1
|
Cottin V, Valenzuela C. Evidence from recent clinical trials in fibrotic interstitial lung diseases. Curr Opin Pulm Med 2024; 30:484-493. [PMID: 39114938 DOI: 10.1097/mcp.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
PURPOSE OF REVIEW Idiopathic pulmonary fibrosis (IPF) is the prototype of fibrosing interstitial lung diseases. It is mirrored by progressive pulmonary fibrosis (PPF), an umbrella term which characterizes disease behavior of various fibrotic interstitial lung diseases with irreversible progression, accounting for loss of lung function, exercise intolerance and respiratory failure leading to early mortality. Pirfenidone and nintedanib halve the decline in lung function but do not halt disease progression. RECENT FINDINGS Since the publication in 2014 of pivotal pirfenidone and nintedanib studies, a number of clinical trials were conducted, many of them did not reach their primary endpoints. In IPF, promising phase 2 trials were followed by large phase 3 trials that did not confirm a favorable efficacy to tolerability favorable profile, including those with ziritaxestat, an autotaxin-1 inhibitor, zinpentraxin-alpha (human recombinant pentraxin-2), and the monoclonal antibody pamrevlumab targeting connective tissue growth factor. Nevertheless, newer compounds that hold promise are currently being evaluated in phase 3 or phase 2b randomized controlled trials, including: nerandomilast, a preferential phosphodiesterase 4B inhibitor; admilparant, a lysophosphatidic acid receptor antagonist; inhaled treprostinil, a prostacyclin agonist; and bexotegrast, a dual-selective inhibitor of αvβ6 and αvβ1 integrins. Nerandomilast, admilparant, inhaled treprostinil, and inhaled AP01 (pirfenidone), are currently studied in patients with PPF. SUMMARY Despite recent frustrating negative results, there is a growing portfolio of candidate drugs developed in both IPF and PPF.
Collapse
Affiliation(s)
- Vincent Cottin
- Department of Respiratory Medicine, National Reference Centre for Rare Pulmonary Diseases, member of ERN-LUNG, Louis Pradel Hospital, Hospices Civils de Lyon
- UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Claudia Valenzuela
- ILD Unit, Department of Respiratory Medicine, Hospital universitario de la Princesa, Universitad autónoma de Madrid, Spain
| |
Collapse
|
2
|
Wang H, Nie Y, Sun Z, He Y, Yang J. Serum amyloid P component: Structure, biological activity, and application in diagnosis and treatment of immune-associated diseases. Mol Immunol 2024; 172:1-8. [PMID: 38850776 DOI: 10.1016/j.molimm.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Serum amyloid P component (SAP) is a member the innate immune humoral arm and participated in various processes, including the innate immune responses, tissue remodeling, and the pathogenesis of inflammatory diseases. Remarkably, SAP is a highly versatile immunomodulatory factor that can serve as a drug target for treating amyloid diseases and reduce inflammation, fibrosis degree, and respiratory disease. In this review, we focus on the biological activities of SAP and its application in different systemic immune-associated diseases. First, we reviewed the regulatory effects of SAP on innate immune cells and possible mechanisms. Second, we emphasized SAP as a diagnostic marker and therapeutic target for immune-associated diseases, including the neuropsychiatric disorders. Third, we presented several recommendations for regulating SAP in immune cell function and potential areas for future research. Some authorities consider SAP to be a pattern recognition molecule that plays multiple roles in the innate immune system and inflammation. Developing therapeutics that target SAP or its associated signaling pathways may be a promising strategy for treating immune-associated diseases.
Collapse
Affiliation(s)
- Haixia Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yadan Nie
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Sciacca E, Muscato G, Spicuzza L, Fruciano M, Gili E, Sambataro G, Palmucci S, Vancheri C, Libra A. Pharmacological treatment in Idiopathic Pulmonary Fibrosis: current issues and future perspectives. Multidiscip Respir Med 2024; 19:982. [PMID: 38869027 PMCID: PMC11186439 DOI: 10.5826/mrm.2024.982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a fibrotic interstitial lung disease characterized by uncertain etiology and poor prognosis. Over the years, the path to effective treatments has been marked by a series of advances and setbacks. The introduction of approved antifibrotic drugs, pirfenidone and nintedanib, marked a pivotal moment in the management of IPF. However, despite these advances, these drugs are not curative, although they can slow the natural progression of the disease. The history of drug therapy for IPF goes together with the increased understanding of the pathogenic mechanisms underlying the disease. Based on that, current research efforts continue to explore new therapies, possible personalized treatment strategies, drug combinations, and potential biomarkers for diagnosis and prognosis. In this review, we outline the route that led to the discover of the first effective therapies, ongoing clinical trials, and future directions in the search for more effective treatments.
Collapse
Affiliation(s)
- Enrico Sciacca
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology outpatient Clinic, Mascalucia (CT), Italy
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Division of Rheumatology, Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University -Hospital Policlinico “G. Rodolico-San Marco”, Unità Operativa Semplice Dipartimentale di Imaging Polmonare e Tecniche Radiologiche Avanzate (UOSD IPTRA), Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Alessandro Libra
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Ryou H, Sirinukunwattana K, Wood R, Aberdeen A, Rittscher J, Weinberg OK, Hasserjian R, Pozdnyakova O, Peale F, Higgins B, Lundberg P, Trunzer K, Harrison CN, Royston D. Quantitative analysis of bone marrow fibrosis highlights heterogeneity in myelofibrosis and augments histological assessment: An Insight from a phase II clinical study of zinpentraxin alfa. Hemasphere 2024; 8:e105. [PMID: 38884042 PMCID: PMC11176199 DOI: 10.1002/hem3.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Affiliation(s)
- Hosuk Ryou
- Nuffield Department of Medicine University of Oxford Oxford UK
| | | | - Ruby Wood
- Institute of Biomedical Engineering (IBME), Department of Engineering Science University of Oxford Oxford UK
| | | | - Jens Rittscher
- Ground Truth Labs, Ltd. Oxford UK
- Institute of Biomedical Engineering (IBME), Department of Engineering Science University of Oxford Oxford UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery University of Oxford Oxford UK
- Oxford NIHR Biomedical Research Centre Oxford University Hospitals NHS Foundation Trust Oxford UK
- Ludwig Institute for Cancer Research University of Oxford Oxford UK
| | - Olga K Weinberg
- Department of Pathology University of Texas Southwestern Medical Center Dallas Texas USA
| | - Robert Hasserjian
- Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Olga Pozdnyakova
- Department of Pathology and Laboratory Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Frank Peale
- Genentech, Inc. South San Francisco California USA
| | | | | | | | | | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences (NDCLS), Radcliffe Department of Medicine University of Oxford Oxford UK
| |
Collapse
|
5
|
Verstovsek S, Talpaz M, Wadleigh M, Isidori A, Te Boekhorst P, Savona MR, Bose P, Pozdnyakova O, Mesa R, El-Galaly TC, O'Sullivan J, Gamel K, Higgins B, Katakam S, Todorov B, Trunzer K, Harrison CN. A randomized, double-blind study of zinpentraxin alfa in patients with myelofibrosis who were previously treated with or ineligible for ruxolitinib: stage 2 of a phase II trial. Haematologica 2024; 109:1977-1983. [PMID: 38268448 PMCID: PMC11141656 DOI: 10.3324/haematol.2023.284410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
| | - Moshe Talpaz
- Michigan Medicine - The University of Michigan, Ann Arbor, MI
| | | | - Alessandro Isidori
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | | | - Michael R Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Prithviraj Bose
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Olga Pozdnyakova
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ruben Mesa
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Tarec C El-Galaly
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ma W, Wu D, Long C, Liu J, Xu L, Zhou L, Dou Q, Ge Y, Zhou C, Jia R. Neutrophil-derived nanovesicles deliver IL-37 to mitigate renal ischemia-reperfusion injury via endothelial cell targeting. J Control Release 2024; 370:66-81. [PMID: 38631490 DOI: 10.1016/j.jconrel.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the most important causes of acute kidney injury (AKI). Interleukin (IL)-37 has been suggested as a novel anti-inflammatory factor for the treatment of IRI, but its application is still limited by its low stability and delivery efficiency. In this study, we reported a novel engineered method to efficiently and easily prepare neutrophil membrane-derived vesicles (N-MVs), which could be utilized as a promising vehicle to deliver IL-37 and avoid the potential side effects of neutrophil-derived natural extracellular vesicles. N-MVs could enhance the stability of IL-37 and targetedly deliver IL-37 to damaged endothelial cells of IRI kidneys via P-selectin glycoprotein ligand-1 (PSGL-1). In vitro and in vivo evidence revealed that N-MVs encapsulated with IL-37 (N-MV@IL-37) could inhibit endothelial cell apoptosis, promote endothelial cell proliferation and angiogenesis, and decrease inflammatory factor production and leukocyte infiltration, thereby ameliorating renal IRI. Our study establishes a promising delivery vehicle for the treatment of renal IRI and other endothelial damage-related diseases.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Chengcheng Long
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| |
Collapse
|
7
|
Richeldi L, Schiffman C, Behr J, Inoue Y, Corte TJ, Cottin V, Jenkins RG, Nathan SD, Raghu G, Walsh SLF, Jayia PK, Kamath N, Martinez FJ. Zinpentraxin Alfa for Idiopathic Pulmonary Fibrosis: The Randomized Phase III STARSCAPE Trial. Am J Respir Crit Care Med 2024; 209:1132-1140. [PMID: 38354066 PMCID: PMC11092957 DOI: 10.1164/rccm.202401-0116oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024] Open
Abstract
Rationale: A phase II trial reported clinical benefit over 28 weeks in patients with idiopathic pulmonary fibrosis (IPF) who received zinpentraxin alfa. Objectives: To investigate the efficacy and safety of zinpentraxin alfa in patients with IPF in a phase III trial. Methods: This 52-week phase III, double-blind, placebo-controlled, pivotal trial was conducted at 275 sites in 29 countries. Patients with IPF were randomized 1:1 to intravenous placebo or zinpentraxin alfa 10 mg/kg every 4 weeks. The primary endpoint was absolute change from baseline to Week 52 in FVC. Secondary endpoints included absolute change from baseline to Week 52 in percent predicted FVC and 6-minute walk distance. Safety was monitored via adverse events. Post hoc analysis of the phase II and phase III data explored changes in FVC and their impact on the efficacy results. Measurements and Main Results: Of 664 randomized patients, 333 were assigned to placebo and 331 to zinpentraxin alfa. Four of the 664 randomized patients were never administered study drug. The trial was terminated early after a prespecified futility analysis that demonstrated no treatment benefit of zinpentraxin alfa over placebo. In the final analysis, absolute change from baseline to Week 52 in FVC was similar between placebo and zinpentraxin alfa (-214.89 ml and -235.72 ml; P = 0.5420); there were no apparent treatment effects on secondary endpoints. Overall, 72.3% and 74.6% of patients receiving placebo and zinpentraxin alfa, respectively, experienced one or more adverse events. Post hoc analysis revealed that extreme FVC decline in two placebo-treated patients resulted in the clinical benefit of zinpentraxin alfa reported by phase II. Conclusions: Zinpentraxin alfa treatment did not benefit patients with IPF over placebo. Learnings from this program may help improve decision making around trials in IPF. Clinical trial registered with www.clinicaltrials.gov (NCT04552899).
Collapse
Affiliation(s)
- Luca Richeldi
- Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Jürgen Behr
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Yoshikazu Inoue
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Tamera J. Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Claude Bernard University Lyon, National Research Institute for Agriculture, Food and the Environment, European Reference Network for Rare Respiratory Diseases, Lyon, France
| | - R. Gisli Jenkins
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Steven D. Nathan
- Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Ganesh Raghu
- University of Washington Medical Center, Seattle, Washington
| | - Simon L. F. Walsh
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Nikhil Kamath
- Roche Products Ltd., Welwyn Garden City, United Kingdom; and
| | - Fernando J. Martinez
- Weill Cornell Medical College, New York–Presbyterian Hospital, New York, New York
| |
Collapse
|
8
|
Rao GK, Santagostino SF, Wong L, Inoue A, Arjomandi A, Yadav R, Halpern WG. Repeat-dose and embryo-fetal developmental toxicity of zinpentraxin alfa. Reprod Toxicol 2024; 123:108526. [PMID: 38141866 DOI: 10.1016/j.reprotox.2023.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Zinpentraxin alfa is a recombinant human pentraxin-2 (PTX-2) developed for the treatment of various fibrotic diseases with the hypothesis that supplementing endogenous PTX-2 levels through intravenous administration should increase its regulatory capacity in circulation and at the site of disease, thereby promoting healing and reducing fibrosis. Zinpentraxin alfa has been studied in various clinical trials, particularly in patients with idiopathic pulmonary fibrosis, where it has demonstrated efficacy in slowing decline in lung function in a phase 2 study. In the present investigation, we summarize findings from 14-day repeat-dose toxicity studies in rats and cynomolgus monkeys supporting early clinical development of zinpentraxin alfa. In addition, we also describe the findings from the embryo-fetal developmental (EFD) studies conducted in rats and rabbits, since the intended fibrosis patient population may include patients of childbearing potential. Zinpentraxin alfa was well tolerated by rats and monkeys in general toxicity studies with no treatment-related adverse effects, as well as by pregnant rats over the same dose range in a definitive EFD study. In contrast, substantial toxicity was observed in a rabbit dose-range-finder EFD study. Zinpentraxin alfa was poorly tolerated by pregnant rabbits and effects on the dams correlated with post-implantation fetal losses. The disparate effects of zinpentraxin alfa on embryo-fetal development between the two species suggests a potential unknown biological function of PTX-2 in pregnancy in the rabbit, which may be relevant to humans. Our findings warrant the consideration for highly effective contraceptive measures to avoid pregnancy in patients enrolled in clinical studies with zinpentraxin alfa.
Collapse
Affiliation(s)
- Gautham K Rao
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lisa Wong
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ayumi Inoue
- SNBL, Ltd., Drug Safety Research Laboratories, Kagoshima 891-1394, Japan
| | - Audrey Arjomandi
- Department of Bioanalytical Sciences, Genentech Inc., South San Francisco, CA 94080, USA
| | - Rajbharan Yadav
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Wendy G Halpern
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
9
|
Wang Y, Chen W, Ding S, Wang W, Wang C. Pentraxins in invertebrates and vertebrates: From structure, function and evolution to clinical applications. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105064. [PMID: 37734429 DOI: 10.1016/j.dci.2023.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The immune system is divided into two broad categories, consisting of innate and adaptive immunity. As recognition and effector factors of innate immunity and regulators of adaptive immune responses, lectins are considered to be important defense chemicals against microbial pathogens, cell trafficking, immune regulation, and prevention of autoimmunity. Pentraxins, important members of animal lectins, play a significant role in protecting the body from pathogen infection and regulating inflammatory reactions. They can recognize and bind to a variety of ligands, including carbohydrates, lipids, proteins, nucleic acids and their complexes, and protect the host from pathogen invasion by activating the complement cascade and Fcγ receptor pathways. Based on the primary structure of the subunit, pentraxins are divided into short and long pentraxins. The short pentraxins are comprised of C-reactive protein (CRP) and serum amyloid P (SAP), and the most important member of the long pentraxins is pentraxin 3 (PTX3). The CRP and SAP exist in both vertebrates and invertebrates, while the PTX3 may be present only in vertebrates. The major ligands and functions of CRP, SAP and PTX3 and three activation pathways involved in the complement system are summarized in this review. Their different characteristics in various animals including humans, and their evolutionary trees are analyzed. The clinical applications of CRP, SAP and PTX3 in human are reviewed. Some questions that remain to be understood are also highlighted.
Collapse
Affiliation(s)
- Yuying Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| |
Collapse
|
10
|
Yang X, Siradze K, Sperinde G, Arjomandi A, Fischer S. Evaluation of multiple immunoassay formats for detection of anti-drug antibodies to zinpentraxin alfa. J Immunol Methods 2023; 522:113573. [PMID: 37816404 DOI: 10.1016/j.jim.2023.113573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Zinpentraxin alfa (rhPTX-2; PRM-151) is currently being developed for the treatment of fibrotic diseases such as idiopathic pulmonary fibrosis and myelofibrosis. Notably, because it is administered chronically and has an endogenously expressed counterpart, clinical studies of zinpentraxin alpha must include immunogenicity assessments. Since the typical homogenous bridging ELISA assay does not adequately measure anti-drug antibodies (ADAs) against zinpentraxin alfa, additional assay formats have been developed to evaluate immunogenicity of this therapeutic. Here, we present the evaluation of four distinct assay formats that were used to measure zinpentraxin alpha ADA: step-wise bridging, direct binding, total ADA, and the semi-homogeneous formats, based on multiple parameters including assay sensitivity, precision, and drug tolerance. This paper presents the full details of method development for each of the aforementioned assay formats including evaluation of sample pre-treatment, determination of cut point, and assessment of assay performance by analyzing a subset of clinical samples. Overall, the semi-homogenous ADA assay format with no sample pre-treatment was selected for the measurement of zinpentraxin alpha immunogenicity as it provided the desired sensitivity, drug tolerance, and reproducibility. Our study emphasizes the importance of assay format evaluation during drug development and the necessity to select the most suitable assay format and sample pre-treatment method by which to evaluate therapeutic drug immunogenicity.
Collapse
Affiliation(s)
- Xiaoyun Yang
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Ketevan Siradze
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Gizette Sperinde
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Audrey Arjomandi
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Saloumeh Fischer
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
11
|
Calledda FR, Malara A, Balduini A. Inflammation and bone marrow fibrosis: novel immunotherapeutic targets. Curr Opin Hematol 2023; 30:237-244. [PMID: 37548363 DOI: 10.1097/moh.0000000000000778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW Myelofibrosis (MF) is primarily driven by constitutive activation of the Janus kinase/signal transducer of activators of transcription (JAK/STAT) pathway. While JAK inhibitors have shown to alleviate disease symptoms, their disease-modifying effects in MF are limited. The only curative treatment remains allogeneic stem cell transplantation, which can be applied to a minority of patients. As a result, there is a need to explore novel targets in MF to facilitate appropriate drug development and therapeutic pathways. RECENT FINDINGS Recent research has focused on identifying novel signals that contribute to the abnormal cross-talk between hematopoietic and stromal cells, which promotes MF and disease progression. Inflammation and immune dysregulation have emerged as key drivers of both the initiation and progression of MF. A growing number of actionable targets has been identified, including cytokines, transcription factors, signalling networks and cell surface-associated molecules. These targets exhibit dysfunctions in malignant and nonmalignant hematopoietic cells, but also in nonhematopoietic cells of the bone marrow. The study of these inflammation-related molecules, in preclinical models and MF patient's samples, is providing novel therapeutic targets. SUMMARY The identification of immunotherapeutic targets is expanding the therapeutic landscape of MF. This review provides a summary of the most recent advancements in the study of immunotherapeutic targets in MF.
Collapse
|
12
|
Verstovsek S, Foltz L, Gupta V, Hasserjian R, Manshouri T, Mascarenhas J, Mesa R, Pozdnyakova O, Ritchie E, Veletic I, Gamel K, Hamidi H, Han L, Higgins B, Trunzer K, Uguen M, Wang D, El-Galaly TC, Todorov B, Gotlib J. Safety and efficacy of zinpentraxin alfa as monotherapy or in combination with ruxolitinib in myelofibrosis: stage I of a phase II trial. Haematologica 2023; 108:2730-2742. [PMID: 37165840 PMCID: PMC10543197 DOI: 10.3324/haematol.2022.282411] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
Pentraxin 2 (PTX-2; serum amyloid P component), a circulating endogenous regulator of the inflammatory response to tissue injury and fibrosis, is reduced in patients with myelofibrosis (MF). Zinpentraxin alfa (RO7490677, PRM-151) is a recombinant form of PTX-2 that has shown preclinical antifibrotic activity and no dose-limiting toxicities in phase I trials. We report results from stage 1 of a phase II trial of zinpentraxin alfa in patients with intermediate-1/2 or high-risk MF. Patients (n=27) received intravenous zinpentraxin α weekly (QW) or every 4 weeks (Q4W), as monotherapy or an additional therapy for patients on stable-dose ruxolitinib. The primary endpoint was overall response rate (ORR; investigatorassessed) adapted from International Working Group-Myeloproliferative Neoplasms Research and Treatment criteria. Secondary endpoints included modified Myeloproliferative Neoplasm-Symptom Assessment Form Total Symptom Score (MPN-SAF TSS) change, bone marrow (BM) MF grade reduction, pharmacokinetics, and safety. ORR at week 24 was 33% (n=9/27) and varied across individual cohorts (QW: 38% [3/8]; Q4W: 14% [1/7]; QW+ruxolitinib: 33% [2/6]; Q4W+ruxolitinib: 50% [3/6]). Five of 18 evaluable patients (28%) experienced a ≥50% reduction in MPN-SAF TSS, and six of 17 evaluable patients (35%) had a ≥1 grade improvement from baseline in BM fibrosis at week 24. Most treatment-emergent adverse events (AE) were grade 1-2, most commonly fatigue. Among others, anemia and thrombocytopenia were infrequent (n=3 and n=1, respectively). Treatment-related serious AE occurred in four patients (15%). Overall, zinpentraxin alfa showed evidence of clinical activity and tolerable safety as monotherapy and in combination with ruxolitinib in this open-label, non-randomized trial (clinicaltrials gov. Identifier: NCT01981850).
Collapse
Affiliation(s)
- Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Lynda Foltz
- St Paul's Hospital, University of British Columbia, Vancouver
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University of Toronto, Toronto
| | | | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruben Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX
| | - Olga Pozdnyakova
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | - Dao Wang
- F. Hoffmann-La Roche, Ltd., Basel
| | - Tarec Christoffer El-Galaly
- F. Hoffmann-La Roche, Ltd., Basel, Switzerland; Current affiliation: Department of Hematology, Aalborg University Hospital, Aalborg
| | | | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
13
|
Yin Z, Guerrero J, Melendez R, Andrews B, Peng K. Development of a Cell-based Neutralizing Antibody Assay for Zinpentraxin Alfa: Challenges and Mitigation Strategies. AAPS J 2023; 25:75. [PMID: 37468730 DOI: 10.1208/s12248-023-00841-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
Therapeutic protein drugs can potentially induce immune responses in patients and result in the production of anti-drug antibodies (ADAs), including a subset of ADAs called neutralizing antibodies (NAbs) that might cause loss of efficacy by inhibiting clinical activities of the drug. Herein, we describe the unique challenges encountered during the development of a fit-for-purpose cell-based NAb assay for a new protein modality, zinpentraxin alfa, including our strategies for assay design to overcome various matrix interferences and improve assay drug tolerance. We demonstrated that a typical biotin-drug extraction with acid dissociation (BEAD) approach alone was not sufficient to eliminate matrix interferences in this assay. Instead, the combination of the BEAD and ZebaTM spin size exclusion plate (SEP) was required to achieve the desirable assay performance. We also demonstrated that appropriate acidic buffers were critical in sample pretreatment to improve assay drug tolerance, which not only dissociated the drug/NAb immune complex but also effectively and irreversibly denatured the free drug. The final assay performed well with confirmed assay robustness and suitability for the clinical applications.
Collapse
Affiliation(s)
- Zhaojun Yin
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Joyce Guerrero
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Rachel Melendez
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ben Andrews
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kun Peng
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
14
|
Karhadkar TR, Chen W, Pilling D, Gomer RH. Inhibitors of the Sialidase NEU3 as Potential Therapeutics for Fibrosis. Int J Mol Sci 2022; 24:239. [PMID: 36613682 PMCID: PMC9820515 DOI: 10.3390/ijms24010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Fibrosing diseases are a major medical problem, and are associated with more deaths per year than cancer in the US. Sialidases are enzymes that remove the sugar sialic acid from glycoconjugates. In this review, we describe efforts to inhibit fibrosis by inhibiting sialidases, and describe the following rationale for considering sialidases to be a potential target to inhibit fibrosis. First, sialidases are upregulated in fibrotic lesions in humans and in a mouse model of pulmonary fibrosis. Second, the extracellular sialidase NEU3 appears to be both necessary and sufficient for pulmonary fibrosis in mice. Third, there exist at least three mechanistic ways in which NEU3 potentiates fibrosis, with two of them being positive feedback loops where a profibrotic cytokine upregulates NEU3, and the upregulated NEU3 then upregulates the profibrotic cytokine. Fourth, a variety of NEU3 inhibitors block pulmonary fibrosis in a mouse model. Finally, the high sialidase levels in a fibrotic lesion cause an easily observed desialylation of serum proteins, and in a mouse model, sialidase inhibitors that stop fibrosis reverse the serum protein desialylation. This then indicates that serum protein sialylation is a potential surrogate biomarker for the effect of sialidase inhibitors, which would facilitate clinical trials to test the exciting possibility that sialidase inhibitors could be used as therapeutics for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
15
|
Wang Z, Zhang C. From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms. Int J Mol Sci 2022; 23:ijms231810880. [PMID: 36142787 PMCID: PMC9504835 DOI: 10.3390/ijms231810880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Acute kidney injury (AKI) is defined as a pathological condition in which the glomerular filtration rate decreases rapidly over a short period of time, resulting in changes in the physiological function and tissue structure of the kidney. An increasing amount of evidence indicates that there is an inseparable relationship between acute kidney injury and chronic kidney disease (CKD). With the progress in research in this area, researchers have found that the recovery of AKI may also result in the occurrence of CKD due to its own maladaptation and other potential mechanisms, which involve endothelial cell injury, inflammatory reactions, progression to fibrosis and other pathways that promote the progress of the disease. Based on these findings, this review summarizes the occurrence and potential mechanisms of maladaptive repair in the progression of AKI to CKD and explores possible treatment strategies in this process so as to provide a reference for the inhibition of the progression of AKI to CKD.
Collapse
|
16
|
Waksal JA, Mascarenhas J. Novel Therapies in Myelofibrosis: Beyond JAK Inhibitors. Curr Hematol Malig Rep 2022; 17:140-154. [PMID: 35984598 DOI: 10.1007/s11899-022-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To discuss the current treatment paradigm, review novel targets, and summarize completed and ongoing clinical trials that may lead to a paradigm shifts in the management of myelofibrosis (MF). RECENT FINDINGS In addition to the recent approval and ongoing late-stage development of multiple novel JAK inhibitors, recent clinical studies demonstrate therapeutic potential of targeting multiple alternate proteins and pathways including BET, MDM2, telomerase, BCL2, LSD1, PI3K, SMAC, and PTX2 in patients with MF. MF is a myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells and bone marrow fibrosis often causing cytopenias, extramedullary hematopoiesis resulting in hepatosplenomegaly, and increased pro-inflammatory cytokine production driving systemic symptoms. A significant proportion of morbidity and mortality is related to the propensity to transform to acute leukemia. Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, due to the high associated mortality, this treatment is not an option for the majority of patients with MF. Currently, there are three targeted Food and Drug Administration (FDA)-approved therapies for MF which include ruxolitinib, fedratinib, and pacritinib, all part of the JAK inhibitor class. Many patients are unable to tolerate, do not respond, or develop resistance to existing therapies, leaving a large unmet medical need. In this review, we discuss the current treatment paradigm and novel therapies in development for the treatment of MF. We review the scientific rationale of each targeted pathway. We summarize updated clinical data and ongoing trials that may lead to FDA approval of these agents.
Collapse
Affiliation(s)
- Julian A Waksal
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Box 1079, One Gustave L Levy Place, New York, NY, 10029, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Box 1079, One Gustave L Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Chang FC, Liu CH, Luo AJ, Tao-Min Huang T, Tsai MH, Chen YJ, Lai CF, Chiang CK, Lin TH, Chiang WC, Chen YM, Chu TS, Lin SL. Angiopoietin-2 inhibition attenuates kidney fibrosis by hindering chemokine C-C motif ligand 2 expression and apoptosis of endothelial cells. Kidney Int 2022; 102:780-797. [DOI: 10.1016/j.kint.2022.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
|
18
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
19
|
Liu GY, Budinger GRS, Dematte JE. Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ 2022; 377:e066354. [PMID: 36946547 DOI: 10.1136/bmj-2021-066354] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Similarly to idiopathic pulmonary fibrosis (IPF), other interstitial lung diseases can develop progressive pulmonary fibrosis (PPF) characterized by declining lung function, a poor response to immunomodulatory therapies, and early mortality. The pathophysiology of disordered lung repair involves common downstream pathways that lead to pulmonary fibrosis in both IPF and PPF. The antifibrotic drugs, such as nintedanib, are indicated for the treatment of IPF and PPF, and new therapies are being evaluated in clinical trials. Clinical, radiographic, and molecular biomarkers are needed to identify patients with PPF and subgroups of patients likely to respond to specific therapies. This article reviews the evidence supporting the use of specific therapies in patients with IPF and PPF, discusses agents being considered in clinical trials, and considers potential biomarkers based on disease pathogenesis that might be used to provide a personalized approach to care.
Collapse
Affiliation(s)
- Gabrielle Y Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Jane E Dematte
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
20
|
Raghu G, Hamblin MJ, Brown AW, Golden JA, Ho LA, Wijsenbeek MS, Vasakova M, Pesci A, Antin-Ozerkis DE, Meyer KC, Kreuter M, Burgess T, Kamath N, Donaldson F, Richeldi L. Long-term evaluation of the safety and efficacy of recombinant human pentraxin-2 (rhPTX-2) in patients with idiopathic pulmonary fibrosis (IPF): an open-label extension study. Respir Res 2022; 23:129. [PMID: 35597980 PMCID: PMC9123757 DOI: 10.1186/s12931-022-02047-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background Recombinant human pentraxin-2 (rhPTX-2) significantly decreased decline in percent predicted forced vital capacity (FVC) and stabilized 6-min walk distance (6MWD) in patients with idiopathic pulmonary fibrosis (IPF) during the 28-week, placebo-controlled, randomized period of the Phase II PRM-151–202 study. Interim (76-week) data from the open-label extension (OLE) demonstrated sustained safety and efficacy with rhPTX-2 treatment. Here, we present the entire long-term OLE safety and efficacy data to 128 weeks. Methods Patients who completed the randomized PRM-151–202 study period were eligible for the OLE, during which all patients received rhPTX-2, having started rhPTX-2 (i.e., crossed from placebo) or continued rhPTX-2 after Week 28. rhPTX-2 was administered in 28-week cycles, with 10 mg/kg intravenous infusions (60 min) on Days 1, 3, and 5 in the first week of each cycle, then one infusion every 4 weeks up to Week 128. The OLE primary objective was to assess the long-term safety and tolerability of rhPTX-2. Other outcomes included FVC, 6MWD, and patient-reported outcomes (descriptive analysis). Results All 111 patients who completed the randomized period entered the OLE (n = 37 started rhPTX-2; n = 74 continued rhPTX-2); 57 (51.4%) completed to Week 128. The treatment-emergent adverse event (TEAE) profile was consistent with the randomized period, with the majority of TEAEs graded mild or moderate. Serious TEAEs occurred in 47 patients (42.3%), most frequently IPF (n = 11; 9.9%), pneumonia (n = 7; 6.3%), and acute respiratory failure (n = 3; 2.7%). Three patients underwent lung transplantation. Most serious TEAEs (and all 14 fatal events) were considered unrelated to rhPTX-2 treatment. For patients starting vs continuing rhPTX-2, mean (95% confidence interval) changes from baseline to Week 128 were, respectively, − 6.2% (− 7.7; − 4.6) and − 5.7% (− 8.0; − 3.3) for percent predicted FVC and − 36.3 m (− 65.8; − 6.9) and − 28.9 m (− 54.3; − 3.6) for 6MWD; however, conclusions were limited by patient numbers at Week 128. Conclusions Long-term treatment (up to 128 weeks) with rhPTX-2 was well tolerated in patients with IPF, with no new safety signals emerging in the OLE. The limited efficacy data over 128 weeks may suggest a trend towards a treatment effect. Trial registration NCT02550873; EudraCT 2014-004782-24.
Collapse
Affiliation(s)
- Ganesh Raghu
- Center for Interstitial Lung Diseases, Department of Medicine and Laboratory Medicine, University of Washington, Seattle, WA, USA.
| | - Mark J Hamblin
- Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Whitney Brown
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Jeffrey A Golden
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence A Ho
- Center for Interstitial Lung Diseases, Department of Medicine and Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Marlies S Wijsenbeek
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Martina Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine of Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Alberto Pesci
- School of Medicine and Surgery, University of Milano-Bicocca, ASST-Monza, Milano, Italy
| | | | - Keith C Meyer
- Department of Medicine, Division of Pulmonary and Critical Care, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik, University of Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | | | | | | | - Luca Richeldi
- Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
21
|
Weitoft M, Kadefors M, Stenberg H, Tufvesson E, Diamant Z, Rolandsson Enes S, Bjermer L, Rosmark O, Westergren-Thorsson G. Plasma proteome changes linked to late phase response after inhaled allergen challenge in asthmatics. Respir Res 2022; 23:50. [PMID: 35248034 PMCID: PMC8897854 DOI: 10.1186/s12931-022-01968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A subset of individuals with allergic asthma develops a late phase response (LPR) to inhaled allergens, which is characterized by a prolonged airway obstruction, airway inflammation and airway hyperresponsiveness. The aim of this study was to identify changes in the plasma proteome and circulating hematopoietic progenitor cells associated with the LPR following inhaled allergen challenge. METHODS Serial plasma samples from asthmatics undergoing inhaled allergen challenge were analyzed by mass spectrometry and immunosorbent assays. Peripheral blood mononuclear cells were analyzed by flow cytometry. Mass spectrometry data were analyzed using a linear regression to model the relationship between airway obstruction during the LPR and plasma proteome changes. Data from immunosorbent assays were analyzed using linear mixed models. RESULTS Out of 396 proteins quantified in plasma, 150 showed a statistically significant change 23 h post allergen challenge. Among the most upregulated proteins were three protease inhibitors: alpha-1-antitrypsin, alpha-1-antichymotrypsin and plasma serine protease inhibitor. Altered levels of 13 proteins were associated with the LPR, including increased factor XIII A and decreased von Willebrand factor. No relationship was found between the LPR and changes in the proportions of classical, intermediate, and non-classical monocytes. CONCLUSIONS Allergic reactions to inhaled allergens in asthmatic subjects were associated with changes in a large proportion of the measured plasma proteome, whereof protease inhibitors showed the largest changes, likely to influence the inflammatory response. Many of the proteins altered in relation to the LPR are associated with coagulation, highlighting potential mechanistic targets for future treatments of type-2 asthma.
Collapse
Affiliation(s)
- Maria Weitoft
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Måns Kadefors
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Henning Stenberg
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Ellen Tufvesson
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zuzana Diamant
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Clin Pharm and Pharmacol, University of Groningen, Univ Med Ctr Groningen, Groningen, Netherlands
| | - Sara Rolandsson Enes
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Leif Bjermer
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Oskar Rosmark
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | |
Collapse
|
22
|
Pitre T, Mah J, Helmeczi W, Khalid MF, Cui S, Zhang M, Husnudinov R, Su J, Banfield L, Guy B, Coyne J, Scallan C, Kolb MR, Jones A, Zeraatkar D. Medical treatments for idiopathic pulmonary fibrosis: a systematic review and network meta-analysis. Thorax 2022; 77:1243-1250. [PMID: 35145039 DOI: 10.1136/thoraxjnl-2021-217976] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a respiratory disorder with a poor prognosis. Our objective is to assess the comparative effectiveness of 22 approved or studied IPF drug treatments. METHODS We searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials and clinicaltrials.gov from inception to 2 April 2021. We included randomised controlled trials (RCTs) for adult patients with IPF receiving one or more of 22 drug treatments. Pairs of reviewers independently identified randomised trials that compared one or more of the target medical treatments in patients with IPF. We assessed the certainty of evidence using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach for network meta-analysis. We calculated pooled relative risk (RR) ratios and presented direct or network estimates with 95% credibility intervals (95% CI), within the GRADE framework. RESULTS We identified 48 (10 326 patients) eligible studies for analysis. Nintedanib [RR 0.69 (0.44 to 1.1), pirfenidone [RR 0.63 (0.37 to 1.09); direct estimate), and sildenafil [RR (0.44 (0.16 to 1.09)] probably reduce mortality (all moderate certainty). Nintedanib (2.92% (1.51 to 4.14)), nintedanib+sildenafil (157 mL (-88.35 to 411.12)), pirfenidone (2.47% (-0.1 to 5)), pamrevlumab (4.3% (0.5 to 8.1)) and pentraxin (2.74% (1 to 4.83)) probably reduce decline of overall forced vital capacity (all moderate certainty). Only sildenafil probably reduces acute exacerbation and hospitalisations (moderate certainty). Corticosteroids+azathioprine+N-acetylcysteine increased risk of serious adverse events versus placebo (high certainty). CONCLUSION AND RELEVANCE Future guidelines should consider sildenafil for IPF and further research needs to be done on promising IPF treatments such as pamrevlumab and pentraxin as phase 3 trials are completed.
Collapse
Affiliation(s)
- Tyler Pitre
- Division of Internal Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jasmine Mah
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Wryan Helmeczi
- Division of Internal Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Muhammad Faran Khalid
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sonya Cui
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Zhang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Renata Husnudinov
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Johnny Su
- Division of Internal Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Laura Banfield
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brent Guy
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jade Coyne
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ciaran Scallan
- Division of Internal Medicine, McMaster University, Hamilton, Ontario, Canada.,Division of Respirology, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Martin Rj Kolb
- Division of Internal Medicine, McMaster University, Hamilton, Ontario, Canada.,Division of Respirology, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Aaron Jones
- Health Evidence Impact and Research, McMaster University, Hamilton, Ontario, Canada
| | - Dena Zeraatkar
- Health Evidence Impact and Research, McMaster University, Hamilton, Ontario, Canada .,Bioinformatics, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Current and future treatment. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:84-96. [PMID: 35001525 PMCID: PMC9060042 DOI: 10.1111/crj.13466] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3–5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development. Data Source The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management. Results Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy. Conclusion Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well‐being.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - David Grossfeld
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Heather A Renna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Priya Agarwala
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Peter Spiegler
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joshua DeLeon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
24
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
25
|
Abstract
Myelofibrosis is a myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells, bone marrow fibrosis and cytopenias, extramedullary hematopoiesis and hepatosplenomegaly, increased pro-inflammatory cytokine production, and systemic symptoms. Patients with MF also have a propensity toward leukemic transformation. Allogeneic hematopoietic stem cell transplantation (aHCT) is the only curative therapy for patients with MF; however, transplant-related morbidity and mortality precludes this option for the majority of patients. In the last decade, two targeted therapies have been approved for the treatment of MF, both JAK2 inhibitors, ruxolitinib and fedratinib. Despite the clinical efficacy of these two compounds in terms of splenomegaly and symptom burden reduction, there remain many areas of unmet need in the treatment of myelofibrosis. In this review, we discuss the limitations of currently approved treatment options and novel therapeutic targets with drug candidates in late-stage (phase II or III) clinical development for the treatment of MF. We delve into the mechanism of action and scientific rational of each candidate agent as well as the available clinical data, and ongoing trials that could lead to the approval of some of these novel therapies.
Collapse
Affiliation(s)
- Julian A Waksal
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | | | - John O Mascarenhas
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
26
|
Garcia GE, Lu YJ, Truong LD, Roncal-Jiménez CA, Miyazaki M, Miyazaki-Anzai S, Cara-Fuentes G, Andres-Hernando A, Lanaspa M, Johnson RJ, Leamon CP. A Novel Treatment for Glomerular Disease: Targeting the Activated Macrophage Folate Receptor with a Trojan Horse Therapy in Rats. Cells 2021; 10:2113. [PMID: 34440885 PMCID: PMC8393837 DOI: 10.3390/cells10082113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Since activated macrophages express a functional folate receptor β (FRβ), targeting this macrophage population with folate-linked drugs could increase selectivity to treat inflammatory diseases. Using a macrophage-mediated anti-glomerular basement membrane (anti-GBM) glomerulonephritis (GN) in WKY rats, we investigated the effect of a novel folic acid-aminopterin (AMT) conjugate (EC2319) designed to intracellularly deliver AMT via the FR. We found that treatment with EC2319 significantly attenuated kidney injury and preserved renal function. Kidney protection with EC2319 was blocked by a folate competitor, indicating that its mechanism of action was specifically FRβ-mediated. Notably, treatment with methotrexate (MTX), another folic acid antagonist related to AMT, did not protect from kidney damage. EC2319 reduced glomerular and interstitial macrophage infiltration and decreased M1 macrophage recruitment but not M2 macrophages. The expression of CCL2 and the pro-fibrotic cytokine TGF-β were also reduced in nephritic glomeruli with EC2319 treatment. In EC2319-treated rats, there was a significant decrease in the deposition of collagens. In nephritic kidneys, FRβ was expressed on periglomerular macrophages and macrophages present in the crescents, but its expression was not observed in normal kidneys. These data indicate that selectively targeting the activated macrophage population could represent a novel means for treating anti-GBM GN and other acute crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Gabriela E. Garcia
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Yingjuan J. Lu
- Endocyte, Inc., Novartis Institutes for Biomedical Research, West Lafayette, IN 47906, USA; (Y.J.L.); (C.P.L.)
| | - Luan D. Truong
- Department of Pathology, The Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Carlos A. Roncal-Jiménez
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Makoto Miyazaki
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Shinobu Miyazaki-Anzai
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Gabriel Cara-Fuentes
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Ana Andres-Hernando
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Miguel Lanaspa
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Richard J. Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Christopher P. Leamon
- Endocyte, Inc., Novartis Institutes for Biomedical Research, West Lafayette, IN 47906, USA; (Y.J.L.); (C.P.L.)
| |
Collapse
|
27
|
Ishikawa G, Liu A, Herzog EL. Evolving Perspectives on Innate Immune Mechanisms of IPF. Front Mol Biosci 2021; 8:676569. [PMID: 34434962 PMCID: PMC8381017 DOI: 10.3389/fmolb.2021.676569] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
While epithelial-fibroblast interactions are viewed as the primary drivers of Idiopathic Pulmonary Fibrosis (IPF), evidence gleaned from animal modeling and human studies implicates innate immunity as well. To provide perspective on this topic, this review synthesizes the available data regarding the complex role of innate immunity in IPF. The role of substances present in the fibrotic microenvironment including pathogen associated molecular patterns (PAMPs) derived from invading or commensal microbes, and danger associated molecular patterns (DAMPs) derived from injured cells and tissues will be discussed along with the proposed contribution of innate immune populations such as macrophages, neutrophils, fibrocytes, myeloid suppressor cells, and innate lymphoid cells. Each component will be considered in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area.
Collapse
Affiliation(s)
- Genta Ishikawa
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Angela Liu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States,Department of Pathology, Yale School of Medicine, New Haven, CT, United States,*Correspondence: Erica L. Herzog,
| |
Collapse
|
28
|
Proteomics and metabonomics analyses of Covid-19 complications in patients with pulmonary fibrosis. Sci Rep 2021; 11:14601. [PMID: 34272434 PMCID: PMC8285535 DOI: 10.1038/s41598-021-94256-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Pulmonary fibrosis is a devastating disease, and the pathogenesis of this disease is not completely clear. Here, the medical records of 85 Covid-19 cases were collected, among which fibrosis and progression of fibrosis were analyzed in detail. Next, data independent acquisition (DIA) quantification proteomics and untargeted metabolomics were used to screen disease-related signaling pathways through clustering and enrichment analysis of the differential expression of proteins and metabolites. The main imaging features were lesions located in the bilateral lower lobes and involvement in five lobes. The closed association pathways were FcγR-mediated phagocytosis, PPAR signaling, TRP-inflammatory pathways, and the urea cycle. Our results provide evidence for the detection of serum biomarkers and targeted therapy in patients with Covid-19.
Collapse
|
29
|
Liu Y, Su YY, Yang Q, Zhou T. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis. Stem Cell Res Ther 2021; 12:333. [PMID: 34112221 PMCID: PMC8194041 DOI: 10.1186/s13287-021-02391-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Renal fibrosis commonly leads to glomerulosclerosis and renal interstitial fibrosis and the main pathological basis involves tubular atrophy and the abnormal increase and excessive deposition of extracellular matrix (ECM). Renal fibrosis can progress to chronic kidney disease. Stem cells have multilineage differentiation potential under appropriate conditions and are easy to obtain. At present, there have been some studies showing that stem cells can alleviate the accumulation of ECM and renal fibrosis. However, the sources of stem cells and the types of renal fibrosis or renal fibrosis models used in these studies have differed. In this review, we summarize the pathogenesis (including signaling pathways) of renal fibrosis, and the effect of stem cell therapy on renal fibrosis as described in preclinical and clinical studies. We found that stem cells from various sources have certain effects on improving renal function and alleviating renal fibrosis. However, additional clinical studies should be conducted to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Yiping Liu
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Yan-Yan Su
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Qian Yang
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
30
|
Rockey DC, Friedman SL. Fibrosis Regression After Eradication of Hepatitis C Virus: From Bench to Bedside. Gastroenterology 2021; 160:1502-1520.e1. [PMID: 33529675 PMCID: PMC8601597 DOI: 10.1053/j.gastro.2020.09.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection and its complications have been the major cause of cirrhosis and its complications for several decades in the Western world. Until recently, treatment for HCV with interferon-based regimens was associated with moderate success but was difficult to tolerate. More recently, however, an arsenal of novel and highly effective direct-acting antiviral (DAA) drugs has transformed the landscape by curing HCV in a broad range of patients, including those with established advanced fibrosis, cirrhosis, comorbidities, and even those with complications of cirrhosis. Fibrosis is a dynamic process comprising both extracellular matrix deposition, as well as its degradation. With almost universal sustained virologic response (SVR) (ie, elimination of HCV), it is timely to explore whether HCV eradication can reverse fibrosis and cirrhosis. Indeed, fibrosis in several types of liver disease is reversible, including HCV. However, we do not know with certainty in whom fibrosis regression can be expected after HCV elimination, how quickly it occurs, and whether antifibrotic therapies will be indicated in those with persistent cirrhosis. This review summarizes the evidence for reversibility of fibrosis and cirrhosis after HCV eradication, its impact on clinical outcomes, and therapeutic prospects for directly promoting fibrosis regression in patients whose fibrosis persists after SVR.
Collapse
Affiliation(s)
- Don C Rockey
- The Medical University of South Carolina, Charleston, South Carolina.
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
31
|
Karhadkar TR, Pilling D, Gomer RH. Serum Amyloid P inhibits single stranded RNA-induced lung inflammation, lung damage, and cytokine storm in mice. PLoS One 2021; 16:e0245924. [PMID: 33481950 PMCID: PMC7822324 DOI: 10.1371/journal.pone.0245924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 is a single stranded RNA (ssRNA) virus and contains GU-rich sequences distributed abundantly in the genome. In COVID-19, the infection and immune hyperactivation causes accumulation of inflammatory immune cells, blood clots, and protein aggregates in lung fluid, increased lung alveolar wall thickness, and upregulation of serum cytokine levels. A serum protein called serum amyloid P (SAP) has a calming effect on the innate immune system and shows efficacy as a therapeutic for fibrosis in animal models and clinical trials. Here we show that aspiration of the GU-rich ssRNA oligonucleotide ORN06 into mouse lungs induces all of the above COVID-19-like symptoms. Men tend to have more severe COVID-19 symptoms than women, and in the aspirated ORN06 model, male mice tended to have more severe symptoms than female mice. Intraperitoneal injections of SAP starting from day 1 post ORN06 aspiration attenuated the ORN06-induced increase in the number of inflammatory cells and formation of clot-like aggregates in the mouse lung fluid, reduced ORN06-increased alveolar wall thickness and accumulation of exudates in the alveolar airspace, and attenuated an ORN06-induced upregulation of the inflammatory cytokines IL-1β, IL-6, IL-12p70, IL-23, and IL-27 in serum. SAP also reduced D-dimer levels in the lung fluid. In human peripheral blood mononuclear cells, SAP attenuated ORN06-induced extracellular accumulation of IL-6. Together, these results suggest that aspiration of ORN06 is a simple model for both COVID-19 as well as cytokine storm in general, and that SAP is a potential therapeutic for diseases with COVID-19-like symptoms and/or a cytokine storm.
Collapse
Affiliation(s)
- Tejas R. Karhadkar
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
32
|
Pilling D, Karhadkar TR, Gomer RH. A CD209 ligand and a sialidase inhibitor differentially modulate adipose tissue and liver macrophage populations and steatosis in mice on the Methionine and Choline-Deficient (MCD) diet. PLoS One 2020; 15:e0244762. [PMID: 33378413 PMCID: PMC7773271 DOI: 10.1371/journal.pone.0244762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and type 2 diabetes and is characterized by the accumulation of fat in the liver (steatosis). NAFLD can transition into non-alcoholic steatohepatitis (NASH), with liver cell injury, inflammation, and an increased risk of fibrosis. We previously found that injections of either 1866, a synthetic ligand for the lectin receptor CD209, or DANA, a sialidase inhibitor, can inhibit inflammation and fibrosis in multiple animal models. The methionine and choline-deficient (MCD) diet is a model of NASH which results in the rapid induction of liver steatosis and inflammation. In this report, we show that for C57BL/6 mice on a MCD diet, injections of both 1866 and DANA reversed MCD diet-induced decreases in white fat, decreases in adipocyte size, and white fat inflammation. However, these effects were not observed in type 2 diabetic db/db mice on a MCD diet. In db/db mice on a MCD diet, 1866 decreased liver steatosis, but these effects were not observed in C57BL/6 mice. There was no correlation between the ability of 1866 or DANA to affect steatosis and the effects of these compounds on the density of liver macrophage cells expressing CLEC4F, CD64, F4/80, or Mac2. Together these results indicate that 1866 and DANA modulate adipocyte size and adipose tissue macrophage populations, that 1866 could be useful for modulating steatosis, and that changes in the local density of 4 different liver macrophages cell types do not correlate with effects on liver steatosis.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| | - Tejas R Karhadkar
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
33
|
Behmoaras J. The versatile biochemistry of iron in macrophage effector functions. FEBS J 2020; 288:6972-6989. [PMID: 33354925 DOI: 10.1111/febs.15682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023]
Abstract
Macrophages are mononuclear phagocytes with remarkable polarization ability that allow them to have tissue-specific functions during development, homeostasis, inflammatory and infectious disease. One particular trophic factor in the tissue environment is iron, which is intimately linked to macrophage effector functions. Macrophages have a well-described role in the control of systemic iron levels, but their activation state is also depending on iron-containing proteins/enzymes. Haemoproteins, dioxygenases and iron-sulphur (Fe-S) enzymes are iron-binding proteins that have bactericidal, metabolic and epigenetic-related functions, essential to shape the context-dependent macrophage polarization. In this review, I describe mainly pro-inflammatory macrophage polarization focussing on the role of iron biochemistry in selected haemoproteins and Fe-S enzymes. I show how iron, as part of haem or Fe-S clusters, participates in the cellular control of pro-inflammatory redox reactions in parallel with its role as enzymatic cofactor. I highlight a possible coordinated regulation of haemoproteins and Fe-S enzymes during classical macrophage activation. Finally, I describe tryptophan and α-ketoglutarate metabolism as two essential effector pathways in macrophages that use diverse iron biochemistry at different enzymatic steps. Through these pathways, I show how iron participates in the regulation of essential metabolites that shape macrophage function.
Collapse
|
34
|
Targeting fibroblast CD248 attenuates CCL17-expressing macrophages and tissue fibrosis. Sci Rep 2020; 10:16772. [PMID: 33033277 PMCID: PMC7544830 DOI: 10.1038/s41598-020-73194-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023] Open
Abstract
The role of fibroblasts in tissue fibrosis has been extensively studied. Activated fibroblasts, namely myofibroblasts, produce pathological extracellular matrix. CD248, a type I transmembrane glycoprotein, is expressed in fibroblasts after birth. In human chronic kidney disease, upregulated CD248 in myofibroblasts is linked to poor renal survival. In this study, we demonstrated a novel interaction between CD248 and macrophages to be a key step in mediating tissue fibrosis. CD248 was upregulated in myofibroblasts in murine models of renal and peritoneal fibrosis. Cd248 knockout (Cd248–/–) could attenuate both renal and peritoneal fibrosis. By parabiosis of GFP reporter mice and Cd248–/– mice, we showed that attenuation of renal fibrosis was associated with a decrease of macrophage infiltration in Cd248–/– mice. Moreover, decrease of chemokine (C–C motif) ligand 17 and Ccl22 was found in macrophages isolated from the fibrotic kidneys of Cd248–/– mice. Because galectin-3-deficient macrophages showed decreased Ccl17 and Ccl22 in fibrotic kidneys, we further demonstrated that CD248 interacted specifically with galectin-3 of macrophages who then expressed CCL17 to activate collagen production in myofibroblasts. Mice with DNA vaccination targeting CD248 showed decreased fibrosis. We thus propose that CD248 targeting should be studied in the clinical tissue fibrosis setting.
Collapse
|
35
|
Brandt S, Ballhause TM, Bernhardt A, Becker A, Salaru D, Le-Deffge HM, Fehr A, Fu Y, Philipsen L, Djudjaj S, Müller AJ, Kramann R, Ibrahim M, Geffers R, Siebel C, Isermann B, Heidel FH, Lindquist JA, Mertens PR. Fibrosis and Immune Cell Infiltration Are Separate Events Regulated by Cell-Specific Receptor Notch3 Expression. J Am Soc Nephrol 2020; 31:2589-2608. [PMID: 32859670 DOI: 10.1681/asn.2019121289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Kidney injuries that result in chronic inflammation initiate crosstalk between stressed resident cells and infiltrating immune cells. In animal models, whole-body receptor Notch3 deficiency protects from leukocyte infiltration and organ fibrosis. However, the relative contribution of Notch3 expression in tissue versus infiltrating immune cells is unknown. METHODS Chimeric mice deficient for Notch3 in hematopoietic cells and/or resident tissue cells were generated, and kidney fibrosis and inflammation after unilateral ureteral obstruction (UUO) were analyzed. Adoptive transfer of labeled bone marrow-derived cells validated the results in a murine Leishmania ear infection model. In vitro adhesion assays, integrin activation, and extracellular matrix production were analyzed. RESULTS Fibrosis follows UUO, but inflammatory cell infiltration mostly depends upon Notch3 expression in hematopoietic cells, which coincides with an enhanced proinflammatory milieu (e.g., CCL2 and CCL5 upregulation). Notch3 expression on CD45+ leukocytes plays a prominent role in efficient cell transmigration. Functionally, leukocyte adhesion and integrin activation are abrogated in the absence of receptor Notch3. Chimeric animal models also reveal that tubulointerstitial fibrosis develops, even in the absence of prominent leukocyte infiltrates after ureteral obstruction. Deleting Notch3 receptors on resident cells blunts kidney fibrosis, ablates NF-κB signaling, and lessens matrix deposition. CONCLUSIONS Cell-specific receptor Notch3 signaling independently orchestrates leukocyte infiltration and organ fibrosis. Interference with Notch3 signaling may present a novel therapeutic approach in inflammatory as well as fibrotic diseases.
Collapse
Affiliation(s)
- Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Tobias M Ballhause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Annika Becker
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Delia Salaru
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hien Minh Le-Deffge
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Fehr
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Yan Fu
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lars Philipsen
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sonja Djudjaj
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Andreas J Müller
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mahmoud Ibrahim
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Chris Siebel
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Berend Isermann
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Florian H Heidel
- Department of Hematology and Oncology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Internal Medicine II, Hematology and Oncology, Friedrich Schiller University Medical Center, Jena, Germany.,Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany .,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
36
|
Karhadkar TR, Pilling D, Gomer RH. Serum Amyloid P inhibits single stranded RNA-induced lung inflammation, lung damage, and cytokine storm in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32869032 DOI: 10.1101/2020.08.26.269183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 is a single stranded RNA (ssRNA) virus and contains GU-rich sequences distributed abundantly in the genome. In COVID-19, the infection and immune hyperactivation causes accumulation of inflammatory immune cells, blood clots, and protein aggregates in lung fluid, increased lung alveolar wall thickness, and upregulation of serum cytokine levels. A serum protein called serum amyloid P (SAP) has a calming effect on the innate immune system and shows efficacy as a therapeutic for fibrosis in animal models and clinical trials. In this report, we show that aspiration of the GU-rich ssRNA oligonucleotide ORN06 into mouse lungs induces all of the above COVID-19-like symptoms. Men tend to have more severe COVID-19 symptoms than women, and in the aspirated ORN06 model, male mice tended to have more severe symptoms than female mice. Intraperitoneal injections of SAP starting from day 1 post ORN06 aspiration attenuated the ORN06-induced increase in the number of inflammatory cells and formation of clot-like aggregates in the mouse lung fluid, reduced ORN06-increased alveolar wall thickness and accumulation of exudates in the alveolar airspace, and attenuated an ORN06-induced upregulation of the inflammatory cytokines IL-1β, IL-6, IL-12p70, IL-23, and IL-27 in serum. Together, these results suggest that aspiration of ORN06 is a simple model for both COVID-19 as well as cytokine storm in general, and that SAP is a potential therapeutic for diseases with COVID-19-like symptoms as well as diseases that generate a cytokine storm.
Collapse
|
37
|
Spagnolo P, Bonella F, Ryerson CJ, Tzouvelekis A, Maher TM. Shedding light on developmental drugs for idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2020; 29:797-808. [PMID: 32538186 DOI: 10.1080/13543784.2020.1782885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is an age-related disease of unknown cause. The disease is characterized by relentless scarring of the lung parenchyma resulting in respiratory failure and death. Two antifibrotic drugs (pirfenidone and nintedanib) are approved for the treatment of IPF worldwide, but they do not offer a cure and are associated with tolerability issues. Owing to its high unmet medical need, IPF is an area of dynamic research activity. AREAS COVERED There is a growing portfolio of novel therapies that target different pathways involved in the complex pathogenesis of IPF. In this review, we discuss the mechanisms of action and available data for compounds in the most advanced stages of clinical development. We searched PubMed for articles on this topic published from 1 January 2000, to 6 June 2020. EXPERT OPINION The approval of pirfenidone and nintedanib has fueled IPF drug discovery and development. New drugs are likely to reach the clinic in the near future. However, numerous challenges remain; the lack of animal models that reproduce the complexity of human disease and the poor translation of preclinical and early-phase positive effects to late stage clinical trials must be tackled.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova , Padova, Italy
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital , Vancouver, Canada
| | - Argyris Tzouvelekis
- Department of Pneumology, Medical School, National and Kapodistrian University of Athens , Athens, Greece
| | - Toby M Maher
- NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital , London, UK.,National Heart and Lung Institute, Imperial College, Sir Alexander Fleming Building , London, UK
| |
Collapse
|
38
|
Yam GHF, Riau AK, Funderburgh ML, Mehta JS, Jhanji V. Keratocyte biology. Exp Eye Res 2020; 196:108062. [PMID: 32442558 DOI: 10.1016/j.exer.2020.108062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
The study of corneal stromal keratocytes is motivated by its strong association with corneal health and visual function. They play a dominant role in the maintenance of corneal homeostasis and transparency through the production of collagens, proteoglycans and corneal crystallins. Trauma-induced apoptosis of keratocytes and replacement by fibroblasts and myofibroblasts disrupt the stromal matrix organization, resulting in corneal haze formation and vision loss. It is, therefore, important to understand the biology and behaviours of keratocytes and the associated stromal cell types (like fibroblasts, myofibroblasts, stromal stem cells) in wound healing, corneal pathologies (including keratoconus, keratitis, endothelial disorders) as well as different ophthalmic situations (such as collagen crosslinking/photodynamic treatment, keratoplasty and refractive surgery, and topical medications). The recent development of ex vivo propagation of keratocytes and stromal stem cells, and their translational applications, either via stromal injection or incorporated in bioscaffold, have been shown to restore the corneal transparency and regenerate native stromal tissue in animal models of corneal haze and other disorders.
Collapse
Affiliation(s)
- Gary H F Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | | | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Bankar A, Gupta V. Investigational non-JAK inhibitors for chronic phase myelofibrosis. Expert Opin Investig Drugs 2020; 29:461-474. [PMID: 32245330 DOI: 10.1080/13543784.2020.1751121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Patients with myelofibrosis (MF) have no effective treatment option after the failure of approved JAK inhibitor (JAKi) therapy. Non-JAK inhibitors (non-JAKi) that target non-canonical molecular pathways are undergoing clinical evaluations to optimize efficacy and/or to reduce hematological toxicity of JAKi. AREA COVERED This article reviews the efficacy data from completed and ongoing early phase clinical trials of non-JAKi agents for chronic phase MF. The article also illuminates some of the challenges of myelofibrosis drug development. EXPERT OPINION Most non-JAKi agents tested so far have shown modest benefit in improving the efficacy of ruxolitinib. Several novel agents such as BET inhibitor- CPI-0610, activin receptor ligand trap- luspatercept, recombinant pentraxin-PRM-151, telomerase inhibitor- imetelstat and bcl-2 inhibitor- navitoclax, have shown promising activity; however, they require vigorous evaluation in randomized controlled trials to understand the clinical benefit. Drugs that target new molecular pathways (MDM2, p-selectin, TIM-3, TGF-β, aurora kinase) and immune-based strategies (CALR vaccine, anti-PD-1, allogeneic cord blood regulatory T cells) are in early phase trials. Further translational studies to target leukemic stem cells, improvement in trial designs by incorporating control arm and survival endpoints, and patient-focused collaborations among all stakeholders could pave a way for future success in MF drug development.
Collapse
Affiliation(s)
- Aniket Bankar
- Medical Oncology and Hematology, Princess Margaret Cancer Center , Toronto, Ontario, Canada
| | - Vikas Gupta
- Medical Oncology and Hematology, Princess Margaret Cancer Center , Toronto, Ontario, Canada
| |
Collapse
|
40
|
Basturk T, Ojalvo D, Mazi EE, Hasbal NB, Ozagari AA, Ahbap E, Sakaci T, Koc Y, Sevinc M, Unsal A. Pentraxin-2 is Associated with Renal Fibrosis in Patients Undergoing Renal Biopsy. Clinics (Sao Paulo) 2020; 75:e1809. [PMID: 33146353 PMCID: PMC7561072 DOI: 10.6061/clinics/2020/e1809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Progressive renal disease is characterized by histological changes in the kidney and fibrosis is a common outcome. Renal biopsy is the only diagnostic tool to evaluate these histopathological changes. Pentraxin-2 (PTX-2) is an anti-inflammatory constitutive plasma protein associated with the innate immune system. Recently, as a biomarker, the circulating level of PTX-2 is shown to be decreased in chronic fibrotic diseases. In this study, we aimed to investigate the relationship between renal fibrosis severity and serum PTX-2 levels in patients undergoing renal biopsy. METHODS This cross-sectional study included 45 patients and 16 healthy individuals (HIs). The severity of renal fibrosis was evaluated according to the Banff and Sethi scoring systems by the same pathologist. PTX-2 was measured by an enzyme-linked immunosorbent assay and compared with the demographical, clinical, biochemical, and histopathological data of the patients and HIs. RESULTS PTX-2 levels were lower in the biopsy group than in the HI group (p=0.12). Patients with moderate renal fibrosis had significantly lower serum PTX-2 levels than those in patients with minimal and mild fibrosis (p=0.017 and p=0.010, respectively). PTX-2 concentrations were correlated with serum albumin (r=0.30, p=0.016), and were negatively correlated with serum creatinine levels (rho=-0.42, p=0.01) and body mass index (r=-0.32, p=0.011). CONCLUSIONS The results indicated that PTX-2 levels are significantly lower in patients with renal fibrosis than HIs, and declining further in patients with severe fibrosis.
Collapse
Affiliation(s)
- Taner Basturk
- University of Health Sciences, Sisli Hamidiye Etfal Teaching and Research Hospital, Istanbul, Turkey
- Vardcentralen Wisby Soder, General Medicine, Gotland, Sweden
| | - David Ojalvo
- Sisli Hamidiye Etfal Teaching and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | | | | | - Ayse Aysim Ozagari
- Sisli Hamidiye Etfal Teaching and Research Hospital, Department of Pathology, Istanbul, Turkey
| | - Elbis Ahbap
- Vardcentralen Wisby Soder, General Medicine, Gotland, Sweden
- *Corresponding author. E-mail:
| | - Tamer Sakaci
- Vardcentralen Wisby Soder, General Medicine, Gotland, Sweden
| | - Yener Koc
- Cumhuriyet University, Faculty of Medicine, Department of Internal Medicine, Division of Nephrology, Sivas, Turkey
| | - Mustafa Sevinc
- Vardcentralen Wisby Soder, General Medicine, Gotland, Sweden
| | - Abdulkadir Unsal
- University of Health Sciences, Sisli Hamidiye Etfal Teaching and Research Hospital, Istanbul, Turkey
- Vardcentralen Wisby Soder, General Medicine, Gotland, Sweden
| |
Collapse
|
41
|
Chen YT, Hsu H, Lin CC, Pan SY, Liu SY, Wu CF, Tsai PZ, Liao CT, Cheng HT, Chiang WC, Chen YM, Chu TS, Lin SL. Inflammatory macrophages switch to CCL17-expressing phenotype and promote peritoneal fibrosis. J Pathol 2019; 250:55-66. [PMID: 31579932 DOI: 10.1002/path.5350] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022]
Abstract
Peritoneal fibrosis remains a problem in kidney failure patients treated with peritoneal dialysis. Severe peritoneal fibrosis with encapsulation or encapsulating peritoneal sclerosis is devastating and life-threatening. Although submesothelial fibroblasts as the major precursor of scar-producing myofibroblasts in animal models and M2 macrophage (Mϕ)-derived chemokines in peritoneal effluents of patients before diagnosis of encapsulating peritoneal sclerosis have been identified, attenuation of peritoneal fibrosis is an unmet medical need partly because the mechanism for cross talk between Mϕs and fibroblasts remains unclear. We use a sodium hypochlorite-induced mouse model akin to clinical encapsulated peritoneal sclerosis to study how the peritoneal Mϕs activate fibroblasts and fibrosis. Sodium hypochlorite induces the disappearance of CD11bhigh F4/80high resident Mϕs but accumulation of CD11bint F4/80int inflammatory Mϕs (InfMϕs) through recruiting blood monocytes and activating local cell proliferation. InfMϕs switch to express chemokine (C-C motif) ligand 17 (CCL17), CCL22, and arginase-1 from day 2 after hypochlorite injury. More than 75% of InfMϕs undergo genetic recombination by Csf1r-driven Cre recombinase, providing the possibility to reduce myofibroblasts and fibrosis by diphtheria toxin-induced Mϕ ablation from day 2 after injury. Furthermore, administration of antibody against CCL17 can reduce Mϕs, myofibroblasts, fibrosis, and improve peritoneal function after injury. Mechanistically, CCL17 stimulates migration and collagen production of submesothelial fibroblasts in culture. By breeding mice that are induced to express red fluorescent protein in Mϕs and green fluorescence protein (GFP) in Col1a1-expressing cells, we confirmed that Mϕs do not produce collagen in peritoneum before and after injury. However, small numbers of fibrocytes are found in fibrotic peritoneum of chimeric mice with bone marrow from Col1a1-GFP reporter mice, but they do not contribute to myofibroblasts. These data demonstrate that InfMϕs switch to pro-fibrotic phenotype and activate peritoneal fibroblasts through CCL17 after injury. CCL17 blockade in patients with peritoneal fibrosis may provide a novel therapy. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hao Hsu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Chun Lin
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shin-Yun Liu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Fang Wu
- Department of Internal Medicine, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Zhen Tsai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Te Liao
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Hui-Teng Cheng
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Serum Amyloid P and a Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin Ligand Inhibit High-Fat Diet-Induced Adipose Tissue and Liver Inflammation and Steatosis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2400-2413. [PMID: 31539521 DOI: 10.1016/j.ajpath.2019.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
High-fat diet (HFD)-induced inflammation is associated with a variety of health risks. The systemic pentraxin serum amyloid P (SAP) inhibits inflammation. SAP activates the high-affinity IgG receptor Fcγ receptor I (FcγRI; CD64) and the lectin receptor dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209). Herein, we show that for mice on an HFD, injections of SAP and a synthetic CD209 ligand (1866) reduced HFD-increased adipose and liver tissue inflammation, adipocyte differentiation, and lipid accumulation in adipose tissue. HFD worsened glucose tolerance test results and caused increased adipocyte size; for mice on an HFD, SAP improved glucose tolerance test results and reduced adipocyte size. Mice on an HFD had elevated serum levels of IL-1β, IL-23, interferon (IFN)-β, IFN-γ, monocyte chemoattractant protein 1 [MCP-1; chemokine (C-C motif) ligand 2 (CCL2)], and tumor necrosis factor-α. SAP reduced serum levels of IL-23, IFN-β, MCP-1, and tumor necrosis factor-α, whereas 1866 reduced IFN-γ. In vitro, SAP, but not 1866, treated cells isolated from white fat tissue (stromal vesicular fraction) produced the anti-inflammatory cytokine IL-10. HFD causes steatosis, and both SAP and 1866 reduced it. Conversely, compared with control mice, SAP knockout mice fed on a normal diet had increased white adipocyte cell sizes, increased numbers of inflammatory cells in adipose and liver tissue, and steatosis; and these effects were exacerbated on an HFD. SAP and 1866 may inhibit some, but not all, of the effects of a high-fat diet.
Collapse
|
43
|
Baek JH. The Impact of Versatile Macrophage Functions on Acute Kidney Injury and Its Outcomes. Front Physiol 2019; 10:1016. [PMID: 31447703 PMCID: PMC6691123 DOI: 10.3389/fphys.2019.01016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is a common and devastating clinical condition with a high morbidity and mortality rate and is associated with a rapid decline of kidney function mostly resulting from the injury of proximal tubules. AKI is typically accompanied by inflammation and immune activation and involves macrophages (Mϕ) from the beginning: The inflamed kidney recruits “classically” activated (M1) Mϕ, which are initially poised to destroy potential pathogens, exacerbating inflammation. Of note, they soon turn into “alternatively” activated (M2) Mϕ and promote immunosuppression and tissue regeneration. Based on their roles in kidney recovery, there is a growing interest to use M2 Mϕ and Mϕ-modulating agents therapeutically against AKI. However, it is pertinent to note that the clinical translation of Mϕ-based therapies needs to be critically reviewed and questioned since Mϕ are functionally plastic with versatile roles in AKI and some Mϕ functions are detrimental to the kidney during AKI. In this review, we discuss the current state of knowledge on the biology of different Mϕ subtypes during AKI and, especially, on their role in AKI and assess the impact of versatile Mϕ functions on AKI based on the findings from translational AKI studies.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Research & Early Development, Biogen Inc., Cambridge, MA, United States
| |
Collapse
|
44
|
|
45
|
Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. Proc Natl Acad Sci U S A 2019; 116:3646-3655. [PMID: 30808754 DOI: 10.1073/pnas.1816086116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viviparous (live-bearing) vertebrates have evolved repeatedly within otherwise oviparous (egg-laying) clades. Over two-thirds of these changes in vertebrate reproductive parity mode happened in squamate reptiles, where the transition has happened between 98 and 129 times. The transition from oviparity to viviparity requires numerous physiological, morphological, and immunological changes to the female reproductive tract, including eggshell reduction, delayed oviposition, placental development for supply of water and nutrition to the embryo by the mother, enhanced gas exchange, and suppression of maternal immune rejection of the embryo. We performed genomic and transcriptomic analyses of a closely related oviparous-viviparous pair of lizards (Phrynocephalus przewalskii and Phrynocephalus vlangalii) to examine these transitions. Expression patterns of maternal oviduct through reproductive development of the egg and embryo differ markedly between the two species. We found changes in expression patterns of appropriate genes that account for each of the major aspects of the oviparity to viviparity transition. In addition, we compared the gene sequences in transcriptomes of four oviparous-viviparous pairs of lizards in different genera (Phrynocephalus, Eremias, Scincella, and Sphenomorphus) to look for possible gene convergence at the sequence level. We discovered low levels of convergence in both amino acid replacement and evolutionary rate shift. This suggests that most of the changes that produce the oviparity-viviparity transition are changes in gene expression, so occasional reversals to oviparity from viviparity may not be as difficult to achieve as has been previously suggested.
Collapse
|
46
|
Chou YH, Liao FL, Chen YT, Yeh PY, Liu CH, Shih HM, Chang FC, Chiang WC, Chu TS, Lin SL. Erythropoietin modulates macrophages but not post-ischemic acute kidney injury in mice. J Formos Med Assoc 2019; 118:494-503. [DOI: 10.1016/j.jfma.2018.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 01/11/2023] Open
|
47
|
Moonen L, Geryl H, D'Haese PC, Vervaet BA. Short-term dexamethasone treatment transiently, but not permanently, attenuates fibrosis after acute-to-chronic kidney injury. BMC Nephrol 2018; 19:343. [PMID: 30509215 PMCID: PMC6276259 DOI: 10.1186/s12882-018-1151-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/23/2018] [Indexed: 01/30/2023] Open
Abstract
Background Acute kidney injury (AKI) is an underestimated, yet important, risk factor for the development of chronic kidney disease (CKD). Persistence of inflammation after a renal ischemic injury has been observed, both in experimental models and patients, and is thought to be an important mechanisms underlying progression of acute-to-chronic renal injury. Temporary suppression of inflammation immediately after AKI might therefore be a good first-line therapeutic strategy towards a better long term outcome. Methods Male C57Bl/6 J mice (Charles River, 10–12 weeks of age) underwent warm (36 °C body temperature) unilateral ischemia-reperfusion of the kidney for 21 min, after which treatment with intraperitoneal injection of the corticosteroid dexamethasone (10 mg/kg) was initiated for 3 weeks. Both at that time point and after an additional 3 week post-treatment follow up period, fibrosis was quantified by collagen I gene expression and immunostaining, as well as gene expression analysis of fibrosis-related genes Tgfβ, Ccn2 (Ctgf), Pai-1 and Ccn3. Furthermore, inflammation was evaluated by Tnfα gene expression and protein expression of the F4/80 macrophage marker and the α-SMA fibroblast marker. Lastly, renal histopathology was quantified by a morphometric analysis of the tubulointerstitial area. Results Treatment with dexamethasone attenuated development of fibrosis, as evidenced by reduced collagen I gene expression and immunostaining, in combination with reduced gene expression of the pro-fibrotic Ccn2 and increased expression of the anti-fibrotic Ccn3. The effects of dexamethasone on renal fibrosis persisted during the 3 week follow up period, as evidenced by stagnation of collagen I deposition in the ischemic kidney, in contrast to vehicle-treatment, where progression of fibrosis was observed. However, expression levels of the pro-fibrotic genes re-approached those of vehicle-treated injured kidneys suggesting that the effects of dexamethasone on fibrosis beyond the treatment period are temporary. Conclusion A short term anti-inflammatory therapy with dexamethasone only transiently attenuates ischemia induced fibrosis. Prolonged or persistent anti-inflammatory treatment seems warranted to achieve long term benefit. Electronic supplementary material The online version of this article (10.1186/s12882-018-1151-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lies Moonen
- Laboratory of Pathophysiology, University of Antwerp, 2160, Antwerpen, Belgium
| | - Hilde Geryl
- Laboratory of Pathophysiology, University of Antwerp, 2160, Antwerpen, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, 2160, Antwerpen, Belgium
| | - Benjamin A Vervaet
- Laboratory of Pathophysiology, University of Antwerp, 2160, Antwerpen, Belgium.
| |
Collapse
|
48
|
Lu J, Mold C, Du Clos TW, Sun PD. Pentraxins and Fc Receptor-Mediated Immune Responses. Front Immunol 2018; 9:2607. [PMID: 30483265 PMCID: PMC6243083 DOI: 10.3389/fimmu.2018.02607] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
C-reactive protein (CRP) is a member of the pentraxin family of proteins. These proteins are highly conserved over the course of evolution being present as far back as 250 million years ago. Mammalian pentraxins are characterized by the presence of five identical non-covalently linked subunits. Each subunit has a structurally conserved site for calcium-dependent ligand binding. The biological activities of the pentraxins established over many years include the ability to mediate opsonization for phagocytosis and complement activation. Pentraxins have an important role in protection from infection from pathogenic bacteria, and regulation of the inflammatory response. It was recognized early on that some of these functions are mediated by activation of the classical complement pathway through C1q. However, experimental evidence suggested that cellular receptors for pentraxins also play a role in phagocytosis. More recent experimental evidence indicates a direct link between pentraxins and Fc receptors. The Fc receptors were first identified as the major receptors for immunoglobulins. The avidity of the interaction between IgG complexes and Fc receptors is greatly enhanced when multivalent ligands interact with the IgG binding sites and activation of signaling pathways requires Fc receptor crosslinking. Human pentraxins bind and activate human and mouse IgG receptors, FcγRI and FcγRII, and the human IgA receptor, FcαRI. The affinities of the interactions between Fc receptors and pentraxins in solution and on cell surfaces are similar to antibody binding to low affinity Fc receptors. Crystallographic and mutagenesis studies have defined the structural features of these interactions and determined the stoichiometry of binding as one-to-one. Pentraxin aggregation or binding to multivalent ligands increases the avidity of binding and results in activation of these receptors for phagocytosis and cytokine synthesis. This review will discuss the structural and functional characteristics of pentraxin Fc receptor interactions and their implications for host defense and inflammation.
Collapse
Affiliation(s)
- Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Carolyn Mold
- Department of Molecular Genetics and Microbiology, Albuquerque, NM, United States.,Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | | | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
49
|
Pilling D, Gomer RH. The Development of Serum Amyloid P as a Possible Therapeutic. Front Immunol 2018; 9:2328. [PMID: 30459752 PMCID: PMC6232687 DOI: 10.3389/fimmu.2018.02328] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Pentraxins such as serum amyloid P (SAP; also known as PTX2) regulate several aspects of the innate immune system. SAP inhibits the differentiation of monocyte-derived fibroblast-like cells called fibrocytes, promotes the formation of immuno-regulatory macrophages, and inhibits neutrophil adhesion to extracellular matrix proteins. In this minireview, we describe how these effects of SAP have led to its possible use as a therapeutic, and how modulating SAP effects might be used for other therapeutics. Fibrosing diseases such as pulmonary fibrosis, cardiac fibrosis, liver fibrosis, and renal fibrosis are associated with 30-45% of deaths in the US. Fibrosis involves both fibrocyte differentiation and profibrotic macrophage differentiation, and possibly because SAP inhibits both of these processes, in 9 different animal models, SAP inhibited fibrosis. In Phase 1B and Phase 2 clinical trials, SAP injections reduced the decline in lung function in pulmonary fibrosis patients, and in a small Phase 2 trial SAP injections reduced fibrosis in myelofibrosis patients. Acute respiratory distress syndrome/ acute lung injury (ARDS/ALI) involves the accumulation of neutrophils in the lungs, and possibly because SAP inhibits neutrophil adhesion, SAP injections reduced the severity of ARDS in an animal model. Conversely, depleting SAP is a potential therapeutic for amyloidosis, topically removing SAP from wound fluid speeds wound healing in animal models, and blocking SAP binding to one of its receptors makes cultured macrophages more aggressive toward tuberculosis bacteria. These results suggest that modulating pentraxin signaling might be useful for a variety of diseases.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
50
|
Barratt SL, Creamer A, Hayton C, Chaudhuri N. Idiopathic Pulmonary Fibrosis (IPF): An Overview. J Clin Med 2018; 7:jcm7080201. [PMID: 30082599 PMCID: PMC6111543 DOI: 10.3390/jcm7080201] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterised by chronic, progressive scarring of the lungs and the pathological hallmark of usual interstitial pneumonia. Current paradigms suggest alveolar epithelial cell damage is a key initiating factor. Globally, incidence of the disease is rising, with associated high morbidity, mortality, and economic healthcare burden. Diagnosis relies on a multidisciplinary team approach with exclusion of other causes of interstitial lung disease. Over recent years, two novel antifibrotic therapies, pirfenidone and nintedanib, have been developed, providing treatment options for many patients with IPF, with several other agents in early clinical trials. Current efforts are directed at identifying key biomarkers that may direct more customized patient-centred healthcare to improve outcomes for these patients in the future.
Collapse
Affiliation(s)
- Shaney L Barratt
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol BS10 5NB, UK.
- Academic Respiratory Unit, University of Bristol, Bristol BS16 1QY, UK.
| | - Andrew Creamer
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol BS10 5NB, UK.
| | - Conal Hayton
- North West Interstitial Lung Disease Unit, Manchester University NHS Foundation Trust, Wythenshawe, Manchester M23 9LT, UK.
| | - Nazia Chaudhuri
- North West Interstitial Lung Disease Unit, Manchester University NHS Foundation Trust, Wythenshawe, Manchester M23 9LT, UK.
| |
Collapse
|