such as transcription factors, kinases, cytokines, enzymes, anti-apoptotic proteins and cellular receptors. The structure of several PROTACs, their chemical and pharmacokinetic properties, target affinity and biological activity in vitro and in vivo, will be discussed. We will also highlight cellular mechanisms that may affect the efficacy of PROTACs and pose a challenge for the future development of PROTACs.
Collapse
|
36
|
Abstract
Proteolysis-targeting chimeras (PROTACs) have shown great therapeutic potential by degrading various disease-causing proteins, particularly those related to tumors. Therefore, the introduction of PROTACs has ushered in a new chapter of antitumor drug development, marked by significant advances over recent years. Herein, we describe recent developments in PROTAC technology, focusing on design strategy, development workflow, and future outlooks. We also discuss potential opportunities and challenges for PROTAC research.
Collapse
Affiliation(s)
- Minglei Li
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Ying Zhi
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Bo Liu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| |
Collapse
|
37
|
Espinoza-Chávez R, Salerno A, Liuzzi A, Ilari A, Milelli A, Uliassi E, Bolognesi ML. Targeted Protein Degradation for Infectious Diseases: from Basic Biology to Drug Discovery. ACS BIO & MED CHEM AU 2023; 3:32-45. [PMID: 37101607 PMCID: PMC10125329 DOI: 10.1021/acsbiomedchemau.2c00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 04/28/2023]
Abstract
Targeted protein degradation (TPD) is emerging as one of the most innovative strategies to tackle infectious diseases. Particularly, proteolysis-targeting chimera (PROTAC)-mediated protein degradation may offer several benefits over classical anti-infective small-molecule drugs. Because of their peculiar and catalytic mechanism of action, anti-infective PROTACs might be advantageous in terms of efficacy, toxicity, and selectivity. Importantly, PROTACs may also overcome the emergence of antimicrobial resistance. Furthermore, anti-infective PROTACs might have the potential to (i) modulate "undruggable" targets, (ii) "recycle" inhibitors from classical drug discovery approaches, and (iii) open new scenarios for combination therapies. Here, we try to address these points by discussing selected case studies of antiviral PROTACs and the first-in-class antibacterial PROTACs. Finally, we discuss how the field of PROTAC-mediated TPD might be exploited in parasitic diseases. Since no antiparasitic PROTAC has been reported yet, we also describe the parasite proteasome system. While in its infancy and with many challenges ahead, we hope that PROTAC-mediated protein degradation for infectious diseases may lead to the development of next-generation anti-infective drugs.
Collapse
Affiliation(s)
- Rocío
Marisol Espinoza-Chávez
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anastasia Liuzzi
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Ilari
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
38
|
Duran-Frigola M, Cigler M, Winter GE. Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. J Am Chem Soc 2023; 145:2711-2732. [PMID: 36706315 PMCID: PMC9912273 DOI: 10.1021/jacs.2c11098] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/28/2023]
Abstract
Only around 20% of the human proteome is considered to be druggable with small-molecule antagonists. This leaves some of the most compelling therapeutic targets outside the reach of ligand discovery. The concept of targeted protein degradation (TPD) promises to overcome some of these limitations. In brief, TPD is dependent on small molecules that induce the proximity between a protein of interest (POI) and an E3 ubiquitin ligase, causing ubiquitination and degradation of the POI. In this perspective, we want to reflect on current challenges in the field, and discuss how advances in multiomics profiling, artificial intelligence, and machine learning (AI/ML) will be vital in overcoming them. The presented roadmap is discussed in the context of small-molecule degraders but is equally applicable for other emerging proximity-inducing modalities.
Collapse
Affiliation(s)
- Miquel Duran-Frigola
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Ersilia
Open Source Initiative, 28 Belgrave Road, CB1 3DE, Cambridge, United Kingdom
| | - Marko Cigler
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|
39
|
Chatterjee S, Deshpande AA, Shen H. Recent advances in the in vitro and in vivo methods to assess impact of P-glycoprotein and breast cancer resistance protein transporters in central nervous system drug disposition. Biopharm Drug Dispos 2023; 44:7-25. [PMID: 36692150 DOI: 10.1002/bdd.2345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 01/25/2023]
Abstract
One challenge in central nervous system (CNS) drug discovery has been ensuring the blood-brain barrier (BBB) penetration of compounds at an efficacious concentration that provides suitable safety margins for clinical investigation. Research providing for the accurate prediction of brain penetration of compounds during preclinical discovery is important to a CNS program. In the BBB, P-glycoprotein (P-gp) (ABCB1) and breast cancer resistance protein (BCRP) (ABCG2) transporters have been demonstrated to play a major role in the active efflux of endogenous compounds and xenobiotics out of the brain microvessel cells and back to the systemic circulation. In the past 10 years, there has been significant technological improvement in the sensitivity of quantitative proteomics methods, in vivo imaging, in vitro methods of organoid and microphysiological systems, as well as in silico quantitative physiological based pharmacokinetic and systems pharmacology models. Scientists continually leverage these advancements to interrogate the distribution of compounds in the CNS which may also show signals of substrate specificity of P-gp and/or BCRP. These methods have shown promise toward predicting and quantifying the unbound concentration(s) within the brain relevant for efficacy or safety. In this review, the authors have summarized the in vivo, in vitro, and proteomics advancements toward understanding the contribution of P-gp and/or BCRP in restricting the entry of compounds to the CNS of either healthy or special populations. Special emphasis has been provided on recent investigations on the application of a proteomics-informed approach to predict steady-state drug concentrations in the brain. Moreover, future perspectives regarding the role of these transporters in newer modalities are discussed.
Collapse
Affiliation(s)
- Sagnik Chatterjee
- Drug Metabolism and Pharmacokinetics, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Anup Arunrao Deshpande
- Drug Metabolism and Pharmacokinetics, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd, Bangalore, India
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, New Jersey, USA
| |
Collapse
|
40
|
Chen JJ, Jin JM, Gu WJ, Zhao Z, Yuan H, Zhou YD, Nagle DG, Xi QL, Zhang XM, Sun QY, Wu Y, Zhang WD, Luan X. Crizotinib-based proteolysis targeting chimera suppresses gastric cancer by promoting MET degradation. Cancer Sci 2023; 114:1958-1971. [PMID: 36692137 PMCID: PMC10154821 DOI: 10.1111/cas.15733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
As one of the common malignant cancer types, gastric cancer (GC) is known for late-stage diagnosis and poor prognosis. Overexpression of the receptor tyrosine kinase MET is associated with poor prognosis among patients with advanced stage GC. However, no MET inhibitor has been used for GC treatment. Like other tyrosine kinase inhibitors that fit the "occupancy-driven" model, current MET inhibitors are prone to acquired resistance. The emerging proteolysis targeting chimera (PROTAC) strategy could overcome such limitations through direct degradation of the target proteins. In this study, we successfully transformed the MET-targeted inhibitor crizotinib into a series of PROTACs, recruiting cereblon/cullin 4A E3 ubiquitin ligase to degrade the MET proteins. The optimized lead PROTAC (PRO-6 E) effectively eliminated MET proteins in vitro and in vivo, inhibiting proliferation and motility of MET-positive GC cells. In the MKN-45 xenograft model, PRO-6 E showed pronounced antitumor efficacy with a well-tolerated dosage regimen. These results validated PRO-6 E as the first oral PROTAC for MET-dependent GC.
Collapse
Affiliation(s)
- Jin-Jiao Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Jie Gu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Hu Yuan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Dong Zhou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, Boston, Massachusetts, USA
| | - Dale G Nagle
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Boston, Massachusetts, USA
| | - Qiu-Lei Xi
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xue-Mei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Qing-Yan Sun
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Stockmann P, Kuhnert L, Leinung W, Lakoma C, Scholz B, Paskas S, Mijatović S, Maksimović-Ivanić D, Honscha W, Hey-Hawkins E. The More the Better-Investigation of Polymethoxylated N-Carboranyl Quinazolines as Novel Hybrid Breast Cancer Resistance Protein Inhibitors. Pharmaceutics 2023; 15:241. [PMID: 36678870 PMCID: PMC9866861 DOI: 10.3390/pharmaceutics15010241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The ineffectiveness and failing of chemotherapeutic treatments are often associated with multidrug resistance (MDR). MDR is primarily linked to the overexpression of ATP-binding cassette (ABC) transporter proteins in cancer cells. ABCG2 (ATP-binding cassette subfamily G member 2, also known as the breast cancer resistance protein (BCRP)) mediates MDR by an increased drug efflux from the cancer cells. Therefore, the inhibition of ABCG2 activity during chemotherapy ought to improve the efficacy of the administered anti-cancer agents by reversing MDR or by enhancing the agents' pharmacokinetic properties. Significant efforts have been made to develop novel, powerful, selective, and non-toxic inhibitors of BCRP. However, thus far the clinical relevance of BCRP-selective MDR-reversal has been unsuccessful, due to either adverse drug reactions or significant toxicities in vivo. We here report a facile access towards carboranyl quinazoline-based inhibitors of ABCG2. We determined the influence of different methoxy-substitution patterns on the 2-phenylquinazoline scaffold in combination with the beneficial properties of an incorporated inorganic carborane moiety. A series of eight compounds was synthesized and their inhibitory effect on the ABCG2-mediated Hoechst transport was evaluated. Molecular docking studies were performed to better understand the structure-protein interactions of the novel inhibitors, exhibiting putative binding modes within the inner binding site. Further, the most potent, non-toxic compounds were investigated for their potential to reverse ABCG2-mediated mitoxantrone (MXN) resistance. Of these five evaluated compounds, N-(closo-1,7-dicarbadodecaboran(12)-9-yl)-6,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-quinazolin-4-amine (DMQCd) exhibited the strongest inhibitory effect towards ABCG2 in the lower nanomolar ranges. Additionally, DMQCd was able to reverse BCRP-mediated MDR, making it a promising candidate for further research on hybrid inorganic-organic compounds.
Collapse
Affiliation(s)
- Philipp Stockmann
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Lydia Kuhnert
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Wencke Leinung
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Cathleen Lakoma
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Birte Scholz
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Svetlana Paskas
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, Belgrade University, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, Belgrade University, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, Belgrade University, 11060 Belgrade, Serbia
| | - Walther Honscha
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|