1
|
Calì C, Cantando I, Veloz Castillo MF, Gonzalez L, Bezzi P. Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:8922. [PMID: 39201607 PMCID: PMC11354244 DOI: 10.3390/ijms25168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood-brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer's and Huntington's disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
| | - Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Maria Fernanda Veloz Castillo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
2
|
Wang PF, Jiang F, Zeng QM, Yin WF, Hu YZ, Li Q, Hu ZL. Mitochondrial and metabolic dysfunction of peripheral immune cells in multiple sclerosis. J Neuroinflammation 2024; 21:28. [PMID: 38243312 PMCID: PMC10799425 DOI: 10.1186/s12974-024-03016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by the infiltration of inflammatory cells and demyelination of nerves. Mitochondrial dysfunction has been implicated in the pathogenesis of MS, as studies have shown abnormalities in mitochondrial activities, metabolism, mitochondrial DNA (mtDNA) levels, and mitochondrial morphology in immune cells of individuals with MS. The presence of mitochondrial dysfunctions in immune cells contributes to immunological dysregulation and neurodegeneration in MS. This review provided a comprehensive overview of mitochondrial dysfunction in immune cells associated with MS, focusing on the potential consequences of mitochondrial metabolic reprogramming on immune function. Current challenges and future directions in the field of immune-metabolic MS and its potential as a therapeutic target were also discussed.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Fei Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha City, 410011, Hunan, China
| | - Qiu-Ming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha City, 410011, Hunan, China
| | - Wei-Fan Yin
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Yue-Zi Hu
- Clinical Laboratory, The Second Hospital of Hunan University of Chinese Medicine, 233 Cai' e North Road, Changsha City, 410005, Hunan, China
| | - Qiao Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China.
| |
Collapse
|
3
|
Ge A, Sun Y, Kiker T, Zhou Y, Ye K. A metabolome-wide Mendelian randomization study prioritizes potential causal circulating metabolites for multiple sclerosis. J Neuroimmunol 2023; 379:578105. [PMID: 37207441 PMCID: PMC10237183 DOI: 10.1016/j.jneuroim.2023.578105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
To prioritize circulating metabolites that likely play causal roles in the pathogenesis of multiple sclerosis (MS). Two-sample Mendelian randomization analysis was performed to estimate the causal effects of 571 circulating metabolites on the risk of MS. Genetic instruments for circulating metabolites were obtained from three previous genome-wide association studies (GWAS) of the blood metabolome (N = 7824; 24,925; and 115,078; respectively), while genetic associations with MS were from a large GWAS by the International Multiple Sclerosis Genetics Consortium (14,802 cases and 26,703 control). The primary analysis was performed with the multiplicative random-effect inverse variance-weighted method, while multiple sensitivity analyses were conducted with the weighted median, weighted mode, MR-Egger, and MR-PRESSO. A total of 29 metabolites had suggestive evidence of causal associations with MS. Genetically instrumented levels of serine (OR = 1.56, 95% CI = 1.25-1.95), lysine (OR = 1.18, 95% CI = 1.01-1.38), acetone (OR = 2.45, 95% CI = 1.02-5.90), and acetoacetate (OR = 2.47, 95% CI = 1.14-5.34) were associated with a higher MS risk. Total cholesterol and phospholipids in large very-low-density lipoprotein were associated with a lower MS risk (OR = 0.83, 95% CI = 0.69-1.00; OR = 0.80, 95% CI = 0.68-0.95), but risk-increasing associations (OR = 1.20, 95% CI = 1.04-1.40; OR = 1.13, 95% CI = 1.00-1.28) were observed for the same two lipids in very large high-density lipoprotein. Our metabolome-wide Mendelian randomization study prioritized a list of circulating metabolites, such as serine, lysine, acetone, acetoacetate, and lipids, that likely have causal associations with MS.
Collapse
Affiliation(s)
- Angela Ge
- Lower Merion High School, Ardmore, PA, USA; Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Yitang Sun
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Thaddaeus Kiker
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA; Sunny Hills High School, Fullerton, CA, USA
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Kaixiong Ye
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol 2022:10.1007/s00281-022-00961-5. [PMID: 36161515 DOI: 10.1007/s00281-022-00961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Severe loss of cerebral blood flow causes hypoxia and glucose deprivation in the brain tissue, resulting in necrotic cell death in the ischemic brain. Several endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), are extracellularly released from the dead cells to activate pattern recognition receptors (PRRs) in immune cells that infiltrate into ischemic brain tissue following the disruption of the blood-brain barrier (BBB) after stroke onset. The activated immune cells produce various inflammatory cytokines and chemokines, triggering sterile cerebral inflammation in the ischemic brain that causes further neuronal cell death. Poststroke inflammation is resolved within several days after stroke onset, and neurological functions are restored to some extent as neural repair occurs around peri-infarct neurons. Clearance of DAMPs from the injured brain is necessary for the resolution of poststroke inflammation. Neurons and glial cells also express PRRs and receive DAMP signaling. Although the role of PRRs in neural cells in the ischemic brain has not yet been clarified, the signaling pathway is likely to be contribute to stroke pathology and neural repair after ischemic stroke. This review describes the molecular dynamics, signaling pathways, and functions of DAMPs in poststroke inflammation and its resolution.
Collapse
|
5
|
Dong Y, Yong VW. Oxidized phospholipids as novel mediators of neurodegeneration. Trends Neurosci 2022; 45:419-429. [PMID: 35393134 DOI: 10.1016/j.tins.2022.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Neurodegeneration drives the progression of many neurological diseases. Inflammation and oxidative stress occurring in the CNS promote lipid peroxidation, leading to the generation of oxidized phospholipids such as oxidized phosphatidylcholines (OxPCs). OxPCs have been proposed as biomarkers of oxidative stress, where their detection in lesions in multiple sclerosis (MS), frontotemporal lobe dementia, spinal cord injury, and amyotrophic lateral sclerosis (ALS) implies that oxidative insult had occurred. However, recent findings highlight OxPCs as potent neurotoxic species requiring neutralization by microglia. Here, we summarize the science of OxPCs, including lessons from non-CNS diseases. We discuss the potential of OxPCs as common drivers of injury across neurological conditions and encourage investigations of OxPCs as novel neurotoxins.
Collapse
Affiliation(s)
- Yifei Dong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Li Q, Feng C, Li L, Xu G, Gu H, Li S, Li D, Liu M, Han S, Zheng B. Lipid Receptor G2A-Mediated Signal Pathway Plays a Critical Role in Inflammatory Response by Promoting Classical Macrophage Activation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2338-2352. [PMID: 33941654 DOI: 10.4049/jimmunol.2000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Macrophage polarization is a dynamic and integral process in tissue inflammation and remodeling. In this study, we describe that lipoprotein-associated phospholipase A2 (Lp-PLA2) plays an important role in controlling inflammatory macrophage (M1) polarization in rodent experimental autoimmune encephalomyelitis (EAE) and in monocytes from multiple sclerosis (MS) patients. Specific inhibition of Lp-PLA2 led to an ameliorated EAE via markedly decreased inflammatory and demyelinating property of M1. The effects of Lp-PLA2 on M1 function were mediated by lysophosphatidylcholine, a bioactive product of oxidized lipids hydrolyzed by Lp-PLA2 through JAK2-independent activation of STAT5 and upregulation of IRF5. This process was directed by the G2A receptor, which was only found in differentiated M1 or monocytes from MS patients. M1 polarization could be inhibited by a G2A neutralizing Ab, which led to an inhibited disease in rat EAE. In addition, G2A-deficient rats showed an ameliorated EAE and an inhibited autoimmune response. This study has revealed a mechanism by which lipid metabolites control macrophage activation and function, modification of which could lead to a new therapeutic approach for MS and other inflammatory disorders.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Chunlei Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Lingyun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Guiliang Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Haijuan Gu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Shiqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Shuhua Han
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
7
|
Autoantibodies against central nervous system antigens in a subset of B cell-dominant multiple sclerosis patients. Proc Natl Acad Sci U S A 2020; 117:21512-21518. [PMID: 32817492 DOI: 10.1073/pnas.2011249117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), with characteristic inflammatory lesions and demyelination. The clinical benefit of cell-depleting therapies targeting CD20 has emphasized the role of B cells and autoantibodies in MS pathogenesis. We previously introduced an enzyme-linked immunospot spot (ELISpot)-based assay to measure CNS antigen-specific B cells in the blood of MS patients and demonstrated its usefulness as a predictive biomarker for disease activity in measuring the successful outcome of disease-modifying therapies (DMTs). Here we used a planar protein array to investigate CNS-reactive antibodies in the serum of MS patients as well as in B cell culture supernatants after polyclonal stimulation. Anti-CNS antibody reactivity was evident in the sera of the MS cohort, and the antibodies bound a heterogeneous set of molecules, including myelin, axonal cytoskeleton, and ion channel antigens, in individual patients. Immunoglobulin reactivity in supernatants of stimulated B cells was directed against a broad range of CNS antigens. A group of MS patients with a highly active B cell component was identified by the ELISpot assay. Those antibody reactivities remained stable over time. These assays with protein arrays identify MS patients with a highly active B cell population with antibodies directed against a swathe of CNS proteins.
Collapse
|
8
|
Ferreira HB, Neves B, Guerra IM, Moreira A, Melo T, Paiva A, Domingues MR. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Mult Scler Relat Disord 2020; 44:102189. [PMID: 32516740 DOI: 10.1016/j.msard.2020.102189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system, and it is one of the most common neurological cause of disability in young adults. It is known that several factors contribute to increase the risk of development and pathogenesis of multiple sclerosis, nonetheless, but the true etiology of this pathology remains unknown. Similar to other inflammatory diseases, oxidative stress and lipid peroxidation are also associated to multiple sclerosis. Alterations in the lipid profile seem to be a hallmark of this pathology which can contribute to the dysregulation of lipid homeostasis and lipid metabolism in multiple sclerosis. Lipidomic studies analysed in this review clearly demonstrate the role of lipids in inflammatory processes, in immunity, and in the onset and development of multiple sclerosis. Several investigations reported alterations of some molecular lipid species, in particular, with decrease of fatty acids (FA) 18:2 and 20:4 and total polyunsaturated FA, with compensatory increases of saturated FA with shorter carbon chains. Oxidized phospholipids were reported in few studies as well. Also, it was shown that clinical lipidomics has potential as a tool to aid both in multiple sclerosis diagnosis and therapeutics by allowing a detailed lipidome profiling of the patients suffering with this disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês M Guerra
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Moreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.; Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Villoslada P, Steinman L. New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis. Expert Opin Investig Drugs 2020; 29:443-459. [DOI: 10.1080/13543784.2020.1757647] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pablo Villoslada
- Department of Psychiatry and Behavioural Sciences & Department of Neurology and Neurological Sciences, Stanford University, California, CA, USA
| | - Lawrence Steinman
- Department of Psychiatry and Behavioural Sciences & Department of Neurology and Neurological Sciences, Stanford University, California, CA, USA
| |
Collapse
|
10
|
Mechanisms of activation induced by antiphospholipid antibodies in multiple sclerosis: Potential biomarkers of disease? J Immunol Methods 2019; 474:112663. [DOI: 10.1016/j.jim.2019.112663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
|
11
|
Ferreira HB, Pereira AM, Melo T, Paiva A, Domingues MR. Lipidomics in autoimmune diseases with main focus on systemic lupus erythematosus. J Pharm Biomed Anal 2019; 174:386-395. [DOI: 10.1016/j.jpba.2019.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 01/03/2023]
|
12
|
Wang C, Wang C, Liu F, Rainosek S, Patterson TA, Slikker W, Han X. Lipidomics Reveals Changes in Metabolism, Indicative of Anesthetic-Induced Neurotoxicity in Developing Brains. Chem Res Toxicol 2018; 31:825-835. [PMID: 30132657 DOI: 10.1021/acs.chemrestox.8b00186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous studies have demonstrated that treatment with high dose anesthetics for a prolonged duration induces brain injury in infants. However, whether anesthetic treatment leading to neurotoxicity is associated with alterations in lipid metabolism and homeostasis is still unclear. This review first outlines the lipidomics tools for analysis of lipid molecular species that can inform alterations in lipid species after anesthetic exposure. Then the available data indicating anesthetics cause changes in lipid profiles in the brain and serum of infant monkeys in preclinical studies are summarized, and the potential mechanisms leading to the altered lipid metabolism and their association with anesthetic-induced brain injury are also discussed. Finally, whether lipid changes identified in serum of infant monkeys can serve as indicators for the early detection of anesthetic-induced brain injury is described. We believe extensive studies on alterations in lipids after exposure to anesthetics will allow us to better understand anesthetic-induced neurotoxicity, unravel its underlying biochemical mechanisms, and develop powerful biomarkers for early detection/monitoring of the toxicity.
Collapse
Affiliation(s)
| | | | | | - Shuo Rainosek
- Department of Anesthesiology , Central Arkansas Veterans Health System , 4300 West Seventh Street, VA 704-110 , Little Rock , Arkansas 72205 , United States
| | | | | | | |
Collapse
|
13
|
Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis. Int J Mol Sci 2018; 19:ijms19061639. [PMID: 29865151 PMCID: PMC6032172 DOI: 10.3390/ijms19061639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.
Collapse
|
14
|
Adjepong M, Yakah W, Harris WS, Annan RA, Pontifex MB, Fenton JI. Whole blood n-3 fatty acids are associated with executive function in 2-6-year-old Northern Ghanaian children. J Nutr Biochem 2018; 57:287-293. [PMID: 29852451 DOI: 10.1016/j.jnutbio.2018.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/06/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Abstract
Several studies demonstrate the importance of essential fatty acids (EFAs), and the long chain polyunsaturated FA docosahexaenoic acid (DHA), on cognition and brain development. The objective of this study was to investigate the relationship between whole-blood FAs and executive function in children from Northern Ghana. A total of 307, 2-to-6-year-old children attempted the dimensional change card sort (DCCS) task to assess executive function, and dried blood spot samples were collected and analyzed for FA content. Significant differences in mean % total whole-blood fatty acids were observed between children who could not follow directions on the DCCS test (49.8% of the sample) and those who could (50.2% of the sample). Positive associations with DCCS performance were observed for DHA (β=0.25, P=.06), total n-3 (β=0.17, P=.06) and dihomo-gamma-linolenic acid (DGLA; β=0.60, P=.06). Children with the highest levels of total n-3 and DHA were three and four times, respectively, more likely to pass at least one condition of the DCCS test of executive function than those with the lowest DHA levels. The results of this study indicate an association between n-3 FAs and high-level cognitive processes in children two to six years of age, providing impetus for further studies into possible interventions to improve EFA status of children in developing countries.
Collapse
Affiliation(s)
- Mary Adjepong
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - William Yakah
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - William S Harris
- Sanford School of Medicine, University of South Dakota and Omega Quant Analytics, LLC, Sioux Falls, SD
| | - Reginald A Annan
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI.
| |
Collapse
|
15
|
Bruce KD, Gorkhali S, Given K, Coates AM, Boyle KE, Macklin WB, Eckel RH. Lipoprotein Lipase Is a Feature of Alternatively-Activated Microglia and May Facilitate Lipid Uptake in the CNS During Demyelination. Front Mol Neurosci 2018; 11:57. [PMID: 29599706 PMCID: PMC5862862 DOI: 10.3389/fnmol.2018.00057] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Severe demyelinating disorders of the central nervous system (CNS) such as multiple sclerosis (MS), can be devastating for many young lives. To date, the factors resulting in poor remyelination and repair are not well understood, and reparative therapies that benefit MS patients have yet to be developed. We have previously shown that the activity and abundance of Lipoprotein Lipase (LPL)—the rate-limiting enzyme in the hydrolysis of triglyceride-rich lipoproteins—is increased in Schwann cells and macrophages following nerve crush injury in the peripheral nervous system (PNS), suggesting that LPL may help scavenge myelin-derived lipids. We hypothesized that LPL may play a similar role in the CNS. To test this, mice were immunized with MOG35–55 peptide to induce experimental allergic encephalomyelitis (EAE). LPL activity was increased (p < 0.05) in the brain at 30 days post-injection, coinciding with partial remission of clinical symptoms. Furthermore, LPL abundance and activity was up-regulated (p < 0.05) at the transition between de- and re-myelination in lysolecithin-treated ex vivo cerebellar slices. Since microglia are the key immune effector cells of the CNS we determined the role of LPL in microglia. Lipid uptake was decreased (p < 0.001) in LPL-deficient BV-2 microglial cells compared to WT. In addition, LPL-deficient cells showed dramatically reduced expression of anti-inflammatory markers, YM1 (−22 fold, p < 0.001), and arginase 1 (Arg1; −265 fold, p < 0.001) and increased expression of pro-inflammatory markers, such as iNOS compared to WT cells (+53 fold, p < 0.001). This suggests that LPL is a feature of reparative microglia, further supported by the metabolic and inflammatory profile of LPL-deficient microglia. Taken together, our data strongly suggest that LPL expression is a novel feature of a microglial phenotype that supports remyelination and repair through the clearance of lipid debris. This mechanism may be exploited to develop future reparative therapies for MS and primary neurodegenerative disorders (Alzheimer’s disease (AD) and Parkinson’s disease).
Collapse
Affiliation(s)
- Kimberley D Bruce
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Sachi Gorkhali
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Katherine Given
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alison M Coates
- School of Health Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Kristen E Boyle
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, United States
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
16
|
Adjepong M, Pickens CA, Jain R, Harris WS, Annan RA, Fenton JI. Association of whole blood n-6 fatty acids with stunting in 2-to-6-year-old Northern Ghanaian children: A cross-sectional study. PLoS One 2018; 13:e0193301. [PMID: 29494645 PMCID: PMC5832227 DOI: 10.1371/journal.pone.0193301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
In Northern Ghana, 33% of children are stunted due to economic disparities. Dietary fatty acids (FA) are critical for growth, but whether blood FA levels are adequate in Ghanaian children is unknown. The objective of this study was to determine the association between whole blood FAs and growth parameters in Northern Ghanaian children 2-6 years of age. A drop of blood was collected on an antioxidant treated card and analyzed for FA composition. Weight and height were measured and z-scores were calculated. Relationships between FAs and growth parameters were analyzed by Spearman correlations, linear regressions, and factor analysis. Of the 307 children who participated, 29.7% were stunted and 8% were essential FA deficient (triene/tetraene ratio>0.02). Essential FA did not differ between stunted and non-stunted children and was not associated with height-for-age z-score (HAZ) or weight-for-age z-score (WAZ). In hemoglobin adjusted regression models, both HAZ and WAZ were positively associated with arachidonic acid (p≤0.01), dihomo-gamma-linolenic acid (DGLA, p≤0.05), docosatetraenoic acid (p≤0.01) and the ratio of DGLA/linoleic acid (p≤0.01). These data add to the growing body of evidence indicating n-6 FAs are critical in childhood linear growth. Our findings provide new insights into the health status of an understudied Northern Ghanaian population.
Collapse
Affiliation(s)
- Mary Adjepong
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - C. Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Raghav Jain
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - William S. Harris
- Sanford School of Medicine, University of South Dakota and Omega Quant Analytics, LLC, Sioux Falls, South Dakota, United States of America
| | | | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
17
|
Jurewicz A, Domowicz M, Galazka G, Raine CS, Selmaj K. Multiple sclerosis: Presence of serum antibodies to lipids and predominance of cholesterol recognition. J Neurosci Res 2017; 95:1984-1992. [DOI: 10.1002/jnr.24062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Jurewicz
- Department of Neurology; Medical University of Lodz; Lodz Poland
| | | | - Grazyna Galazka
- Department of Neurology; Medical University of Lodz; Lodz Poland
| | - Cedric S. Raine
- Department of Pathology; Albert Einstein College of Medicine; New York USA
| | - Krzysztof Selmaj
- Department of Neurology; Medical University of Lodz; Lodz Poland
| |
Collapse
|
18
|
Stokes III JA, Mishra MK. Role of Resveratrol (RES) in Regenerative Medicine. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Within the last quarter century, technology has been a major catalyst of the advancement in various fields of scientific knowledge, particularly medical research. This new enlightenment has spurred the exploration of alternative treatment methods to some of society's most problematic diseases. One such innovative treatment is the use of Resveratrol (RES) to treat a number of pathophysiological conditions. RES is a natural polyphenolic compound found in the skin(s) of blueberries, red grapes (a major constituent of red wine), some vegetables, and even peanuts. The compound has a number of potent regenerative properties, which include: anti-aging, anti-inflammatory, and antioxidative. Research has confirmed both in vivo and in vitro RES's beneficial applications to numerous diseases. This chapter centers on its unique healing powers and beneficial applications against myriad debilitating conditions.
Collapse
|
19
|
Dendrou CA, McVean G, Fugger L. Neuroinflammation - using big data to inform clinical practice. Nat Rev Neurol 2016; 12:685-698. [PMID: 27857124 DOI: 10.1038/nrneurol.2016.171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is emerging as a central process in many neurological conditions, either as a causative factor or as a secondary response to nervous system insult. Understanding the causes and consequences of neuroinflammation could, therefore, provide insight that is needed to improve therapeutic interventions across many diseases. However, the complexity of the pathways involved necessitates the use of high-throughput approaches to extensively interrogate the process, and appropriate strategies to translate the data generated into clinical benefit. Use of 'big data' aims to generate, integrate and analyse large, heterogeneous datasets to provide in-depth insights into complex processes, and has the potential to unravel the complexities of neuroinflammation. Limitations in data analysis approaches currently prevent the full potential of big data being reached, but some aspects of big data are already yielding results. The implementation of 'omics' analyses in particular is becoming routine practice in biomedical research, and neuroimaging is producing large sets of complex data. In this Review, we evaluate the impact of the drive to collect and analyse big data on our understanding of neuroinflammation in disease. We describe the breadth of big data that are leading to an evolution in our understanding of this field, exemplify how these data are beginning to be of use in a clinical setting, and consider possible future directions.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
20
|
Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc Natl Acad Sci U S A 2016; 113:7864-9. [PMID: 27325759 DOI: 10.1073/pnas.1522730113] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oligoclonal Ig bands (OCBs) of the cerebrospinal fluid are a hallmark of multiple sclerosis (MS), a disabling inflammatory disease of the central nervous system (CNS). OCBs are locally produced by clonally expanded antigen-experienced B cells and therefore are believed to hold an important clue to the pathogenesis. However, their target antigens have remained unknown, mainly because it was thus far not possible to isolate distinct OCBs against a background of polyclonal antibodies. To overcome this obstacle, we copurified disulfide-linked Ig heavy and light chains from distinct OCBs for concurrent analysis by mass spectrometry and aligned patient-specific peptides to corresponding transcriptome databases. This method revealed the full-length sequences of matching chains from distinct OCBs, allowing for antigen searches using recombinant OCB antibodies. As validation, we demonstrate that an OCB antibody from a patient with an infectious CNS disorder, neuroborreliosis, recognized a Borrelia protein. Next, we produced six recombinant antibodies from four MS patients and identified three different autoantigens. All of them are conformational epitopes of ubiquitous intracellular proteins not specific to brain tissue. Our findings indicate that the B-cell response in MS is heterogeneous and partly directed against intracellular autoantigens released during tissue destruction. In addition to helping elucidate the role of B cells in MS, our approach allows the identification of target antigens of OCB antibodies in other neuroinflammatory diseases and the production of therapeutic antibodies in infectious CNS diseases.
Collapse
|
21
|
Steinman L. A Journey in Science: The Privilege of Exploring the Brain and the Immune System. Mol Med 2016; 22:molmed.2015.00263. [PMID: 27652378 PMCID: PMC5004718 DOI: 10.2119/molmed.2015.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022] Open
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the Cerami Award Monograph is by Lawrence Steinman, MD, of Stanford University in California. A visionary in the field of neurology, this is the story of Dr. Steinman's scientific journey.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
22
|
Douglas JN, Gardner LA, Salapa HE, Levin MC. Antibodies to the RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein A1 Colocalize to Stress Granules Resulting in Altered RNA and Protein Levels in a Model of Neurodegeneration in Multiple Sclerosis. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:402. [PMID: 27375925 PMCID: PMC4928374 DOI: 10.4172/2155-9899.1000402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is the most common demyelinating disorder of the central nervous system (CNS). Data suggest that antibodies to CNS targets contribute to the pathogenesis of MS. MS patients produce autoantibodies to heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). hnRNP A1 is an RNA binding protein (RBP) overexpressed in neurons that functions in pre-mRNA splicing, mRNA trafficking, and translation. Previously, we showed that anti-hnRNP A1 antibodies entered neuronal cells (in vitro) via clathrin-mediated endocytosis, caused mislocalization of endogenous hnRNP A1 protein and increased markers of neurodegeneration including decreased ATP concentration and apoptosis. In this study, we hypothesized that anti-hnRNP A1 antibodies might cause stress granule formation and altered levels of RNAs and proteins that bind hnRNP A1. METHODS Neuronal cell lines were exposed to anti-hnRNP A1 and isotype-matched control antibodies in vitro and examined for neuronal granule formation, including stress granules, P bodies and transport granules. In addition, RNAs that bound hnRNP A1 were determined. Levels of RNA and their translated proteins were measured upon exposure to the anti-hnRNP A1 antibodies. RESULTS Anti-hnRNP A1 antibodies induced and localized to stress granules, a marker of neurodegeneration, within a neuronal cell line. The anti-hnRNP A1 antibodies did not induce P bodies or neuronal granules. Clinically relevant RNAs were found to bind hnRNP A1. In addition, the anti-hnRNP A1 antibodies caused reduced levels of RNA and protein of the spinal paraplegia genes (SPGs) 4 and 7, which when mutated mimic progressive MS. CONCLUSIONS Taken together, these data suggest potential mechanisms by which autoantibodies may contribute to neurodegeneration in MS.
Collapse
Affiliation(s)
- Joshua N. Douglas
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lidia A. Gardner
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hannah E Salapa
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Michael C. Levin
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Research Service, VA Medical Center, Memphis, TN, 38104, USA
| |
Collapse
|
23
|
Profile of Lawrence Steinman. Proc Natl Acad Sci U S A 2016; 113:1468-70. [PMID: 26811468 DOI: 10.1073/pnas.1600083113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Bakshi R, Yeste A, Patel B, Tauhid S, Tummala S, Rahbari R, Chu R, Regev K, Kivisäkk P, Weiner HL, Quintana FJ. Serum lipid antibodies are associated with cerebral tissue damage in multiple sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e200. [PMID: 26894204 PMCID: PMC4747479 DOI: 10.1212/nxi.0000000000000200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/08/2015] [Indexed: 01/04/2023]
Abstract
Objective: To determine whether peripheral immune responses as measured by serum antigen arrays are linked to cerebral MRI measures of disease severity in multiple sclerosis (MS). Methods: In this cross-sectional study, serum samples were obtained from patients with relapsing-remitting MS (n = 21) and assayed using antigen arrays that contained 420 antigens including CNS-related autoantigens, lipids, and heat shock proteins. Normalized compartment-specific global brain volumes were obtained from 3-tesla MRI as surrogates of atrophy, including gray matter fraction (GMF), white matter fraction (WMF), and total brain parenchymal fraction (BPF). Total brain T2 hyperintense lesion volume (T2LV) was quantified from fluid-attenuated inversion recovery images. Results: We found serum antibody patterns uniquely correlated with BPF, GMF, WMF, and T2LV. Furthermore, we identified immune signatures linked to MRI markers of neurodegeneration (BPF, GMF, WMF) that differentiated those linked to T2LV. Each MRI measure was correlated with a specific set of antibodies. Strikingly, immunoglobulin G (IgG) antibodies to lipids were linked to brain MRI measures. Based on the association between IgG antibody reactivity and each unique MRI measure, we developed a lipid index. This comprised the reactivity directed against all of the lipids associated with each specific MRI measure. We validated these findings in an additional independent set of patients with MS (n = 14) and detected a similar trend for the correlations between BPF, GMF, and T2LV vs their respective lipid indexes. Conclusions: We propose serum antibody repertoires that are associated with MRI measures of cerebral MS involvement. Such antibodies may serve as biomarkers for monitoring disease pathology and progression.
Collapse
Affiliation(s)
- Rohit Bakshi
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ada Yeste
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Bonny Patel
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shahamat Tauhid
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Subhash Tummala
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Roya Rahbari
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Renxin Chu
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Keren Regev
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Pia Kivisäkk
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Howard L Weiner
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francisco J Quintana
- Partners Multiple Sclerosis Center (R.B., S. Tauhid, S. Tummala, R.C., H.L.W.) and Ann Romney Center for Neurologic Diseases (R.B., A.Y., B.P., R.R., K.R., P.K., H.L.W., F.J.Q.), Neurology (R.B., A.Y., B.P., S. Tauhid, S. Tummala, R.R., R.C., K.R., P.K., H.L.W., F.J.Q.) and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Michel L, Touil H, Pikor NB, Gommerman JL, Prat A, Bar-Or A. B Cells in the Multiple Sclerosis Central Nervous System: Trafficking and Contribution to CNS-Compartmentalized Inflammation. Front Immunol 2015; 6:636. [PMID: 26732544 PMCID: PMC4689808 DOI: 10.3389/fimmu.2015.00636] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
Clinical trial results of peripheral B cell depletion indicate abnormal proinflammatory B cell properties, and particularly antibody-independent functions, contribute to relapsing MS disease activity. However, potential roles of B cells in progressive forms of disease continue to be debated. Prior work indicates that presence of B cells is fostered within the inflamed MS central nervous system (CNS) environment, and that B cell-rich immune cell collections may be present within the meninges of patients. A potential association is reported between such meningeal immune cell collections and the subpial pattern of cortical injury that is now considered important in progressive disease. Elucidating the characteristics of B cells that populate the MS CNS, how they traffic into the CNS and how they may contribute to progressive forms of the disease has become of considerable interest. Here, we will review characteristics of human B cells identified within distinct CNS subcompartments of patients with MS, including the cerebrospinal fluid, parenchymal lesions, and meninges, as well as the relationship between B cell populations identified in these subcompartments and the periphery. We will further describe the different barriers of the CNS and the possible mechanisms of migration of B cells across these barriers. Finally, we will consider the range of human B cell responses (including potential for antibody production, cytokine secretion, and antigen presentation) that may contribute to propagating inflammation and injury cascades thought to underlie MS progression.
Collapse
Affiliation(s)
- Laure Michel
- Département de Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université de Montréal , Montréal, QC , Canada
| | - Hanane Touil
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University , Montréal, QC , Canada
| | - Natalia B Pikor
- Department of Immunology, University of Toronto , Toronto, ON , Canada
| | | | - Alexandre Prat
- Département de Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université de Montréal , Montréal, QC , Canada
| | - Amit Bar-Or
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Experimental Therapeutics Program, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
26
|
Poisson LM, Suhail H, Singh J, Datta I, Denic A, Labuzek K, Hoda MN, Shankar A, Kumar A, Cerghet M, Elias S, Mohney RP, Rodriguez M, Rattan R, Mangalam AK, Giri S. Untargeted Plasma Metabolomics Identifies Endogenous Metabolite with Drug-like Properties in Chronic Animal Model of Multiple Sclerosis. J Biol Chem 2015; 290:30697-712. [PMID: 26546682 DOI: 10.1074/jbc.m115.679068] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 12/20/2022] Open
Abstract
We performed untargeted metabolomics in plasma of B6 mice with experimental autoimmune encephalitis (EAE) at the chronic phase of the disease in search of an altered metabolic pathway(s). Of 324 metabolites measured, 100 metabolites that mapped to various pathways (mainly lipids) linked to mitochondrial function, inflammation, and membrane stability were observed to be significantly altered between EAE and control (p < 0.05, false discovery rate <0.10). Bioinformatics analysis revealed six metabolic pathways being impacted and altered in EAE, including α-linolenic acid and linoleic acid metabolism (PUFA). The metabolites of PUFAs, including ω-3 and ω-6 fatty acids, are commonly decreased in mouse models of multiple sclerosis (MS) and in patients with MS. Daily oral administration of resolvin D1, a downstream metabolite of ω-3, decreased disease progression by suppressing autoreactive T cells and inducing an M2 phenotype of monocytes/macrophages and resident brain microglial cells. This study provides a proof of principle for the application of metabolomics to identify an endogenous metabolite(s) possessing drug-like properties, which is assessed for therapy in preclinical mouse models of MS.
Collapse
Affiliation(s)
- Laila M Poisson
- From the Center for Bioinformatics and Departments of Public Health Sciences and
| | | | | | - Indrani Datta
- From the Center for Bioinformatics and Departments of Public Health Sciences and
| | | | - Krzysztof Labuzek
- the Department of Pharmacology, Medical University of Silesia, Medyków 18, PL 40-752 Katowice, Poland
| | - Md Nasrul Hoda
- the Department of Neurology, Georgia Health Sciences University, Augusta, Georgia 30912, the Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912
| | | | - Ashok Kumar
- the Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, Michigan 48202
| | | | | | | | - Moses Rodriguez
- the Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55906
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Department of Women's Health Services, Henry Ford Health System, Detroit, Michigan 48202
| | - Ashutosh K Mangalam
- the Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | | |
Collapse
|
27
|
Roberts RA, Eitas TK, Byrne JD, Johnson BM, Short PJ, McKinnon KP, Reisdorf S, Luft JC, DeSimone JM, Ting JP. Towards programming immune tolerance through geometric manipulation of phosphatidylserine. Biomaterials 2015; 72:1-10. [PMID: 26325217 DOI: 10.1016/j.biomaterials.2015.08.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
Abstract
The possibility of engineering the immune system in a targeted fashion using biomaterials such as nanoparticles has made considerable headway in recent years. However, little is known as to how modulating the spatial presentation of a ligand augments downstream immune responses. In this report we show that geometric manipulation of phosphatidylserine (PS) through fabrication on rod-shaped PLGA nanoparticles robustly dampens inflammatory responses from innate immune cells while promoting T regulatory cell abundance by impeding effector T cell expansion. This response depends on the geometry of PS presentation as both PS liposomes and 1 micron cylindrical PS-PLGA particles are less potent signal inducers than 80 × 320 nm rod-shaped PS-PLGA particles for an equivalent dose of PS. We show that this immune tolerizing effect can be co-opted for therapeutic benefit in a mouse model of multiple sclerosis and an assay of organ rejection using a mixed lymphocyte reaction with primary human immune cells. These data provide evidence that geometric manipulation of a ligand via biomaterials may enable more efficient and tunable programming of cellular signaling networks for therapeutic benefit in a variety of disease states, including autoimmunity and organ rejection, and thus should be an active area of further research.
Collapse
Affiliation(s)
- Reid A Roberts
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy K Eitas
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James D Byrne
- Eshelman School of Pharmacy, Division of Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon M Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick J Short
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen P McKinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shannon Reisdorf
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Christopher Luft
- Eshelman School of Pharmacy, Division of Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph M DeSimone
- Eshelman School of Pharmacy, Division of Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Sloan-Kettering Institute for Cancer Research, Memorial Sloan Kettering Comprehensive Cancer Center, New York, NY 10065, USA
| | - Jenny P Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Vergara D, D'Alessandro M, Rizzello A, De Riccardis L, Lunetti P, Del Boccio P, De Robertis F, Trianni G, Maffia M, Giudetti AM. A lipidomic approach to the study of human CD4(+) T lymphocytes in multiple sclerosis. BMC Neurosci 2015. [PMID: 26205308 PMCID: PMC4513631 DOI: 10.1186/s12868-015-0183-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Lipids play different important roles in central nervous system so that dysregulation of lipid pathways has been implicated in a growing
number of neurodegenerative disorders including multiple sclerosis (MS). MS is the most prevalent autoimmune disorder of the central nervous system, with neurological symptoms caused by inflammation and demyelination. In this study, a lipidomic analysis was performed for the rapid profile of CD4+ T lymphocytes from MS patient and control samples in an untargeted approach. Methods A matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry based approach was used for the analysis of lipid extracts using 9-aminoacridine as matrix. Lipids were analyzed in negative mode and selected species fragmented using MALDI tandem mass spectrometry for their structural assignments. Results The analysis reveals some modifications in the phospholipid pattern of MS CD4+ T lymphocytes with respect to healthy controls with a significant increase of cardiolipin species in MS samples. Conclusions These results demonstrate the feasibility of a MALDI-TOF approach for the analysis of CD4+ lipid extracts and suggest how alterations in the lipid metabolism characterized lymphocytes of MS patients.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy. .,Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Piazzetta F. Muratore, Lecce, Italy.
| | - Michele D'Alessandro
- Department of Medical, Oral and Biotechnological Sciences, Research Centre on Aging (Ce.S.I), "G. d'Annunzio" University Foundation, Chieti-Pescara, Italy.
| | - Antonia Rizzello
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy. .,Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Piazzetta F. Muratore, Lecce, Italy.
| | - Lidia De Riccardis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy.
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy.
| | - Piero Del Boccio
- Department of Medical, Oral and Biotechnological Sciences, Research Centre on Aging (Ce.S.I), "G. d'Annunzio" University Foundation, Chieti-Pescara, Italy.
| | - Francesca De Robertis
- Department of Neurology, "Vito Fazzi" Hospital, ASL-Lecce, Piazzetta F. Muratore, Lecce, Italy.
| | - Giorgio Trianni
- Department of Neurology, "Vito Fazzi" Hospital, ASL-Lecce, Piazzetta F. Muratore, Lecce, Italy.
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy. .,Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Piazzetta F. Muratore, Lecce, Italy.
| | - Anna M Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy.
| |
Collapse
|
29
|
Wang X, Wei Y, Liu X, Xing C, Han G, Chen G, Hou C, Dambuza IM, Shen B, Li Y, Xiao H, Wang R. IL-15-secreting γδT cells induce memory T cells in experimental allergic encephalomyelitis (EAE) mice. Mol Immunol 2015; 66:402-8. [PMID: 25974878 DOI: 10.1016/j.molimm.2015.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 01/24/2023]
Abstract
With the most recent data suggesting γδT cells as primary producers of the pro-inflammatory autoimmune-associated cytokine, the relationship between γδT cells and Th17 in experimental allergic encephalitis (EAE) mice requires more extensive investigation. By flow cytometry and qPCR, we identified a new subset of IL-15-secreting γδT (γδT15) cells that increased in EAE mice. The capacity of IL-15-secreting γδT cells inducing memory T cells and memory T cells inducing IL-17(+)Th17 was examined by transferring into EAE mice and 7-week-old female nude mice, respectively. We found that γδT15 induced CD44(hi) memory T cells by secreting IL-15. γδT15-induced memory T cells induced EAE by transforming into pathogenic Th17 cells. The data suggest that a new subset of IL-15-secreting γδT cells mediated the production of memory T cells which transformed into pathogenic Th17 cells in EAE mice.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China
| | - Yinxiang Wei
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China; Department of Mephrology, The 307th Hospital of Chinese People's Liberation Army, Beijing 100850, China
| | - Chen Xing
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China
| | - Ivy M Dambuza
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China.
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130 (3), Taiping Road #27, Beijing 100850, China.
| |
Collapse
|
30
|
Abstract
Ideal therapy for inflammatory disease in the nervous system would preserve normal immune function, while suppressing only the pathologic immune responses that damage tissue and allowing for repair. In principle, antigen-specific therapy would eradicate unwanted adaptive immune responses-antibody and T-cell mediated--while preserving the integrity of other adaptive responses to infectious agents and retaining the ability to fight malignancy. However, at this time, for multiple sclerosis (MS) we do not have compelling evidence that would support any particular dominant immune response to any specific antigen or even a limited group of antigens. In fact, there are adaptive immune responses to a wide swathe of proteins and lipids found on neurons and myelin in MS. Unless controlling a few of the known immune responses is sufficient, antigen-specific therapy in MS may not have enough of an impact to modulate clinical outcome. However, in other neuroinflammatory conditions, such as neuromyelitis optica, the adaptive immune response is highly focused. Trials of antigen-specific therapy for neuroinflammatory disease might first be tested in diseases with a more limited adaptive immune response like neuromyelitis optica. The likelihood of a significant success for this therapeutic strategy might then ensue.
Collapse
|
31
|
Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin Immunol 2015; 27:200-15. [PMID: 25857211 DOI: 10.1016/j.smim.2015.03.004] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
Abstract
Studies into the mechanisms in resolution of self-limited inflammation and acute reperfusion injury have uncovered a new genus of pro-resolving lipid mediators coined specialized pro-resolving mediators (SPM) including lipoxins, resolvins, protectins and maresins that are each temporally produced by resolving-exudates with distinct actions for return to homeostasis. SPM evoke potent anti-inflammatory and novel pro-resolving mechanisms as well as enhance microbial clearance. While born in inflammation-resolution, SPM are conserved structures with functions discovered in microbial defense, pain, organ protection and tissue regeneration, wound healing, cancer, reproduction, and neurobiology-cognition. This review covers these SPM mechanisms and other new omega-3 PUFA pathways that open their path for functions in resolution physiology.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
32
|
Rosenberg JM, Utz PJ. Protein microarrays: a new tool for the study of autoantibodies in immunodeficiency. Front Immunol 2015; 6:138. [PMID: 25904912 PMCID: PMC4387933 DOI: 10.3389/fimmu.2015.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Autoimmunity is highly coincident with immunodeficiency. In a small but growing number of primary immunodeficiencies, autoantibodies are diagnostic of a given disease and implicated in disease pathogenesis. In order to improve our understanding of the role of autoantibodies in immunodeficiencies and to discover novel autoantibodies, new proteomic tools are needed. Protein microarrays have the ability to screen for reactivity to hundreds to many thousands of unique autoantigens simultaneously on a single chip using minimal serum input. Here, we review different types of protein microarrays and how they can be useful in framing the study of primary and secondary immunodeficiencies.
Collapse
Affiliation(s)
- Jacob M Rosenberg
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine , Stanford, CA , USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine , Stanford, CA , USA ; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
33
|
Abstract
The brain under immunological attack does not surrender quietly. Investigation of brain lesions in multiple sclerosis (MS) reveals a coordinated molecular response involving various proteins and small molecules ranging from heat shock proteins to small lipids, neurotransmitters, and even gases, which provide protection and foster repair. Reduction of inflammation serves as a necessary prerequisite for effective recovery and regeneration. Remarkably, many lesion-resident molecules activate pathways leading to both suppression of inflammation and promotion of repair mechanisms. These guardian molecules and their corresponding physiologic pathways could potentially be exploited to silence inflammation and repair the injured and degenerating brain and spinal cord in both relapsing-remitting and progressive forms of MS and may be beneficial in other neurologic and psychiatric conditions.
Collapse
|
34
|
Carbohydrate Microarrays. POLYSACCHARIDES 2015. [PMCID: PMC7123348 DOI: 10.1007/978-3-319-16298-0_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carbohydrates, like nucleic acids and proteins, are essential biological molecules. Owing to their intrinsic physicochemical properties, carbohydrates are capable of generating structural diversity in a multitude of ways and are prominently displayed on the surfaces of cell membranes or on the exposed regions of macromolecules. Recent studies highlight that carbohydrate moieties are critical for molecular recognition, cell-cell interactions, and cell signaling in many physiological and pathological processes, and for biocommunication between microbes and host species. Modern carbohydrate microarrays emerged in 2002 and brought in new high-throughput tools for “glyco code” exploration. In this section, some basic concepts of sugar chain diversity, glyco-epitope recognition, and the evolving area of glyco-epitomics and biomarker discovery are discussed. Two complementary technologies, carbohydrate antigen arrays and photogenerated glyco-chips, serve as models to illustrate how to apply carbohydrate microarrays to address biomedical questions.
Collapse
|
35
|
Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:999-1005. [PMID: 25542507 DOI: 10.1016/j.bbalip.2014.12.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 12/16/2022]
Abstract
Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are lipid-rich and multilamellar membrane stacks. The lipid composition of myelin varies significantly from other biological membranes. Studies in mutant mice targeting various lipid biosynthesis pathways have shown that myelinating glia have a remarkable capacity to compensate the lack of individual lipids. However, compensation fails when it comes to maintaining long-term stability of myelin. Here, we summarize how lipids function in myelin biogenesis, axon-glia communication and in supporting long-term maintenance of myelin. We postulate that change in myelin lipid composition might be relevant for our understanding of aging and demyelinating diseases. This article is part of a Special Issue titled Brain Lipids.
Collapse
Affiliation(s)
- Sebastian Schmitt
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany
| | - Ludovici Cantuti Castelvetri
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany
| | - Mikael Simons
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
36
|
Checa A, Khademi M, Sar DG, Haeggström JZ, Lundberg JO, Piehl F, Olsson T, Wheelock CE. Hexosylceramides as intrathecal markers of worsening disability in multiple sclerosis. Mult Scler 2014; 21:1271-9. [PMID: 25480867 DOI: 10.1177/1352458514561908] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sphingolipids are important components of neurons and the myelin sheath whose levels are altered in multiple sclerosis (MS). OBJECTIVES We aimed to determine if cerebrospinal fluid (CSF) sphingolipids can be used as markers of MS disease progression. METHODS Using liquid chromatography tandem mass spectrometry, we analysed sphingolipids in CSF from 134 individuals. The MS group included 65 patients divided into 41 relapsing-remitting MS (RRMS) and 24 progressive MS (ProgMS). In addition, a group of 13 early MS/clinically isolated syndrome (EarlyMS) and two control groups consisting of 38 individuals with other neurological diseases (OND) and 18 OND with signs of inflammation (iOND) were analysed. A follow-up study included 17 additional RRMS patients sampled at two time points 4.7±1.7 years apart. RESULTS Levels of sphingomyelin (SM)- and hexosylceramide (HexCer)-derived sphingolipids increased in the CSF of patients with MS independently of the fatty acid chain length in RRMS (p<0.05). Levels of palmitic acid (16:0)-containing HexCer (HexCer16:0) increased significantly in ProgMS compared with the OND (p<0.001), iOND (p<0.05) and EarlyMS (p<0.01) groups and correlated with Expanded Disability Status Scale in RRMS in both studies (p=0.048; p=0.027). CONCLUSION HexCer16:0 is a promising candidate marker of disease progression in MS, especially in RRMS.
Collapse
Affiliation(s)
- Antonio Checa
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Daniel G Sar
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Shichita T, Ito M, Yoshimura A. Post-ischemic inflammation regulates neural damage and protection. Front Cell Neurosci 2014; 8:319. [PMID: 25352781 PMCID: PMC4196547 DOI: 10.3389/fncel.2014.00319] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022] Open
Abstract
Post-ischemic inflammation is important in ischemic stroke pathology. However, details of the inflammation process, its resolution after stroke and its effect on pathology and neural damage have not been clarified. Brain swelling, which is often fatal in ischemic stroke patients, occurs at an early stage of stroke due to endothelial cell injury and severe inflammation by infiltrated mononuclear cells including macrophages, neutrophils, and lymphocytes. At early stage of inflammation, macrophages are activated by molecules released from necrotic cells [danger-associated molecular patterns (DAMPs)], and inflammatory cytokines and mediators that increase ischemic brain damage by disruption of the blood–brain barrier are released. After post-ischemic inflammation, macrophages function as scavengers of necrotic cell and brain tissue debris. Such macrophages are also involved in tissue repair and neural cell regeneration by producing tropic factors. The mechanisms of inflammation resolution and conversion of inflammation to neuroprotection are largely unknown. In this review, we summarize information accumulated recently about DAMP-induced inflammation and the neuroprotective effects of inflammatory cells, and discuss next generation strategies to treat ischemic stroke.
Collapse
Affiliation(s)
- Takashi Shichita
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
| |
Collapse
|
38
|
Mayo L, Trauger SA, Blain M, Nadeau M, Patel B, Alvarez JI, Mascanfroni ID, Yeste A, Kivisäkk P, Kallas K, Ellezam B, Bakshi R, Prat A, Antel JP, Weiner HL, Quintana FJ. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 2014; 20:1147-56. [PMID: 25216636 PMCID: PMC4255949 DOI: 10.1038/nm.3681] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/08/2014] [Indexed: 02/07/2023]
Abstract
Astrocytes have complex roles in health and disease, thus it is important to study the pathways that regulate their function. Here we report that lactosylceramide (LacCer) synthesized by β-1,4-galactosyltransferase 6 (B4GALT6) is upregulated in the central nervous system (CNS) of mice during chronic experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). LacCer acts in an autocrine manner to control astrocyte transcriptional programs that promote neurodegeneration. In addition, LacCer in astrocytes controls the recruitment and activation of microglia and CNS-infiltrating monocytes in a non-cell autonomous manner by regulating production of the chemokine CCL2 and granulocyte-macrophage colony-stimulating factor (GM-CSF), respectively. We also detected high B4GALT6 gene expression and LacCer concentrations in CNS MS lesions. Inhibition of LacCer synthesis in mice suppressed local CNS innate immunity and neurodegeneration in EAE and interfered with the activation of human astrocytes in vitro. Thus, B4GALT6 regulates astrocyte activation and is a potential therapeutic target for MS and other neuroinflammatory disorders.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Astrocytes/immunology
- Astrocytes/metabolism
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Chemokine CCL2/genetics
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Galactosyltransferases/genetics
- Galactosyltransferases/metabolism
- Gene Knockdown Techniques
- Glial Fibrillary Acidic Protein
- Glycolipids/metabolism
- Humans
- Immunity, Innate
- Lactosylceramides/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Nerve Degeneration/genetics
- Nerve Degeneration/immunology
- Nerve Degeneration/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Lior Mayo
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sunia A. Trauger
- FAS Center for Systems Biology, Harvard University, Boston, MA, USA
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Meghan Nadeau
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bonny Patel
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge I. Alvarez
- Neuroimmunology Research Lab, Center for Excellence in Neuromics, Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Ivan D. Mascanfroni
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ada Yeste
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pia Kivisäkk
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith Kallas
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Ellezam
- Department of Pathology, Centre de Recherche du Centre Hospitalier de, l’Université de Montréal and Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Rohit Bakshi
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandre Prat
- Neuroimmunology Research Lab, Center for Excellence in Neuromics, Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J. Quintana
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Abstract
The CNS is considered an immune privileged site because its repertoire of highly immunogenic molecules remains unseen by the immune system under normal conditions. However, the mechanism underlying the inhibition of immune reactions within the CNS environment is not known, particularly in regions containing myelin, which contains several potent proteins and lipids that are invariably recognized as foreign by immune system cells. Sulfatides constitute a major component of myelin glycolipids and are known to be capable of raising an immune response. In this study, the effect of sulfatides on mouse T cell function and differentiation was analyzed in vitro and in vivo. We found profound inhibition of sulfatide-dependent T cell proliferation which was particularly pronounced in naive T helper (Th) cells. The inhibitory effect of sulfatides on T cell function was CD1d-independent and was not related to apoptosis or necrosis but did involve the induction of anergy as confirmed by the upregulation of early growth response 2 transcription factor. A glycolipid 3-sulfate group was essential for the T cell suppression, and the T cell inhibition was galectin-4-dependent. Sulfatide stimulation in vitro led to prominent suppression of Th17 differentiation, and this was related to a decrease in susceptibility to disease in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis. Thus, we have defined a novel mechanism of negative regulation of T cell function by endogenous brain-derived glycolipids, a family of molecules traditionally deemphasized in favor of myelin proteins in studies of CNS autoimmunity.
Collapse
|
40
|
Affiliation(s)
- Lawrence Steinman
- Departments of Pediatrics, Neurology and Neurological Sciences, Stanford University, Stanford, California 94305;
| |
Collapse
|
41
|
Levin MC, Douglas JN, Meyers L, Lee S, Shin Y, Gardner LA. Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms. Degener Neurol Neuromuscul Dis 2014; 4:49-63. [PMID: 32669900 PMCID: PMC7337253 DOI: 10.2147/dnnd.s54391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease that impairs the central nervous system (CNS). The neurological disability and clinical course of the disease is highly variable and unpredictable from one patient to another. The cause of MS is still unknown, but it is thought to occur in genetically susceptible individuals who develop disease due to a nongenetic trigger, such as altered metabolism, a virus, or other environmental factors. MS patients develop progressive, irreversible, neurological disability associated with neuronal and axonal damage, collectively known as neurodegeneration. Neurodegeneration was traditionally considered as a secondary phenomenon to inflammation and demyelination. However, recent data indicate that neurodegeneration develops along with inflammation and demyelination. Thus, MS is increasingly recognized as a neurodegenerative disease triggered by an inflammatory attack of the CNS. While both inflammation and demyelination are well described and understood cellular processes, neurodegeneration might be defined by a diverse pool of any of the following: neuronal cell death, apoptosis, necrosis, and virtual hypoxia. In this review, we present multiple theories and supporting evidence that identify common biological processes that contribute to neurodegeneration in MS.
Collapse
Affiliation(s)
- Michael C Levin
- Veterans Administration Medical Center.,Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joshua N Douglas
- Veterans Administration Medical Center.,Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Sangmin Lee
- Veterans Administration Medical Center.,Department of Neurology
| | - Yoojin Shin
- Veterans Administration Medical Center.,Department of Neurology
| | - Lidia A Gardner
- Veterans Administration Medical Center.,Department of Neurology
| |
Collapse
|
42
|
Wang D, Bhat R, Sobel RA, Huang W, Wang LX, Olsson T, Steinman L. Uncovering cryptic glycan markers in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Drug Dev Res 2014; 75:172-88. [PMID: 24648292 DOI: 10.1002/ddr.21169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/10/2014] [Indexed: 01/18/2023]
Abstract
Using an integrated antigen microarray approach, we observed epitope-spreading of autoantibody responses to a variety of antigenic structures in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) and in the serum of mice with experimental autoimmune encephalomyelitis (EAE). These included previously described protein- and lipid-based antigenic targets and newly discovered autoimmunogenic sugar moieties, notably, autoantibodies specific for the oligomannoses in both MS patient CSF and the sera of mice with EAE. These glycans are often masked by other sugar moieties and belong to a class of cryptic autoantigens. We further determined that these targets are highly expressed on multiple cell types in MS and EAE lesions. Co-immunization of SJL/J mice with a Man9-KLH conjugate at the time of EAE induction elicited highly significant levels of anti-Man9-cluster autoantibodies. Nevertheless, this anti-glycan autoantibody response was associated with a significantly reduced clinical severity of EAE. The potential of these cryptic glycan markers and targeting antibodies for diagnostic and therapeutic interventions of neurological disorders has yet to be explored.
Collapse
Affiliation(s)
- Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA, 94025, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang D, Tang J, Wolfinger RD, Carroll GT. Carbohydrate Microarrays. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_35-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Hauser SL, Chan JR, Oksenberg JR. Multiple sclerosis: Prospects and promise. Ann Neurol 2013; 74:317-27. [PMID: 23955638 DOI: 10.1002/ana.24009] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/15/2022]
Abstract
We have entered a golden era in multiple sclerosis (MS) research. Two decades ago, our understanding of the disease was largely descriptive and there were no approved therapies to modify the natural history of MS. Today, delineation of immune pathways relevant to MS have been clarified; a comprehensive map of genes that influence risk compiled; clues to environmental triggers identified; noninvasive in vivo monitoring of the MS disease process has been revolutionized by high-field MRI; and many effective therapies for the early, relapsing, component of MS now exist. However, major challenges remain. We still have no useful treatment for progressive MS (the holy grail of MS research), no means to repair injured axons or protect neurons, and extremely limited evidence to guide treatment decisions. Recent advances have set in place a foundation for development of increasingly selective immunotherapy for patients; application of genetic and genomic discoveries to improve therapeutic options; development of remyelination or neuroprotection therapies for progressive MS; and integrating clinical, imaging and genomic data for personalized medicine. MS has now advanced from the backwaters of autoimmune disease research to the front-line, and definitive answers, including cures, are now realistic goals for the next decade. Many of the breakthrough discoveries in MS have also resulted from meaningful interactions across disciplines, and especially from translational and basic scientists working closely with clinicians, highlighting that the clinical value of discoveries are most often revealed when ideas developed in the laboratory are tested at the bedside.
Collapse
Affiliation(s)
- Stephen L Hauser
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | | | | |
Collapse
|
45
|
Autoimmune T-cell reactivity to myelin proteolipids and glycolipids in multiple sclerosis. Mult Scler Int 2013; 2013:151427. [PMID: 24312732 PMCID: PMC3839122 DOI: 10.1155/2013/151427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022] Open
Abstract
Central nervous system (CNS) myelin, the likely major target of autoimmune attack in multiple sclerosis (MS), contains a number of unique components that are potential targets of the attack. Two classes of molecules that are greatly enriched in CNS myelin compared to other parts of the body are certain types of proteolipids and glycolipids. Due to the hydrophobic nature of both of these classes of molecules, they present challenges for use in immunological assays and have therefore been somewhat neglected in studies of T-cell reactivity in MS compared to more soluble molecules such as the myelin basic proteins and the extracellular domain of myelin oligodendrocyte glycoprotein. This review firstly looks at the makeup of CNS myelin, with an emphasis on proteolipids and glycolipids. Next, a retrospective of what is known of T-cell reactivity directed against proteolipids and glycolipids in patients with MS is presented, and the implications of the findings are discussed. Finally, this review considers the question of what would be required to prove a definite role for autoreactivity against proteolipids and glycolipids in the pathogenesis of MS.
Collapse
|
46
|
Ramanan VK, Saykin AJ. Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:145-175. [PMID: 24093081 PMCID: PMC3783830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/25/2013] [Indexed: 06/02/2023]
Abstract
The discovery of causative genetic mutations in affected family members has historically dominated our understanding of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Nevertheless, most cases of neurodegenerative disease are not explained by Mendelian inheritance of known genetic variants, but instead are thought to have a complex etiology with numerous genetic and environmental factors contributing to susceptibility. Although unbiased genome-wide association studies (GWAS) have identified novel associations to neurodegenerative diseases, most of these hits explain only modest fractions of disease heritability. In addition, despite the substantial overlap of clinical and pathologic features among major neurodegenerative diseases, surprisingly few GWAS-implicated variants appear to exhibit cross-disease association. These realities suggest limitations of the focus on individual genetic variants and create challenges for the development of diagnostic and therapeutic strategies, which traditionally target an isolated molecule or mechanistic step. Recently, GWAS of complex diseases and traits have focused less on individual susceptibility variants and instead have emphasized the biological pathways and networks revealed by genetic associations. This new paradigm draws on the hypothesis that fundamental disease processes may be influenced on a personalized basis by a combination of variants - some common and others rare, some protective and others deleterious - in key genes and pathways. Here, we review and synthesize the major pathways implicated in neurodegeneration, focusing on GWAS from the most prevalent neurodegenerative disorders, AD and PD. Using literature mining, we also discover a novel regulatory network that is enriched with AD- and PD-associated genes and centered on the SP1 and AP-1 (Jun/Fos) transcription factors. Overall, this pathway- and network-driven model highlights several potential shared mechanisms in AD and PD that will inform future studies of these and other neurodegenerative disorders. These insights also suggest that biomarker and treatment strategies may require simultaneous targeting of multiple components, including some specific to disease stage, in order to assess and modulate neurodegeneration. Pathways and networks will provide ideal vehicles for integrating relevant findings from GWAS and other modalities to enhance clinical translation.
Collapse
Affiliation(s)
- Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Medical Scientist Training Program, Indiana University School of MedicineIndianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of MedicineIndianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
47
|
de Monasterio-Schrader P, Patzig J, Möbius W, Barrette B, Wagner TL, Kusch K, Edgar JM, Brophy PJ, Werner HB. Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2. Glia 2013; 61:1832-47. [DOI: 10.1002/glia.22561] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022]
Affiliation(s)
| | - Julia Patzig
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Wiebke Möbius
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Göttingen Germany
| | - Benoit Barrette
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Tadzio L. Wagner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Kathrin Kusch
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Julia M. Edgar
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow; Bearsden Road, Glasgow G61 1QH United Kingdom
| | - Peter J. Brophy
- Centre for Neuroregeneration; University of Edinburgh; United Kingdom
| | - Hauke B. Werner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
48
|
Bogie JFJ, Jorissen W, Mailleux J, Nijland PG, Zelcer N, Vanmierlo T, Van Horssen J, Stinissen P, Hellings N, Hendriks JJA. Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol Commun 2013; 1:43. [PMID: 24252308 PMCID: PMC3893408 DOI: 10.1186/2051-5960-1-43] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 01/14/2023] Open
Abstract
Background Foamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear. Results We demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitric oxide production by macrophages through activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). Furthermore, uptake of PS by macrophages, after intravenous injection of PS-containing liposomes (PSLs), suppresses the production of inflammatory mediators and ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effect of PSLs in EAE animals is associated with a reduced immune cell infiltration into the central nervous system and decreased splenic cognate antigen specific proliferation. Interestingly, PPARβ/δ is activated in foamy macrophages in active MS lesions, indicating that myelin also activates PPARβ/δ in macrophages in the human brain. Conclusion Our data show that myelin modulates the phenotype of macrophages by PPAR activation, which may subsequently dampen MS lesion progression. Moreover, our results suggest that myelin-derived PS mediates PPARβ/δ activation in macrophages after myelin uptake. The immunoregulatory impact of naturally-occurring myelin lipids may hold promise for future MS therapeutics.
Collapse
|
49
|
Abstract
BACKGROUND The immune response involves the activation of heterogeneous populations of T cells and B cells that show different degrees of affinity and specificity for target antigens. Although several techniques have been developed to study the molecular pathways that control immunity, there is a need for high-throughput assays to monitor the specificity of the immune response. CONTENT Antigen microarrays provide a new tool to study the immune response. We reviewed the literature on antigen microarrays and their advantages and limitations, and we evaluated their use for the study of autoimmune diseases. Antigen arrays have been successfully used for several purposes in the investigation of autoimmune disorders: for disease diagnosis, to monitor disease progression and response to therapy, to discover mechanisms of pathogenesis, and to tailor antigen-specific therapies to the autoimmune response of individual patients. In this review we discuss the use of antigen microarrays for the study of 4 common autoimmune diseases and their animal models: type 1 diabetes, systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. CONCLUSIONS Antigen microarrays constitute a new tool for the investigation of the immune response in autoimmune disorders and also in other conditions such as tumors and allergies. Once current limitations are overcome, antigen microarrays have the potential to revolutionize the investigation and management of autoimmune diseases.
Collapse
Affiliation(s)
- Ada Yeste
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
50
|
Abstract
Multiple sclerosis (MS) is the major inflammatory demyelinating disease of the central nervous system. There is strong evidence that an immune response in the brain is a critical component of the disease. In 1992, in a collaboration between academia and biotechnology, my colleagues and I showed that α4 integrin was the critical molecule involved in the homing of immune cells into the inflamed brain. Was it sheer luck that these results led to the development of a drug for MS?
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Pediatrics, Interdepartmental Program in Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|