1
|
Culver-Cochran AE, Hassan A, Hueneman K, Choi K, Ma A, VanCauwenbergh B, O'Brien E, Wunderlich M, Perentesis JP, Starczynowski DT. Chemotherapy resistance in acute myeloid leukemia is mediated by A20 suppression of spontaneous necroptosis. Nat Commun 2024; 15:9189. [PMID: 39448591 PMCID: PMC11502881 DOI: 10.1038/s41467-024-53629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematopoietic malignancy. Although many patients achieve complete remission with standard induction therapy, a combination of cytarabine and anthracycline, ~40% of patients have induction failure. These refractory patients pose a treatment challenge, as they do not respond to salvage therapy or allogeneic stem cell transplant. Herein, we show that AML patients who experience induction failure have elevated expression of the NF-κB target gene tumor necrosis factor alpha-induced protein-3 (TNFAIP3/A20) and impaired necroptotic cell death. A20High AML are resistant to anthracyclines, while A20Low AML are sensitive. Loss of A20 in AML restores sensitivity to anthracycline treatment by inducing necroptosis. Moreover, A20 prevents necroptosis in AML by targeting the necroptosis effector RIPK1, and anthracycline-induced necroptosis is abrogated in A20High AML. These findings suggest that NF-κB-driven A20 overexpression plays a role in failed chemotherapy induction and highlights the potential of targeting an alternative cell death pathway in AML.
Collapse
MESH Headings
- Humans
- Necroptosis/drug effects
- Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
- Tumor Necrosis Factor alpha-Induced Protein 3/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- NF-kappa B/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Cell Line, Tumor
- Anthracyclines/pharmacology
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Animals
- Female
- Male
- Mice
- Middle Aged
Collapse
Affiliation(s)
- Ashley E Culver-Cochran
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, USA
| | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA.
- Department of Cancer Biology, University of Cincinnati, Cincinnati, USA.
- University of Cincinnati Cancer Center, Cincinnati, USA.
| |
Collapse
|
2
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
3
|
Waterbury AL, Kwok HS, Lee C, Narducci DN, Freedy AM, Su C, Raval S, Reiter AH, Hawkins W, Lee K, Li J, Hoenig SM, Vinyard ME, Cole PA, Hansen AS, Carr SA, Papanastasiou M, Liau BB. An autoinhibitory switch of the LSD1 disordered region controls enhancer silencing. Mol Cell 2024; 84:2238-2254.e11. [PMID: 38870936 PMCID: PMC11193646 DOI: 10.1016/j.molcel.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Transcriptional coregulators and transcription factors (TFs) contain intrinsically disordered regions (IDRs) that are critical for their association and function in gene regulation. More recently, IDRs have been shown to promote multivalent protein-protein interactions between coregulators and TFs to drive their association into condensates. By contrast, here we demonstrate how the IDR of the corepressor LSD1 excludes TF association, acting as a dynamic conformational switch that tunes repression of active cis-regulatory elements. Hydrogen-deuterium exchange shows that the LSD1 IDR interconverts between transient open and closed conformational states, the latter of which inhibits partitioning of the protein's structured domains with TF condensates. This autoinhibitory switch controls leukemic differentiation by modulating repression of active cis-regulatory elements bound by LSD1 and master hematopoietic TFs. Together, these studies unveil alternative mechanisms by which disordered regions and their dynamic crosstalk with structured regions can shape coregulator-TF interactions to control cis-regulatory landscapes and cell fate.
Collapse
Affiliation(s)
- Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hui Si Kwok
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ceejay Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Domenic N Narducci
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Allyson M Freedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Cindy Su
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Shaunak Raval
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew H Reiter
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Hawkins
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiaming Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samuel M Hoenig
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anders S Hansen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Steven A Carr
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Ward GA, Zhang Z, Jueliger S, Potapov IS, Davis MP, Boxall AR, Taylor J, Keer H, Biondo A, Lyons JF, Sims M, Smyth T. Epigenetic Priming by Hypomethylation Enhances the Immunogenic Potential of Tolinapant in T-cell Lymphoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1441-1453. [PMID: 38727208 PMCID: PMC11155518 DOI: 10.1158/2767-9764.crc-23-0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Programmed cell death mechanisms are important for the regulation of tumor development and progression. Evasion of and resistance to apoptosis are significant factors in tumorigenesis and drug resistance. Bypassing apoptotic pathways and eliciting another form of regulated cell death, namely necroptosis, an immunogenic cell death (ICD), may override apoptotic resistance. Here, we present the mechanistic rationale for combining tolinapant, an antagonist of the inhibitor of apoptosis proteins (IAP), with decitabine, a hypomethylating agent (HMA), in T-cell lymphoma (TCL). Tolinapant treatment alone of TCL cells in vitro and in syngeneic in vivo models demonstrated that ICD markers can be upregulated, and we have shown that epigenetic priming with decitabine further enhances this effect. The clinical relevance of ICD markers was confirmed by the direct measurement of plasma proteins from patients with peripheral TCL treated with tolinapant. We showed increased levels of necroptosis in TCL lines, along with the expression of cancer-specific antigens (such as cancer testis antigens) and increases in genes involved in IFN signaling induced by HMA treatment, together deliver a strong adaptive immune response to the tumor. These results highlight the potential of a decitabine and tolinapant combination for TCL and could lead to clinical evaluation. SIGNIFICANCE The IAP antagonist tolinapant can induce necroptosis, a key immune-activating event, in TCL. Combination with DNA hypomethylation enhances tolinapant sensitivity and primes resistant cells by re-expressing necrosome proteins. In addition, this combination leads to increases in genes involved in IFN signaling and neoantigen expression, providing further molecular rationale for this novel therapeutic option.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jason Taylor
- Astex Pharmaceuticals, Inc., Pleasanton, California
| | - Harold Keer
- Astex Pharmaceuticals, Inc., Pleasanton, California
| | | | | | - Martin Sims
- Astex Pharmaceuticals, Cambridge, United Kingdom
| | - Tomoko Smyth
- Astex Pharmaceuticals, Cambridge, United Kingdom
| |
Collapse
|
5
|
Ávila Ávila A, Nuantang K, Oliveira ML, Druillennec S, Zaniboni B, Lengliné E, Asnafi V, Ghysdael J, Tran Quang C. Targeting the TNF/IAP pathway synergizes with anti-CD3 immunotherapy in T-cell acute lymphoblastic leukemia. Blood 2024; 143:2166-2177. [PMID: 38437728 PMCID: PMC11143533 DOI: 10.1182/blood.2023022455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
ABSTRACT T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current treatments, based on intensive chemotherapy regimens provide overall survival rates of ∼85% in children and <50% in adults, calling the search of new therapeutic options. We previously reported that targeting the T-cell receptor (TCR) in T-ALL with anti-CD3 (αCD3) monoclonal antibodies (mAbs) enforces a molecular program akin to thymic negative selection, a major developmental checkpoint in normal T-cell development; induces leukemic cell death; and impairs leukemia progression to ultimately improve host survival. However, αCD3 monotherapy resulted in relapse. To find out actionable targets able to re-enforce leukemic cells' vulnerability to αCD3 mAbs, including the clinically relevant teplizumab, we identified the molecular program induced by αCD3 mAbs in patient-derived xenografts derived from T-ALL cases. Using large-scale transcriptomic analysis, we found prominent expression of tumor necrosis factor α (TNFα), lymphotoxin α (LTα), and multiple components of the "TNFα via NF-κB signaling" pathway in anti-CD3-treated T-ALL. We show in vivo that etanercept, a sink for TNFα/LTα, enhances αCD3 antileukemic properties, indicating that TNF/TNF receptor (TNFR) survival pathways interferes with TCR-induced leukemic cell death. However, suppression of TNF-mediated survival and switch to TNFR-mediated cell death through inhibition of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) with the second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant synergizes with αCD3 to impair leukemia expansion in a receptor-interacting serine/threonine-protein kinase 1-dependent manner and improve mice survival. Thus, our results advocate the use of either TNFα/LTα inhibitors, or birinapant/other SMAC mimetics to improve anti-CD3 immunotherapy in T-ALL.
Collapse
Affiliation(s)
- Andrea Ávila Ávila
- Institut Curie, Orsay, France
- Centre National de la Recherche Scientifique UMR3348, Centre Universitaire, Orsay, France
- INSERM, U1278, Orsay, France
- University Paris Sud, Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Kanokporn Nuantang
- Institut Curie, Orsay, France
- Centre National de la Recherche Scientifique UMR3348, Centre Universitaire, Orsay, France
- INSERM, U1278, Orsay, France
- University Paris Sud, Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Mariana L. Oliveira
- Institut Curie, Orsay, France
- Centre National de la Recherche Scientifique UMR3348, Centre Universitaire, Orsay, France
- INSERM, U1278, Orsay, France
- University Paris Sud, Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Sabine Druillennec
- Institut Curie, Orsay, France
- University Paris Sud, Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- INSERM, U1021, Centre Universitaire, Orsay, France
| | - Benedetta Zaniboni
- Institut Curie, Orsay, France
- Centre National de la Recherche Scientifique UMR3348, Centre Universitaire, Orsay, France
- INSERM, U1278, Orsay, France
- University Paris Sud, Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Etienne Lengliné
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint Louis, Unité d’Hématologie, Paris, France
| | - Vahid Asnafi
- Université Paris Cité, Institut Necker-Enfants Malades, INSERM U1151, Paris, France
| | - Jacques Ghysdael
- Institut Curie, Orsay, France
- Centre National de la Recherche Scientifique UMR3348, Centre Universitaire, Orsay, France
- INSERM, U1278, Orsay, France
- University Paris Sud, Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Christine Tran Quang
- Institut Curie, Orsay, France
- Centre National de la Recherche Scientifique UMR3348, Centre Universitaire, Orsay, France
- INSERM, U1278, Orsay, France
- University Paris Sud, Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| |
Collapse
|
6
|
Sawyer EM, Kraft AS. SMACing down relapsed T-ALL. Blood 2024; 143:2116-2117. [PMID: 38780917 DOI: 10.1182/blood.2024024304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Affiliation(s)
| | - Andrew S Kraft
- Vortex Biotechnology Corporation
- University of Colorado Anschutz Medical Center
| |
Collapse
|
7
|
Li Y, Rasheed M, Liu J, Chen Z, Deng Y. Deciphering the Molecular Nexus: An In-Depth Review of Mitochondrial Pathways and Their Role in Cell Death Crosstalk. Cells 2024; 13:863. [PMID: 38786088 PMCID: PMC11119937 DOI: 10.3390/cells13100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Cellular demise is a pivotal event in both developmental processes and disease states, with mitochondrial regulation playing an essential role. Traditionally, cell death was categorized into distinct types, considered to be linear and mutually exclusive pathways. However, the current understanding has evolved to recognize the complex and interconnected mechanisms of cell death, especially within apoptosis, pyroptosis, and necroptosis. Apoptosis, pyroptosis, and necroptosis are governed by intricate molecular pathways, with mitochondria acting as central decision-makers in steering cells towards either apoptosis or pyroptosis through various mediators. The choice between apoptosis and necroptosis is often determined by mitochondrial signaling and is orchestrated by specific proteins. The molecular dialogue and the regulatory influence of mitochondria within these cell death pathways are critical research areas. Comprehending the shared elements and the interplay between these death modalities is crucial for unraveling the complexities of cellular demise.
Collapse
Affiliation(s)
| | | | | | - Zixuan Chen
- Beijing Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (M.R.); (J.L.)
| | - Yulin Deng
- Beijing Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (M.R.); (J.L.)
| |
Collapse
|
8
|
Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 2024; 24:299-315. [PMID: 38454135 DOI: 10.1038/s41568-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.
Collapse
Affiliation(s)
- Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Samareh Salavatipour M, Poursalehi Z, Hosseini Rouzbahani N, Mohammadyar S, Vasei M. CRISPR-Cas9 in basic and translational aspects of cancer therapy. BIOIMPACTS : BI 2024; 14:30087. [PMID: 39493894 PMCID: PMC11530967 DOI: 10.34172/bi.2024.30087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction The discovery of gene editing techniques has opened a new era within the field of biology and enabled scientists to manipulate nucleic acid molecules. CRISPR-Cas9 genome engineering has revolutionized this achievement by successful targeting the DNA molecule and editing its sequence. Since genomic changes are the basis of the birth and growth of many tumors, CRISPR-Cas9 method has been successfully applied to identify and manipulate the genes which are involved in initiating and driving some neoplastic processes. Methods By review of the existing literature on application of CRISPR-Cas9 in cancer, different databases, such as PubMed and Google Scholar, we started data collection for "CRISPR-Cas9", "Genome Editing", "Cancer", "Solid tumors", "Hematologic malignancy" "Immunotherapy", "Diagnosis", "Drug resistance" phrases. Clinicaltrials.gov, a resource that provides access to information on clinical trials, was also searched in this review. Results We have defined the basics of this technology and then mentioned some clinical and preclinical studies using this technology in the treatment of a variety of solid tumors as well as hematologic neoplasms. Finally, we described the progress made by this technology in boosting immune-mediated cell therapy in oncology, such as CAR-T cells, CAR-NK cells, and CAR-M cells. Conclusion CRISPR-Cas9 system revolutionized the therapeutic strategies in some solid malignant tumors and leukemia through targeting the key genes involved in the pathogenesis of these cancers.
Collapse
Affiliation(s)
- Maryam Samareh Salavatipour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Poursalehi
- Department of Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Negin Hosseini Rouzbahani
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Sohaib Mohammadyar
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Vasei
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Sun Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, Kong W, Yang Y, Zhang K, Wang P, Wang X. Nanomedicine-mediated regulated cell death in cancer immunotherapy. J Control Release 2023; 364:174-194. [PMID: 37871752 DOI: 10.1016/j.jconrel.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Immunotherapy has attracted widespread attention in cancer treatment and has achieved considerable success in the clinical treatment of some tumors, but it has a low response rate in most tumors. To achieve sufficient activation of the immune response, significant efforts using nanotechnology have been made to enhance cancer immune response. In recent years, the induction of various regulated cell death (RCD) has emerged as a potential antitumor immuno-strategy, including processes related to apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. In particular, damage-associated molecular patterns (DAMPs) released from the damaged membrane of dying cells act as in situ adjuvants to trigger antigen-specific immune responses by the exposure of an increased antigenicity. Thus, RCD-based immunotherapy offers a new approach for enhancing cancer treatment efficacy. Furthermore, incorporation with multimodal auxiliary therapies in cell death-based immunotherapy can trigger stronger immune responses, resulting in more efficient therapeutic outcome. This review discusses different RCD modalities and summarizes recent nanotechnology-mediated RCDs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yifang Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
11
|
Vaghjiani VG, Cochrane CR, Jayasekara WSN, Chong WC, Szczepny A, Kumar B, Martelotto LG, McCaw A, Carey K, Kansara M, Thomas DM, Walkley C, Mudge S, Gough DJ, Downie PA, Peacock CD, Matsui W, Watkins DN, Cain JE. Ligand-dependent hedgehog signaling maintains an undifferentiated, malignant osteosarcoma phenotype. Oncogene 2023; 42:3529-3541. [PMID: 37845394 PMCID: PMC10656285 DOI: 10.1038/s41388-023-02864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
TP53 and RB1 loss-of-function mutations are common in osteosarcoma. During development, combined loss of TP53 and RB1 function leads to downregulation of autophagy and the aberrant formation of primary cilia, cellular organelles essential for the transmission of canonical Hedgehog (Hh) signaling. Excess cilia formation then leads to hypersensitivity to Hedgehog (Hh) ligand signaling. In mouse and human models, we now show that osteosarcomas with mutations in TP53 and RB1 exhibit enhanced ligand-dependent Hh pathway activation through Smoothened (SMO), a transmembrane signaling molecule required for activation of the canonical Hh pathway. This dependence is mediated by hypersensitivity to Hh ligand and is accompanied by impaired autophagy and increased primary cilia formation and expression of Hh ligand in vivo. Using a conditional genetic mouse model of Trp53 and Rb1 inactivation in osteoblast progenitors, we further show that deletion of Smo converts the highly malignant osteosarcoma phenotype to benign, well differentiated bone tumors. Conversely, conditional overexpression of SHH ligand, or a gain-of-function SMO mutant in committed osteoblast progenitors during development blocks terminal bone differentiation. Finally, we demonstrate that the SMO antagonist sonidegib (LDE225) induces growth arrest and terminal differentiation in vivo in osteosarcomas that express primary cilia and Hh ligand combined with mutations in TP53. These results provide a mechanistic framework for aberrant Hh signaling in osteosarcoma based on defining mutations in the tumor suppressor, TP53.
Collapse
Affiliation(s)
| | - Catherine R Cochrane
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | | | - Wai Chin Chong
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Anette Szczepny
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Beena Kumar
- Department of Pathology, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Luciano G Martelotto
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew McCaw
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Kirstyn Carey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Maya Kansara
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St.Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 1466, Australia
| | - Carl Walkley
- St. Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Stuart Mudge
- Mayne Pharma International Pty Ltd, Salisbury Sth, SA, 5106, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Peter A Downie
- Monash Children's Cancer Centre, Monash Children's Hospital, Monash Health, Clayton, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - Craig D Peacock
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - William Matsui
- Department of Oncology and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, R3E-0V9, Canada.
- Department of Internal Medicine, Rady Faculty of Heath Sciences, University of Manitoba, Winnipeg, MB, R3A-1R9, Canada.
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
12
|
Kulíšková P, Vašátková L, Slaninová I. Quaternary Benzophenanthridine Alkaloids Act as Smac Mimetics and Overcome Resistance to Apoptosis. Int J Mol Sci 2023; 24:15405. [PMID: 37895085 PMCID: PMC10607862 DOI: 10.3390/ijms242015405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Defects in cell death signaling pathways are one of the hallmarks of cancer and can lead to resistance to conventional therapy. Natural products are promising compounds that can overcome this resistance. In the present study we studied the effect of six quaternary benzophenanthridine alkaloids (QBAs), sanguinarine, chelerythrine, sanguirubine, chelirubine, sanguilutine, and chelilutine, on Jurkat leukemia cells, WT, and cell death deficient lines derived from them, CASP3/7/6-/- and FADD-/-, and on solid tumor, human malignant melanoma, A375 cells. We demonstrated the ability of QBAs to overcome the resistance of these deficient cells and identified a novel mechanism for their action. Sanguinarine and sanguirubine completely and chelerythrine, sanguilutine, and chelilutine partially overcame the resistance of CASP3/7/6-/- and FADD-/- cells. By detection of cPARP, a marker of apoptosis, and pMLKL, a marker of necroptosis, we proved the ability of QBAs to induce both these cell deaths (bimodal cell death) with apoptosis preceding necroptosis. We identified the new mechanism of the cell death induction by QBAs, the downregulation of the apoptosis inhibitors cIAP1 and cIAP2, i.e., an effect similar to that of Smac mimetics.
Collapse
Affiliation(s)
- Petra Kulíšková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 62500 Brno, Czech Republic; (P.K.); (L.V.)
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lucie Vašátková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 62500 Brno, Czech Republic; (P.K.); (L.V.)
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 62500 Brno, Czech Republic; (P.K.); (L.V.)
| |
Collapse
|
13
|
Farzanehpour M, Miri A, Ghorbani Alvanegh A, Esmaeili Gouvarchinghaleh H. Viral Vectors, Exosomes, and Vexosomes: Potential Armamentarium for Delivering CRISPR/Cas to Cancer Cells. Biochem Pharmacol 2023; 212:115555. [PMID: 37075815 DOI: 10.1016/j.bcp.2023.115555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The underlying cause of cancer is genetic disruption, so gene editing technologies, particularly CRISPR/Cas systems can be used to go against cancer. The field of gene therapy has undergone many transitions over its 40-year history. Despite its many successes, it has also suffered many failures in the battle against malignancies, causing really adverse effects instead of therapeutic outcomes. At the tip of this double-edged sword are viral and non-viral-based vectors, which have profoundly transformed the way scientists and clinicians develop therapeutic platforms. Viruses such as lentivirus, adenovirus, and adeno-associated viruses are the most common viral vectors used for delivering the CRISPR/Cas system into human cells. In addition, among non-viral vectors, exosomes, especially tumor-derived exosomes (TDEs), have proven to be quite effective at delivering this gene editing tool. The combined use of viral vectors and exosomes, called vexosomes, seems to be a solution to overcoming the obstacles of both delivery systems.
Collapse
Affiliation(s)
- Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
14
|
Ng YL, Bricelj A, Jansen JA, Murgai A, Peter K, Donovan KA, Gütschow M, Krönke J, Steinebach C, Sosič I. Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins. J Med Chem 2023; 66:4703-4733. [PMID: 36996313 PMCID: PMC10108347 DOI: 10.1021/acs.jmedchem.2c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 04/01/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.
Collapse
Affiliation(s)
- Yuen Lam
Dora Ng
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Jacqueline A. Jansen
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Arunima Murgai
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Kirsten Peter
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Katherine A. Donovan
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael Gütschow
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Christian Steinebach
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Fu L, Li Z, Ren Y, Yu H, Liu B, Qiu Y. CRISPR/Cas genome editing in triple negative breast cancer: Current situation and future directions. Biochem Pharmacol 2023; 209:115449. [PMID: 36754153 DOI: 10.1016/j.bcp.2023.115449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Triple negative breast cancer (TNBC) has been well-known to be closely associated with the abnormal expression of both oncogenes and tumor suppressors. Although several pathogenic mutations in TNBC have been identified, the current therapeutic strategy is usually aimed at symptom relief rather than correcting mutations in the DNA sequence. Of note, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has been gradually regarded as a breakthrough gene-editing tool with potential therapeutic applications in human cancers, including TNBC. Thus, in this review, we focus on summarizing the molecular subtypes of TNBC, as well as the CRISPR system and its potential applications in TNBC treatment. Moreover, we further discuss several emerging strategies for utilizing the CRISPR/Cas system to aid in the precise diagnosis of TNBC, as well as the limitations of the CRISPR/Cas system. Taken together, these findings would demonstrate that CRISPR/Cas system is not only an effective genome editing tool in TNBC, but a promising strategy for the future therapeutic purposes.
Collapse
Affiliation(s)
- Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity faculty of medicine, University of Toronto, Canada
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
16
|
Carlet M, Schmelz K, Vergalli J, Herold T, Senft D, Jurinovic V, Hoffmann T, Proba J, Weichert N, Junghanß C, Roth M, Eschenburg G, Barz M, Henze G, Eckert C, Eggert A, Zuber J, Hundsdoerfer P, Jeremias I. X-linked inhibitor of apoptosis protein represents a promising therapeutic target for relapsed/refractory ALL. EMBO Mol Med 2022; 15:e14557. [PMID: 36416169 PMCID: PMC9832863 DOI: 10.15252/emmm.202114557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) represents the most frequent malignancy in children, and relapse/refractory (r/r) disease is difficult to treat, both in children and adults. In search for novel treatment options against r/r ALL, we studied inhibitor of apoptosis proteins (IAP) and Smac mimetics (SM). SM-sensitized r/r ALL cells towards conventional chemotherapy, even upon resistance against SM alone. The combination of SM and chemotherapy-induced cell death via caspases and PARP, but independent from cIAP-1/2, RIPK1, TNFα or NF-κB. Instead, XIAP was identified to mediate SM effects. Molecular manipulation of XIAP in vivo using microRNA-30 flanked shRNA expression in cell lines and patient-derived xenograft (PDX) models of r/r ALL mimicked SM effects and intermediate XIAP knockdown-sensitized r/r ALL cells towards chemotherapy-induced apoptosis. Interestingly, upon strong XIAP knockdown, PDX r/r ALL cells were outcompeted in vivo, even in the absence of chemotherapy. Our results indicate a yet unknown essential function of XIAP in r/r ALL and reveal XIAP as a promising therapeutic target for r/r ALL.
Collapse
Affiliation(s)
- Michela Carlet
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany,Department of Biotechnology and Food EngineeringMCI, The Entrepreneur SchoolInnsbruckAustria
| | - Karin Schmelz
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany,German Cancer Consortium (DKTK)BerlinGermany
| | - Jenny Vergalli
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany
| | - Tobias Herold
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany,Laboratory for Leukemia Diagnostics, Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany,German Cancer Consortium (DKTK), Partnering Site MunichMunichGermany
| | - Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany
| | - Vindi Jurinovic
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany,Laboratory for Leukemia Diagnostics, Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany,Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMUMunichGermany
| | - Thomas Hoffmann
- Research Institute of Molecular Pathology (IMP)ViennaAustria
| | - Jutta Proba
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Nina Weichert
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Christian Junghanß
- Department of Medicine, Clinic III – Hematology, Oncology, Palliative MedicineRostock University Medical CenterRostockGermany
| | - Mareike Roth
- Research Institute of Molecular Pathology (IMP)ViennaAustria
| | - Georg Eschenburg
- Department of Pediatric SurgeryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Malwine Barz
- University Children's Hospital ZurichZurichSwitzerland
| | - Günter Henze
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Cornelia Eckert
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Angelika Eggert
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP)ViennaAustria
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany,Berlin Institute of HealthBerlinGermany,Department of PediatricsHelios Klinikum Berlin‐BuchBerlinGermany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany,German Cancer Consortium (DKTK), Partnering Site MunichMunichGermany,Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMUMunichGermany
| |
Collapse
|
17
|
A kinase-independent function of cyclin-dependent kinase 6 promotes outer radial glia expansion and neocortical folding. Proc Natl Acad Sci U S A 2022; 119:e2206147119. [PMID: 36095192 PMCID: PMC9499540 DOI: 10.1073/pnas.2206147119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neocortex, the center for higher brain function, first emerged in mammals and has become massively expanded and folded in humans, constituting almost half the volume of the human brain. Primary microcephaly, a developmental disorder in which the brain is smaller than normal at birth, results mainly from there being fewer neurons in the neocortex because of defects in neural progenitor cells (NPCs). Outer radial glia (oRGs), NPCs that are abundant in gyrencephalic species but rare in lissencephalic species, are thought to play key roles in the expansion and folding of the neocortex. However, how oRGs expand, whether they are necessary for neocortical folding, and whether defects in oRGs cause microcephaly remain important questions in the study of brain development, evolution, and disease. Here, we show that oRG expansion in mice, ferrets, and human cerebral organoids requires cyclin-dependent kinase 6 (CDK6), the mutation of which causes primary microcephaly via an unknown mechanism. In a mouse model in which increased Hedgehog signaling expands oRGs and intermediate progenitor cells and induces neocortical folding, CDK6 loss selectively decreased oRGs and abolished neocortical folding. Remarkably, this function of CDK6 in oRG expansion did not require its kinase activity, was not shared by the highly similar CDK4 and CDK2, and was disrupted by the mutation causing microcephaly. Therefore, our results indicate that CDK6 is conserved to promote oRG expansion, that oRGs are necessary for neocortical folding, and that defects in oRG expansion may cause primary microcephaly.
Collapse
|
18
|
Migliavacca J, Züllig B, Capdeville C, Grotzer MA, Baumgartner M. Cooperation of Striatin 3 and MAP4K4 promotes growth and tissue invasion. Commun Biol 2022; 5:795. [PMID: 35941177 PMCID: PMC9360036 DOI: 10.1038/s42003-022-03708-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
MAP4K4 is associated with increased motility and reduced proliferation in tumor cells, but the regulation of this dichotomous functionality remained elusive. We find that MAP4K4 interacts with striatin 3 and 4 (STRN3/4) and that STRN3 and MAP4K4 exert opposing functions in Hippo signaling and clonal growth. However, depletion of either STRN3 or MAP4K4 in medulloblastoma cells reduces invasion, and loss of both proteins abrogates tumor cell growth in the cerebellar tissue. Mechanistically, STRN3 couples MAP4K4 to the protein phosphatase 2A, which inactivates growth repressing activities of MAP4K4. In parallel, STRN3 enables growth factor-induced PKCθ activation and direct phosphorylation of VASPS157 by MAP4K4, which both are necessary for efficient cell invasion. VASPS157 directed activity of MAP4K4 and STRN3 requires the CNH domain of MAP4K4, which mediates its interaction with striatins. Thus, STRN3 is a master regulator of MAP4K4 function, and disruption of its cooperation with MAP4K4 reactivates Hippo signaling and represses tissue invasion in medulloblastoma. Analysis of the MAP4K4-STRN3 cooperation in medulloblastoma reveals its opposing regulation of Hippo activation and tissue invasion in cancer.
Collapse
Affiliation(s)
- Jessica Migliavacca
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Buket Züllig
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Charles Capdeville
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Michael A Grotzer
- Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
19
|
Capdeville C, Russo L, Penton D, Migliavacca J, Zecevic M, Gries A, Neuhauss SC, Grotzer MA, Baumgartner M. Spatial proteomics finds CD155 and Endophilin-A1 as mediators of growth and invasion in medulloblastoma. Life Sci Alliance 2022; 5:5/6/e202201380. [PMID: 35296518 PMCID: PMC8926928 DOI: 10.26508/lsa.202201380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
The composition of the plasma membrane (PM)-associated proteome of tumor cells determines cell-cell and cell-matrix interactions and the response to environmental cues. Whether the PM-associated proteome impacts the phenotype of Medulloblastoma (MB) tumor cells and how it adapts in response to growth factor cues is poorly understood. Using a spatial proteomics approach, we observed that hepatocyte growth factor (HGF)-induced activation of the receptor tyrosine kinase c-MET in MB cells changes the abundance of transmembrane and membrane-associated proteins. The depletion of MAP4K4, a pro-migratory effector kinase downstream of c-MET, leads to a specific decrease of the adhesion and immunomodulatory receptor CD155 and of components of the fast-endophilin-mediated endocytosis (FEME) machinery in the PM-associated proteome of HGF-activated MB cells. The decreased surface expression of CD155 or of the fast-endophilin-mediated endocytosis effector endophilin-A1 reduces growth and invasiveness of MB tumor cells in the tissue context. These data thus describe a novel function of MAP4K4 in the control of the PM-associated proteome of tumor cells and identified two downstream effector mechanisms controlling proliferation and invasiveness of MB cells.
Collapse
Affiliation(s)
- Charles Capdeville
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Linda Russo
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - David Penton
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Jessica Migliavacca
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Milica Zecevic
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Alexandre Gries
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Torquato HFV, Junior MTR, Lima CS, Júnior RTDA, Talhati F, Dias DA, Justo GZ, Ferreira AT, Pilli RA, Paredes-Gamero EJ. A canthin-6-one derivative induces cell death by apoptosis/necroptosis-like with DNA damage in acute myeloid cells. Biomed Pharmacother 2022; 145:112439. [PMID: 34808555 DOI: 10.1016/j.biopha.2021.112439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Natural products have long been considered a relevant source of new antitumor agents. Despite advances in the treatment of younger patients with acute myeloid leukemia (AML), the prognosis of elderly patients remains poor, with a high frequency of relapse. The cytotoxicity of canthin-6-one alkaloids has been extensively studied in different cell types, including leukemic strains. Among the canthin-6-one analogs tested, 10-methoxycanthin-6-one (Mtx-C) showed the highest cytotoxicity in the malignant AML cells Kasumi-1 and KG-1. Thus, we evaluated the cytotoxicity and cell death mechanisms related to Mtx-C using the EC50 (80 µM for Kasumi-1 and 36 µM for KG-1) treatment for 24 h. Our results identify reactive oxygen species production, mitochondrial depolarization, annexin V-FITC/7-AAD double staining, caspase cleave and upregulation of mitochondria-dependent apoptosis proteins (Bax, Bim, Bik, Puma and phosphorylation of p53) for both cell lineages. However, downregulation of Bcl-2 and the simultaneous execution of the apoptotic and necroptotic programs associated with the phosphorylation of the proteins receptor-interacting serine/threonine-protein kinase 3 and mixed lineage kinase domain-like pseudokinase occurred only in Kasumi-1 cells. About the lasted events, Kasumi-1 cell death was inhibited by pharmacological agents such as Zvad-FMK and necrostatin-1. The underlying molecular mechanisms of Mtx-C still include participation in the DNA damage and stress-signaling pathways involving p38 and c-Jun N-terminal mitogen-activated protein kinases and interaction with DNA. Thus, Mtx-C represents a promising tool for the development of new antileukemic molecules.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | | | - Cauê Santos Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Roberto Theodoro de Araujo Júnior
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil
| | - Fernanda Talhati
- Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil
| | - Dhebora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Ronaldo Aloise Pilli
- Instituto de Química, Universidade Estadual de Campinas, 13084-971 Campinas, SP, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil.
| |
Collapse
|
21
|
Vredevoogd D, Apriamashvili G, Peeper D. The (re)discovery of tumor-intrinsic determinants of immune sensitivity by functional genetic screens. IMMUNO-ONCOLOGY TECHNOLOGY 2021; 11:100043. [PMID: 35756970 PMCID: PMC9216628 DOI: 10.1016/j.iotech.2021.100043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional genetic screens by CRISPR-Cas9 allow for the unbiased discovery of proteins causally involved in complex biological processes. In recent years, this approach has been used by multiple laboratories to uncover a range of tumor cell regulators determining immune sensitivity. In this review, we provide an overview of genetic screens carried out both in vitro and in vivo. By comparative analysis we highlight commonly identified proteins and pathways that are key in establishing tumor-intrinsic immune susceptibility. Together, these screens demonstrated the importance of the antigen presentation, interferon-γ, tumor necrosis factor and autophagy pathways in governing sensitivity of tumor cells to immune attack. Moreover, they underline the complex interplay between tumor cells and their microenvironment, providing both fundamental and clinically relevant insights into the mechanisms of tumor immune resistance.
Collapse
Affiliation(s)
| | | | - D.S. Peeper
- Netherlands Cancer Institute, Oncode Institute, Division of Molecular Oncology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Mrkvová Z, Portešová M, Slaninová I. Loss of FADD and Caspases Affects the Response of T-Cell Leukemia Jurkat Cells to Anti-Cancer Drugs. Int J Mol Sci 2021; 22:ijms22052702. [PMID: 33800107 PMCID: PMC7962194 DOI: 10.3390/ijms22052702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) pathways play a crucial role in the response of cancer cells to treatment. Their dysregulation is one of the cancer hallmarks and one of the reasons of drug resistance. Here, we studied the significance of the individual members of PCD signaling pathways in response to treatment with common anti-cancer drugs using the T-cell leukemia Jurkat cells with single or double knockouts of necroptosis and/or apoptosis genes. We identified apoptosis as the primary cell death pathway upon anti-cancer drugs treatment. The cells with knocked out either Fas-associated protein with death domain (FADD) or all executioner caspases were resistant. This resistance could be partially overcome by induction of RIP1-dependent necroptosis through TNFR1 activation using combined treatment with TNF-α and smac mimetic (LCL161). RIP1 was essential for cellular response to TNF-α and smac mimetic, but dispensable for the response to anti-cancer drugs. Here, we demonstrated the significance of FADD and executioner caspases in carrying out programmed cell death upon anti-cancer drug treatments and the ability of combined treatment with TNF-α and smac mimetic to partially overcome drug resistance of FADD and/or CASP3/7/6-deficient cells via RIP1-dependent necroptosis. Thus, a combination of TNF-α and smac mimetic could be a suitable strategy for overcoming resistance to therapy in cells unable to trigger apoptosis.
Collapse
|
23
|
Rosenbaum SR, Wilski NA, Aplin AE. Fueling the Fire: Inflammatory Forms of Cell Death and Implications for Cancer Immunotherapy. Cancer Discov 2021; 11:266-281. [PMID: 33451983 DOI: 10.1158/2159-8290.cd-20-0805] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Unleashing the immune system with immune checkpoint inhibitors (ICI) has significantly improved overall survival for subsets of patients with stage III/IV cancer. However, many tumors are nonresponsive to ICIs, in part due to a lack of tumor-infiltrating lymphocytes (TIL). Converting these immune "cold" tumors to "hot" tumors that are thus more likely to respond to ICIs is a major obstacle for cancer treatment. Triggering inflammatory forms of cell death, such as necroptosis and pyroptosis, may alter the tumor immune microenvironment and the influx of TILs. We present an emerging view that promoting tumor-localized necroptosis and pyroptosis may ultimately enhance responses to ICI. SIGNIFICANCE: Many tumor types respond poorly to ICIs or respond but subsequently acquire resistance. Effective therapies for ICI-nonresponsive tumors are lacking and should be guided by evidence from preclinical studies. Promoting inflammatory cell death mechanisms within the tumor may alter the local immune microenvironment toward an ICI-responsive state.
Collapse
Affiliation(s)
- Sheera R Rosenbaum
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicole A Wilski
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
An Updated Review of Smac Mimetics, LCL161, Birinapant, and GDC-0152 in Cancer Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) are suggested as therapeutic targets for cancer treatment. Smac/DIABLO is a natural IAP antagonist in cells; therefore, Smac mimetics have been developed for cancer treatment in the past decade. In this article, we review the anti-cancer potency and novel molecular targets of LCL161, birinapant, and GDC-0152. Preclinical studies demonstrated that Smac mimetics not only induce apoptosis but also arrest cell cycle, induce necroptosis, and induce immune storm in vitro and in vivo. The safety and tolerance of Smac mimetics are evaluated in phase 1 and phase 2 clinical trials. In addition, the combination of Smac mimetics and chemotherapeutic compounds was reported to improve anti-cancer effects. Interestingly, the novel anti-cancer molecular mechanism of action of Smac mimetics was reported in recent studies, suggesting that many unknown functions of Smac mimetics still need to be revealed. Exploring these currently unknown signaling pathways is important to provide hints for the modification and combination therapy of further compounds.
Collapse
|
25
|
Combined the SMAC mimetic and BCL2 inhibitor sensitizes neoadjuvant chemotherapy by targeting necrosome complexes in tyrosine aminoacyl-tRNA synthase-positive breast cancer. Breast Cancer Res 2020; 22:130. [PMID: 33239070 PMCID: PMC7687715 DOI: 10.1186/s13058-020-01367-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Chemotherapy is the standard treatment for breast cancer; however, the response to chemotherapy is disappointingly low. Here, we investigated the alternative therapeutic efficacy of novel combination treatment with necroptosis-inducing small molecules to overcome chemotherapeutic resistance in tyrosine aminoacyl-tRNA synthetase (YARS)-positive breast cancer. Methods Pre-chemotherapeutic needle biopsy of 143 invasive ductal carcinomas undergoing the same chemotherapeutic regimen was subjected to proteomic analysis. Four different machine learning algorithms were employed to determine signature protein combinations. Immunoreactive markers were selected using three common candidate proteins from the machine-learning algorithms and verified by immunohistochemistry using 123 cases of independent needle biopsy FFPE samples. The regulation of chemotherapeutic response and necroptotic cell death was assessed using lentiviral YARS overexpression and depletion 3D spheroid formation assay, viability assays, LDH release assay, flow cytometry analysis, and transmission electron microscopy. The ROS-induced metabolic dysregulation and phosphorylation of necrosome complex by YARS were assessed using oxygen consumption rate analysis, flow cytometry analysis, and 3D cell viability assay. The therapeutic roles of SMAC mimetics (LCL161) and a pan-BCL2 inhibitor (ABT-263) were determined by 3D cell viability assay and flow cytometry analysis. Additional biologic process and protein-protein interaction pathway analysis were performed using Gene Ontology annotation and Cytoscape databases. Results YARS was selected as a potential biomarker by proteomics-based machine-learning algorithms and was exclusively associated with good response to chemotherapy by subsequent immunohistochemical validation. In 3D spheroid models of breast cancer cell lines, YARS overexpression significantly improved chemotherapy response via phosphorylation of the necrosome complex. YARS-induced necroptosis sequentially mediated mitochondrial dysfunction through the overproduction of ROS in breast cancer cell lines. Combination treatment with necroptosis-inducing small molecules, including a SMAC mimetic (LCL161) and a pan-BCL2 inhibitor (ABT-263), showed therapeutic efficacy in YARS-overexpressing breast cancer cells. Conclusions Our results indicate that, before chemotherapy, an initial screening of YARS protein expression should be performed, and YARS-positive breast cancer patients might consider the combined treatment with LCL161 and ABT-263; this could be a novel stepwise clinical approach to apply new targeted therapy in breast cancer patients in the future.
Collapse
|
26
|
Aguadé-Gorgorió J, McComb S, Eckert C, Guinot A, Marovca B, Mezzatesta C, Jenni S, Abduli L, Schrappe M, Dobay MP, Stanulla M, von Stackelberg A, Cario G, Bourquin JP, Bornhauser BC. TNFR2 is required for RIP1-dependent cell death in human leukemia. Blood Adv 2020; 4:4823-4833. [PMID: 33027529 PMCID: PMC7556136 DOI: 10.1182/bloodadvances.2019000796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Despite major advances in the treatment of patients with acute lymphoblastic leukemia in the last decades, refractory and/or relapsed disease remains a clinical challenge, and relapsed leukemia patients have an exceedingly dismal prognosis. Dysregulation of apoptotic cell death pathways is a leading cause of drug resistance; thus, alternative cell death mechanisms, such as necroptosis, represent an appealing target for the treatment of high-risk malignancies. We and other investigators have shown that activation of receptor interacting protein kinase 1 (RIP1)-dependent apoptosis and necroptosis by second mitochondria derived activator of caspase mimetics (SMs) is an attractive antileukemic strategy not currently exploited by standard chemotherapy. However, the underlying molecular mechanisms that determine sensitivity to SMs have remained elusive. We show that tumor necrosis factor receptor 2 (TNFR2) messenger RNA expression correlates with sensitivity to SMs in primary human leukemia. Functional genetic experiments using clustered regularly interspaced short palindromic repeats/Cas9 demonstrate that TNFR2 and TNFR1, but not the ligand TNF-α, are essential for the response to SMs, revealing a ligand-independent interplay between TNFR1 and TNFR2 in the induction of RIP1-dependent cell death. Further potential TNFR ligands, such as lymphotoxins, were not required for SM sensitivity. Instead, TNFR2 promotes the formation of a RIP1/TNFR1-containing death signaling complex that induces RIP1 phosphorylation and RIP1-dependent apoptosis and necroptosis. Our data reveal an alternative paradigm for TNFR2 function in cell death signaling and provide a rationale to develop strategies for the identification of leukemias with vulnerability to RIP1-dependent cell death for tailored therapeutic interventions.
Collapse
Affiliation(s)
- Júlia Aguadé-Gorgorió
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Scott McComb
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Medical University Berlin, Berlin, Germany
| | - Anna Guinot
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Blerim Marovca
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Caterina Mezzatesta
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Silvia Jenni
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Liridon Abduli
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Martin Schrappe
- Department of General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany; and
| | - Maria Pamela Dobay
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charité Medical University Berlin, Berlin, Germany
| | - Gunnar Cario
- Department of General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany; and
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
27
|
Morrish E, Mackiewicz L, Silke N, Pellegrini M, Silke J, Brumatti G, Ebert G. Combinatorial Treatment of Birinapant and Zosuquidar Enhances Effective Control of HBV Replication In Vivo. Viruses 2020; 12:E901. [PMID: 32824616 PMCID: PMC7472335 DOI: 10.3390/v12080901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a global health threat and affects hundreds of millions worldwide. Small molecule compounds that mimic natural antagonists of inhibitor of apoptosis (IAP) proteins, known as Smac-mimetics (second mitochondria-derived activator of caspases-mimetics), can promote the death of HBV-replicating liver cells and promote clearance of infection in preclinical models of HBV infection. The Smac-mimetic birinapant is a substrate of the multidrug resistance protein 1 (MDR1) efflux pump, and therefore inhibitors of MDR1 increase intracellular concentration of birinapant in MDR1 expressing cells. Liver cells are known to express MDR1 and other drug pump proteins. In this study, we investigated whether combining the clinical drugs, birinapant and the MDR1 inhibitor zosuquidar, increases the efficacy of birinapant in killing HBV expressing liver cells. We showed that this combination treatment is well tolerated and, compared to birinapant single agent, was more efficient at inducing death of HBV-positive liver cells and improving HBV-DNA and HBV surface antigen (HBsAg) control kinetics in an immunocompetent mouse model of HBV infection. Thus, this study identifies a novel and safe combinatorial treatment strategy to potentiate substantial reduction of HBV replication using an IAP antagonist.
Collapse
Affiliation(s)
- Emma Morrish
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (E.M.); (L.M.); (N.S.); (M.P.); (J.S.); (G.B.)
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (E.M.); (L.M.); (N.S.); (M.P.); (J.S.); (G.B.)
| | - Natasha Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (E.M.); (L.M.); (N.S.); (M.P.); (J.S.); (G.B.)
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (E.M.); (L.M.); (N.S.); (M.P.); (J.S.); (G.B.)
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (E.M.); (L.M.); (N.S.); (M.P.); (J.S.); (G.B.)
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gabriela Brumatti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (E.M.); (L.M.); (N.S.); (M.P.); (J.S.); (G.B.)
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (E.M.); (L.M.); (N.S.); (M.P.); (J.S.); (G.B.)
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
28
|
Identification of MYC as an antinecroptotic protein that stifles RIPK1-RIPK3 complex formation. Proc Natl Acad Sci U S A 2020; 117:19982-19993. [PMID: 32753382 PMCID: PMC7443878 DOI: 10.1073/pnas.2000979117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The underlying mechanism of necroptosis in relation to cancer is still unclear. Here, MYC, a potent oncogene, is an antinecroptotic factor that directly suppresses the formation of the RIPK1-RIPK3 complex. Gene set enrichment analyses reveal that the MYC pathway is the most prominently down-regulated signaling pathway during necroptosis. Depletion or deletion of MYC promotes the RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. Interestingly, MYC binds to RIPK3 in the cytoplasm and inhibits the interaction between RIPK1 and RIPK3 in vitro. Furthermore, MYC-nick, a truncated form that is mainly localized in the cytoplasm, prevented TNF-induced necroptosis. Finally, down-regulation of MYC enhances necroptosis in leukemia cells and suppresses tumor growth in a xenograft model upon treatment with birinapant and emricasan. MYC-mediated suppression of necroptosis is a mechanism of necroptosis resistance in cancer, and approaches targeting MYC to induce necroptosis represent an attractive therapeutic strategy for cancer.
Collapse
|
29
|
Elmallah MIY, Cogo S, Constantinescu AA, Elifio-Esposito S, Abdelfattah MS, Micheau O. Marine Actinomycetes-Derived Secondary Metabolites Overcome TRAIL-Resistance via the Intrinsic Pathway through Downregulation of Survivin and XIAP. Cells 2020; 9:cells9081760. [PMID: 32708048 PMCID: PMC7464567 DOI: 10.3390/cells9081760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 01/03/2023] Open
Abstract
Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes’ crude extracts could restore TRAIL sensitivity of the MDA-MB-231 resistant triple negative breast cancer cell line. We demonstrate in this study, that purified secondary metabolites originating from distinct marine actinomycetes (sharkquinone (1), resistomycin (2), undecylprodigiosin (3), butylcyclopentylprodigiosin (4), elloxizanone A (5) and B (6), carboxyexfoliazone (7), and exfoliazone (8)), alone, and in a concentration-dependent manner, induce killing in both MDA-MB-231 and HCT116 cell lines. Combined with TRAIL, these compounds displayed additive to synergistic apoptotic activity in the Jurkat, HCT116 and MDA-MB-231 cell lines. Mechanistically, these secondary metabolites induced and enhanced procaspase-10, -8, -9 and -3 activation leading to an increase in PARP and lamin A/C cleavage. Apoptosis induced by these compounds was blocked by the pan-caspase inhibitor QvD, but not by a deficiency in caspase-8, FADD or TRAIL agonist receptors. Activation of the intrinsic pathway, on the other hand, is likely to explain both their ability to trigger cell death and to restore sensitivity to TRAIL, as it was evidenced that these compounds could induce the downregulation of XIAP and survivin. Our data further highlight that compounds derived from marine sources may lead to novel anti-cancer drug discovery.
Collapse
Affiliation(s)
- Mohammed I. Y. Elmallah
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Correspondence: (M.I.Y.E.); (O.M.)
| | - Sheron Cogo
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Andrei A. Constantinescu
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
| | - Selene Elifio-Esposito
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Mohammed S. Abdelfattah
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Marine Natural Products Unit (MNPRU), Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt
| | - Olivier Micheau
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Correspondence: (M.I.Y.E.); (O.M.)
| |
Collapse
|
30
|
Lamb HM. Double agents of cell death: novel emerging functions of apoptotic regulators. FEBS J 2020; 287:2647-2663. [PMID: 32239637 PMCID: PMC8796856 DOI: 10.1111/febs.15308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Apoptosis is a highly regulated form of cell death that is required for many homeostatic and pathological processes. Recently, alternative cell death pathways have emerged whose regulation is dependent on proteins with canonical functions in apoptosis. Dysregulation of apoptotic signaling frequently underlies the pathogenesis of many cancers, reinforcing the need to develop therapies that initiate alternative cell death processes. This review outlines the convergence points between apoptosis and other death pathways with the purpose of identifying novel strategies for the treatment of apoptosis-refractory cancers. Apoptosis proteins can play key roles in the initiation, regulation, and execution of nonapoptotic death processes that include necroptosis, autophagy, pyroptosis, mPTP-mediated necrosis, and ferroptosis. Notably, recent evidence illustrates that dying cells can exhibit biochemical and molecular characteristics of more than one different type of regulated cell death. Thus, this review highlights the amazing complexity and interconnectivity of cell death processes and also raises the idea that a top-to-bottom approach to describing cell death mechanisms may be inadequate for fully understanding the means by which cells die.
Collapse
Affiliation(s)
- Heather M. Lamb
- W. Harry Feinstone Department of Molecular Microbiology and
Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore,
MD 21205 USA
| |
Collapse
|
31
|
Mezzatesta C, Abduli L, Guinot A, Eckert C, Schewe D, Zaliova M, Vinti L, Marovca B, Tsai YC, Jenni S, Aguade-Gorgorio J, von Stackelberg A, Schrappe M, Locatelli F, Stanulla M, Cario G, Bourquin JP, Bornhauser BC. Repurposing anthelmintic agents to eradicate resistant leukemia. Blood Cancer J 2020; 10:72. [PMID: 32591499 PMCID: PMC7320149 DOI: 10.1038/s41408-020-0339-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Despite rapid progress in genomic profiling in acute lymphoblastic leukemia (ALL), identification of actionable targets and prediction of response to drugs remains challenging. To identify specific vulnerabilities in ALL, we performed a drug screen using primary human ALL samples cultured in a model of the bone marrow microenvironment combined with high content image analysis. Among the 2487 FDA-approved compounds tested, anthelmintic agents of the class of macrocyclic lactones exhibited potent anti-leukemia activity, similar to the already known anti-leukemia agents currently used in induction chemotherapy. Ex vivo validation in 55 primary ALL samples of both precursor B cell and T-ALL including refractory relapse cases confirmed strong anti-leukemia activity with IC50 values in the low micromolar range. Anthelmintic agents increased intracellular chloride levels in primary leukemia cells, inducing mitochondrial outer membrane depolarization and cell death. Supporting the notion that simultaneously targeting cell death machineries at different angles may enhance the cell death response, combination of anthelmintic agents with the BCL-2 antagonist navitoclax or with the chemotherapeutic agent dexamethasone showed synergistic activity in primary ALL. These data reveal anti-leukemia activity of anthelmintic agents and support exploiting drug repurposing strategies to identify so far unrecognized anti-cancer agents with potential to eradicate even refractory leukemia.
Collapse
Affiliation(s)
- Caterina Mezzatesta
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Liridon Abduli
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Anna Guinot
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
| | - Denis Schewe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Luciana Vinti
- Department of Pediatric Haemato-Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Blerim Marovca
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Yi-Chien Tsai
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Silvia Jenni
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Julia Aguade-Gorgorio
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franco Locatelli
- Department of Pediatric Haemato-Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland.
| |
Collapse
|
32
|
Wong PP, Muñoz-Félix JM, Hijazi M, Kim H, Robinson SD, De Luxán-Delgado B, Rodríguez-Hernández I, Maiques O, Meng YM, Meng Q, Bodrug N, Dukinfield MS, Reynolds LE, Elia G, Clear A, Harwood C, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Matchett KP, Henderson NC, Szlosarek PW, Dreger SA, Smith S, Jones JL, Gribben JG, Cutillas PR, Meier P, Sanz-Moreno V, Hodivala-Dilke KM. Cancer Burden Is Controlled by Mural Cell-β3-Integrin Regulated Crosstalk with Tumor Cells. Cell 2020; 181:1346-1363.e21. [PMID: 32473126 DOI: 10.1016/j.cell.2020.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/21/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-β3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-β3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell β3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by β3-integrin, providing a previously unrecognized mechanism of cancer growth control.
Collapse
Affiliation(s)
- Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - José M Muñoz-Félix
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Maruan Hijazi
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hyojin Kim
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Beatriz De Luxán-Delgado
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Irene Rodríguez-Hernández
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Oscar Maiques
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiong Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Natalia Bodrug
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthew Scott Dukinfield
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - George Elia
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Catherine Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Yu Wang
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | | | - Rajinder Singh
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Penglie Zhang
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Thomas J Schall
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Kylie P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Peter W Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sally A Dreger
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sally Smith
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
33
|
Smith HG, Jamal K, Dayal JHS, Tenev T, Kyula‐Currie J, Guppy N, Gazinska P, Roulstone V, Liccardi G, Davies E, Roxanis I, Melcher AA, Hayes AJ, Inman GJ, Harrington KJ, Meier P. RIPK1-mediated immunogenic cell death promotes anti-tumour immunity against soft-tissue sarcoma. EMBO Mol Med 2020; 12:e10979. [PMID: 32419365 PMCID: PMC7278545 DOI: 10.15252/emmm.201910979] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Drugs that mobilise the immune system against cancer are dramatically improving care for many people. Dying cancer cells play an active role in inducing anti-tumour immunity but not every form of death can elicit an immune response. Moreover, resistance to apoptosis is a major problem in cancer treatment and disease control. While the term "immunogenic cell death" is not fully defined, activation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) can induce a type of death that mobilises the immune system against cancer. However, no clinical treatment protocols have yet been established that would harness the immunogenic potential of RIPK1. Here, we report the first pre-clinical application of an in vivo treatment protocol for soft-tissue sarcoma that directly engages RIPK1-mediated immunogenic cell death. We find that RIPK1-mediated cell death significantly improves local disease control, increases activation of CD8+ T cells as well as NK cells, and enhances the survival benefit of immune checkpoint blockade. Our findings warrant a clinical trial to assess the survival benefit of RIPK1-induced cell death in patients with advanced disease at limb extremities.
Collapse
Affiliation(s)
- Henry G Smith
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUK
| | - Kunzah Jamal
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Patrycja Gazinska
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Gianmaria Liccardi
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Emma Davies
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUK
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
- Cancer Research UK Beatson InstituteGlasgowUK
- Division of Molecular PathologyThe Institute of Cancer ResearchLondonUK
- Royal Free London NHS Foundation TrustLondonUK
| | - Alan A Melcher
- The Translational Immunology TeamThe Institute of Cancer ResearchLondonUK
| | - Andrew J Hayes
- The Sarcoma and Melanoma UnitThe Royal Marsden HospitalLondonUK
| | - Gareth J Inman
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
34
|
Zinngrebe J, Schlichtig F, Kraus JM, Meyer M, Boldrin E, Kestler HA, Meyer L, Fischer‐Posovszky P, Debatin K. Biomarker profile for prediction of response to SMAC mimetic monotherapy in pediatric precursor B‐cell acute lymphoblastic leukemia. Int J Cancer 2020; 146:3219-3231. [DOI: 10.1002/ijc.32799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Julia Zinngrebe
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | - Ferdinand Schlichtig
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University Ulm Germany
| | - Malcolm Meyer
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | - Elena Boldrin
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University Ulm Germany
| | - Lüder‐Hinrich Meyer
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | | | - Klaus‐Michael Debatin
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| |
Collapse
|
35
|
Riegger J, Huber-Lang M, Brenner RE. Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. Osteoarthritis Cartilage 2020; 28:685-697. [PMID: 31981738 DOI: 10.1016/j.joca.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Innate immune response and particularly terminal complement complex (TCC) deposition are thought to be involved in the pathogenesis of posttraumatic osteoarthritis. However, the possible role of TCC in regulated cell death as well as chondrocyte hypertrophy and senescence has not been unraveled so far and was first addressed using an ex vivo human cartilage trauma-model. DESIGN Cartilage explants were subjected to blunt impact (0.59 J) and exposed to human serum (HS) and cartilage homogenate (HG) with or without different potential therapeutics: RIPK1-inhibitor Necrostatin-1 (Nec), caspase-inhibitor zVAD, antioxidant N-acetyl cysteine (NAC) and TCC-inhibitors aurintricarboxylic acid (ATA) and clusterin (CLU). Cell death and hypertrophy/senescence-associated markers were evaluated on mRNA and protein level. RESULTS Addition of HS resulted in significantly enhanced TCC deposition on chondrocytes and decrease of cell viability after trauma. This effect was potentiated by HG and was associated with expression of RIPK3, MLKL and CASP8. Cytotoxicity of HS could be prevented by heat-inactivation or specific inhibitors, whereby combination of Nec and zVAD as well as ATA exhibited highest cell protection. Moreover, HS+HG exposition enhanced the gene expression of CXCL1, IL-8, RUNX2 and VEGFA as well as secretion of IL-6 after cartilage trauma. CONCLUSIONS Our findings imply crucial involvement of the complement system and primarily TCC in regulated cell death and phenotypic changes of chondrocytes after cartilage trauma. Inhibition of TCC formation or downstream signaling largely modified serum-induced pathophysiologic effects and might therefore represent a therapeutic target to maintain the survival and chondrogenic character of cartilage cells.
Collapse
Affiliation(s)
- J Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - M Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - R E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany.
| |
Collapse
|
36
|
Brack E, Wachtel M, Wolf A, Kaech A, Ziegler U, Schäfer BW. Fenretinide induces a new form of dynamin-dependent cell death in pediatric sarcoma. Cell Death Differ 2020; 27:2500-2516. [PMID: 32144381 DOI: 10.1038/s41418-020-0518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a highly malicious childhood malignancy characterized by specific chromosomal translocations mostly encoding the oncogenic transcription factor PAX3-FOXO1 and therefore also referred to as fusion-positive RMS (FP-RMS). Previously, we have identified fenretinide (retinoic acid p-hydroxyanilide) to affect PAX3-FOXO1 expression levels as well as FP-RMS cell viability. Here, we characterize the mode of action of fenretinide in more detail. First, we demonstrate that fenretinide-induced generation of reactive oxygen species (ROS) depends on complex II of the mitochondrial respiratory chain, since ROS scavenging as well as complexing of iron completely abolished cell death. Second, we co-treated cells with a range of pharmacological inhibitors of specific cell death pathways including z-vad (apoptosis), necrostatin-1 (necroptosis), 3-methyladenine (3-MA) (autophagy), and ferrostatin-1 (ferroptosis) together with fenretinide. Surprisingly, none of these inhibitors was able to prevent cell death. Also genetic depletion of key players in the apoptotic and necroptotic pathway (BAK, BAX, and RIPK1) confirmed the pharmacological data. Interestingly however, electron microscopy of fenretinide-treated cells revealed an excessive accumulation of cytoplasmic vacuoles, which were distinct from autophagosomes. Further flow cytometry and fluorescence microscopy experiments suggested a hyperstimulation of macropinocytosis, leading to an accumulation of enlarged early and late endosomes. Surprisingly, pharmacological inhibition as well as genetic depletion of large dynamin GTPases completely abolished fenretinide-induced vesicle formation and subsequent cell death, suggesting a new form of dynamin-dependent programmed cell death. Taken together, our data identify a new form of cell death mediated through the production of ROS by fenretinide treatment, highlighting the value of this compound for treatment of sarcoma patients including FP-RMS.
Collapse
Affiliation(s)
- Eva Brack
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anja Wolf
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Abstract
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
Collapse
|
38
|
Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, Pölönen P, Hohtari H, Saeed K, Hannunen T, Ellonen P, Steinberger P, Kankainen M, Aittokallio T, Keränen MAI, Korhonen M, Mustjoki S. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood 2020; 135:597-609. [PMID: 31830245 PMCID: PMC7098811 DOI: 10.1182/blood.2019002121] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
Collapse
MESH Headings
- Cell Line, Tumor
- Clustered Regularly Interspaced Short Palindromic Repeats
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/immunology
- Drug Resistance, Neoplasm/immunology
- Drug Screening Assays, Antitumor/methods
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Receptors, Chimeric Antigen
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jan Koski
- Finnish Red Cross Blood Service, Helsinki, Finland
| | | | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Judith Leitner
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; and
| | - Helena Hohtari
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tiina Hannunen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland
- Department of Mathematics and Statistics, University of Turku, Quantum, Turku, Finland
| | - Mikko A I Keränen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | | | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
39
|
Jin J, Xu Y, Huo L, Ma L, Scott AW, Pizzi MP, Li Y, Wang Y, Yao X, Song S, Ajani JA. An improved strategy for CRISPR/Cas9 gene knockout and subsequent wildtype and mutant gene rescue. PLoS One 2020; 15:e0228910. [PMID: 32053639 PMCID: PMC7018052 DOI: 10.1371/journal.pone.0228910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/27/2019] [Indexed: 12/04/2022] Open
Abstract
A fluorescence marker mOrange was inserted to the popular pLentiCrispr-V2 to create pLentiCrispr-V2-mOrange (V2mO) that contained both a puromycin selection and a fluorescent marker, making viral production and target transduction visible. Lentiviruses packaged with this plasmid and appropriate guide RNAs (gRNAs) successfully knocked out the genes RhoA, Gli1, and Gal3 in human gastric cancer cell lines. Cas9-gRNA editing efficiency could be estimated directly from Sanger electropherograms of short polymerase chain reaction products around the gRNA regions in Cas9-gRNA transduced cells. Single cloning of transduced target cell pools must be performed to establish stable knockout clones. Rescue of wildtype (RhoA and Gal3) and mutant (RhoA.Y42C) genes into knockout cells was successful only when cDNAs, where gRNAs bind, were modified by three nucleotides while the amino acid sequences remained unchanged. Stringent on-target CRISPR/Cas9 editing was observed in Gal3 gene, but not in RhoA gene since RhoA.Y42C already presented a nucleotide change in gRNA5 binding site. In summary, our improved strategy added these advantages: adding visual marker to the popular lentiviral system, monitoring lentiviral production and transduction efficiencies, cell-sorting Cas9+ cells in target cells by fluorescence-activated cell sorting, direct estimation of gene editing efficiency of target cell pools by short PCR electropherograms around gRNA binding sites, and successful rescue of wildtype and mutant genes in knockout cells, overcoming Cas9 editing by modifying cDNAs.
Collapse
Affiliation(s)
- Jiankang Jin
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Yan Xu
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Longfei Huo
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Lang Ma
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Ailing W. Scott
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Melissa Pool Pizzi
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Yuan Li
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Ying Wang
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Xiaodan Yao
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Shumei Song
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| | - Jaffer A. Ajani
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX, United States of America
| |
Collapse
|
40
|
Future Therapeutic Directions for Smac-Mimetics. Cells 2020; 9:cells9020406. [PMID: 32053868 PMCID: PMC7072318 DOI: 10.3390/cells9020406] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.
Collapse
|
41
|
The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells 2020; 9:cells9010207. [PMID: 31947615 PMCID: PMC7017284 DOI: 10.3390/cells9010207] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
One of the hallmarks of cancer cells is their ability to evade cell death via apoptosis. The inhibitor of apoptosis proteins (IAPs) are a family of proteins that act to promote cell survival. For this reason, upregulation of IAPs is associated with a number of cancer types as a mechanism of resistance to cell death and chemotherapy. As such, IAPs are considered a promising therapeutic target for cancer treatment, based on the role of IAPs in resistance to apoptosis, tumour progression and poor patient prognosis. The mitochondrial protein smac (second mitochondrial activator of caspases), is an endogenous inhibitor of IAPs, and several small molecule mimetics of smac (smac-mimetics) have been developed in order to antagonise IAPs in cancer cells and restore sensitivity to apoptotic stimuli. However, recent studies have revealed that smac-mimetics have broader effects than was first attributed. It is now understood that they are key regulators of innate immune signalling and have wide reaching immuno-modulatory properties. As such, they are ideal candidates for immunotherapy combinations. Pre-clinically, successful combination therapies incorporating smac-mimetics and oncolytic viruses, as with chimeric antigen receptor (CAR) T cell therapy, have been reported, and clinical trials incorporating smac-mimetics and immune checkpoint blockade are ongoing. Here, the potential of IAP antagonism to enhance immunotherapy strategies for the treatment of cancer will be discussed.
Collapse
|
42
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
43
|
Bohannon DG, Wang Y, Reinhart CH, Hattler JB, Luo J, Okhravi HR, Zhang J, Li Q, Kuroda MJ, Kim J, Kim WK. Perivascular macrophages in the neonatal macaque brain undergo massive necroptosis after simian immunodeficiency virus infection. Brain Pathol 2019; 30:603-613. [PMID: 31834964 DOI: 10.1111/bpa.12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
We previously showed that rhesus macaques neonatally infected with simian immunodeficiency virus (SIV) do not develop SIV encephalitis (SIVE) and maintain low brain viral loads despite having similar plasma viral loads compared to SIV-infected adults. We hypothesize that differences in myeloid cell populations that are the known target of SIV and HIV in the brain contribute to the lack of neonatal susceptibility to lentivirus-induced encephalitis. Using immunohistochemistry and immunofluorescence microscopy, we examined the frontal cortices from uninfected and SIV-infected infant and adult macaques (n = 8/ea) as well as adults with SIVE (n = 4) to determine differences in myeloid cell populations. The number of CD206+ brain perivascular macrophages (PVMs) was significantly greater in uninfected infants than in uninfected adults and was markedly lower in SIV-infected infants while microglia numbers were unchanged across groups. CD206+ PVMs, which proliferate after infection in SIV-infected adults, did not undergo proliferation in infants. While virtually all CD206+ cells in adults are also CD163+, infants have a distinct CD206 single-positive population in addition to the double-positive population commonly seen in adults. Notably, we found that more than 60% of these unique CD206+CD163- PVMs in SIV-infected infants were positive for cleaved caspase-3, an indicator of apoptosis, and that nearly 100% of this subset were concomitantly positive for the necroptosis marker receptor-interacting protein kinase-3 (RIP3). These findings show that distinct subpopulations of PVMs found in infants undergo programmed cell death instead of proliferation following SIV infection, which may lead to the absence of PVM-dependent SIVE and the limited size of the virus reservoir in the infant brain.
Collapse
Affiliation(s)
- Diana G Bohannon
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Yueying Wang
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Colin H Reinhart
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Julian B Hattler
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Jiangtao Luo
- EVMS-Sentara Healthcare Analytics and Delivery Science Institute, Eastern Virginia Medical School, Norfolk, VA
| | - Hamid R Okhravi
- Glennan Center for Geriatrics and Gerontology, Eastern Virginia Medical School, Norfolk, VA
| | - Jianshui Zhang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Marcelo J Kuroda
- Center for Comparative Medicine, University of California, Davis, Davis, CA
| | - Jayoung Kim
- Cedars-Sinai Medical Center, University of California, Los Angeles, Los Angeles, CA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
44
|
TGF-β Determines the Pro-migratory Potential of bFGF Signaling in Medulloblastoma. Cell Rep 2019; 23:3798-3812.e8. [PMID: 29949765 DOI: 10.1016/j.celrep.2018.05.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/13/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
The microenvironment shapes cell behavior and determines metastatic outcomes of tumors. We addressed how microenvironmental cues control tumor cell invasion in pediatric medulloblastoma (MB). We show that bFGF promotes MB tumor cell invasion through FGF receptor (FGFR) in vitro and that blockade of FGFR represses brain tissue infiltration in vivo. TGF-β regulates pro-migratory bFGF function in a context-dependent manner. Under low bFGF, the non-canonical TGF-β pathway causes ROCK activation and cortical translocation of ERK1/2, which antagonizes FGFR signaling by inactivating FGFR substrate 2 (FRS2), and promotes a contractile, non-motile phenotype. Under high bFGF, negative-feedback regulation of FRS2 by bFGF-induced ERK1/2 causes repression of the FGFR pathway. Under these conditions, TGF-β counters inactivation of FRS2 and restores pro-migratory signaling. These findings pinpoint coincidence detection of bFGF and TGF-β signaling by FRS2 as a mechanism that controls tumor cell invasion. Thus, targeting FRS2 represents an emerging strategy to abrogate aberrant FGFR signaling.
Collapse
|
45
|
Abstract
Necroptosis is a tightly regulated form of necrosis that requires the activation of receptor-interacting protein (RIP) kinases RIPK1 and RIPK3, as well as the RIPK3 substrate mixed lineage kinase domain-like protein (MLKL). Because of membrane rupture, necroptotic cells release damage-associated molecular patterns (DAMPs) that evoke immune responses. Necroptosis is emerging as an important cellular response in the modulation of cancer initiation, progression, and metastasis. Necroptosis of cancer cells is considered to be an immunogenic cell death capable of activating anti-tumor immunity. Necroptosis also participates in the promotion of myeloid cell-induced adaptive immune suppression and thus contributes to oncogenesis. In addition, necroptosis of endothelial cells and tumor cells is conducive to tumor metastasis. In this review, we summarize the current knowledge of the complex role of necroptosis in cancer and discuss the potential of targeting necroptosis components for cancer therapies.
Collapse
Affiliation(s)
- Fang Zhu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou 215123, China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Wei Zhang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou 215123, China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Tao Yang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou 215123, China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Su-Dan He
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou 215123, China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| |
Collapse
|
46
|
Thakur B, Kumar Y, Bhatia A. Programmed necrosis and its role in management of breast cancer. Pathol Res Pract 2019; 215:152652. [PMID: 31570277 DOI: 10.1016/j.prp.2019.152652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the major causes of cancer related deaths in women worldwide. A major factor responsible for treatment failure in breast cancer is the development of resistance to commonly used chemotherapeutic drugs leading to disease relapse. Several studies have shown dysregulation of molecular machinery of apoptosis, the major programmed cell death pathway in breast malignancies. Thus, there is an unmet need to search for an alternative cell death pathway which can work when apoptosis is compromised. Necroptosis or programmed necrosis is a relatively recently described entity which has attracted attention in this context. Classically, even in physiological conditions necroptosis is found to act if apoptosis is not functional due to some reason. Recently, more and more studies are being conducted in different malignancies to explore the possibility and utility of inducing cell death by necroptosis. The present review describes the key molecular players involved in necroptotic pathway and their status in breast cancer. In addition, the research done to utilize this pathway for treatment of breast cancer has also been highlighted.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
47
|
Rizk J, Kaplinsky J, Agerholm R, Kadekar D, Ivars F, Agace WW, Wong WWL, Szucs MJ, Myers SA, Carr SA, Waisman A, Bekiaris V. SMAC mimetics promote NIK-dependent inhibition of CD4 + T H17 cell differentiation. Sci Signal 2019; 12:eaaw3469. [PMID: 31455723 DOI: 10.1126/scisignal.aaw3469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Second mitochondria-derived activator of caspase (SMAC) mimetics (SMs) are selective antagonists of the inhibitor of apoptosis proteins (IAPs), which activate noncanonical NF-κB signaling and promote tumor cell death. Through gene expression analysis, we found that treatment of CD4+ T cells with SMs during T helper 17 (TH17) cell differentiation disrupted the balance between two antagonistic transcription factor modules. Moreover, proteomics analysis revealed that SMs altered the abundance of proteins associated with cell cycle, mitochondrial activity, and the balance between canonical and noncanonical NF-κB signaling. Whereas SMs inhibited interleukin-17 (IL-17) production and ameliorated TH17 cell-driven inflammation, they stimulated IL-22 secretion. Mechanistically, SM-mediated activation of NF-κB-inducing kinase (NIK) and the transcription factors RelB and p52 directly suppressed Il17a expression and IL-17A protein production, as well as the expression of a number of other immune genes. Induction of IL-22 production correlated with the NIK-dependent reduction in cMAF protein abundance and the enhanced activity of the aryl hydrocarbon receptor. Last, SMs also increased IL-9 and IL-13 production and, under competing conditions, favored the differentiation of naïve CD4+ T cells into TH2 cells rather than TH17 cells. These results demonstrate that SMs shape the gene expression and protein profiles of TH17 cells and inhibit TH17 cell-driven autoimmunity.
Collapse
Affiliation(s)
- John Rizk
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Joseph Kaplinsky
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Rasmus Agerholm
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Darshana Kadekar
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Fredrik Ivars
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - William W Agace
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Matthew J Szucs
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samuel A Myers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, Mainz 55131, Germany
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
48
|
Inhibitor of apoptosis proteins are potential targets for treatment of granulosa cell tumors - implications from studies in KGN. J Ovarian Res 2019; 12:76. [PMID: 31412918 PMCID: PMC6694575 DOI: 10.1186/s13048-019-0549-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 01/23/2023] Open
Abstract
Background Granulosa cell tumors (GCTs) are derived from proliferating granulosa cells of the ovarian follicle. They are known for their late recurrence and most patients with an aggressive form die from their disease. There are no treatment options for this slowly proliferating tumor besides surgery and chemotherapy. In a number of tumors, analogs of the second mitochondria-derived activator of caspases (SMAC), alone or in combination with other molecules, such as TNFα, are evolving as new treatment options. SMAC mimetics block inhibitor of apoptosis proteins (IAPs), which bind caspases (e.g. XIAP), or activate the pro-survival NF-κB pathway (e.g. cIAP1/2). Expression of IAPs by GCTs is yet not fully elucidated but recently XIAP and its inhibition by SMAC mimetics in a combination therapy was described to induce apoptosis in a GCT cell line, KGN. We evaluated the expression of cIAP1 in GCTs and elucidated the effects of the SMAC mimetic BV-6 using KGN as a model. Results Employing immunohistochemistry, we observed cIAP1 expression in a tissue microarray (TMA) of 42 GCT samples. RT-PCR confirmed expression of cIAP1/2, as well as XIAP, in primary, patient-derived GCTs and in KGN. We therefore tested the ability of the bivalent SMAC mimetic BV-6, which is known to inhibit cIAP1/2 and XIAP, to induce cell death in KGN. A dose response study indicated an EC50 ≈ 8 μM for both, early (< 8) and advanced (> 80) passages, which differ in growth rate and presumably aggressiveness. Quantitative RT-PCR showed upregulation of NF-κB regulated genes in BV-6 stimulated cells. Blocking experiments with the pan-caspase inhibitor Z-VAD-FMK indicated caspase-dependence. A concentration of 20 μM Z-VAD-FMK was sufficient to significantly reduce apoptosis. This cell death was further substantiated by results of Western Blot studies. Cleaved caspase 3 and cleaved PARP became evident in the BV-6 treated group. Conclusions Taken together, the results show that BV-6 is able to induce apoptosis in KGN cells. This approach may therefore offer a promising therapeutic avenue to treat GCTs. Electronic supplementary material The online version of this article (10.1186/s13048-019-0549-6) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
McComb S, Chan PK, Guinot A, Hartmannsdottir H, Jenni S, Dobay MP, Bourquin JP, Bornhauser BC. Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. SCIENCE ADVANCES 2019; 5:eaau9433. [PMID: 31392262 PMCID: PMC6669006 DOI: 10.1126/sciadv.aau9433] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 06/26/2019] [Indexed: 05/15/2023]
Abstract
Apoptosis is a complex multi-step process driven by caspase-dependent proteolytic cleavage cascades. Dysregulation of apoptosis promotes tumorigenesis and limits the efficacy of chemotherapy. To assess the complex interactions among caspases during apoptosis, we disrupted caspase-8, -9, -3, -7, or -6 and combinations thereof, using CRISPR-based genome editing in living human leukemia cells. While loss of apical initiator caspase-8 or -9 partially blocked extrinsic or intrinsic apoptosis, respectively, only combined loss of caspase-3 and -7 fully inhibited both apoptotic pathways, with no discernible effect of caspase-6 deficiency alone or in combination. Caspase-3/7 double knockout cells exhibited almost complete inhibition of caspase-8 or -9 activation. Furthermore, deletion of caspase-3 and -7 decreased mitochondrial depolarization and cytochrome c release upon apoptosis activation. Thus, activation of effector caspase-3 or -7 sets off explosive feedback amplification of upstream apoptotic events, which is a key feature of apoptotic signaling essential for efficient apoptotic cell death.
Collapse
Affiliation(s)
- Scott McComb
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Pik Ki Chan
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Anna Guinot
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Holmfridur Hartmannsdottir
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Silvia Jenni
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Maria Pamela Dobay
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
- IQVIA Technology and Services AG Theaterstrasse 4, 4051 Basel, Switzerland
| | - Jean-Pierre Bourquin
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Beat C. Bornhauser
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| |
Collapse
|
50
|
Fauster A, Rebsamen M, Willmann KL, César-Razquin A, Girardi E, Bigenzahn JW, Schischlik F, Scorzoni S, Bruckner M, Konecka J, Hörmann K, Heinz LX, Boztug K, Superti-Furga G. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ 2019; 26:1138-1155. [PMID: 30237509 PMCID: PMC6748104 DOI: 10.1038/s41418-018-0192-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/04/2018] [Accepted: 07/22/2018] [Indexed: 12/13/2022] Open
Abstract
Regulation of cell and tissue homeostasis by programmed cell death is a fundamental process with wide physiological and pathological implications. The advent of scalable somatic cell genetic technologies creates the opportunity to functionally map such essential pathways, thereby identifying potential disease-relevant components. We investigated the genetic basis underlying necroptotic cell death by performing a complementary set of loss-of-function and gain-of-function genetic screens. To this end, we established FADD-deficient haploid human KBM7 cells, which specifically and efficiently undergo necroptosis after a single treatment with either TNFα or the SMAC mimetic compound birinapant. A series of unbiased gene-trap screens identified key signaling mediators, such as TNFR1, RIPK1, RIPK3, and MLKL. Among the novel components, we focused on the zinc transporter SLC39A7, whose knock-out led to necroptosis resistance by affecting TNF receptor surface levels. Orthogonal, solute carrier (SLC)-focused CRISPR/Cas9-based genetic screens revealed the exquisite specificity of SLC39A7, among ~400 SLC genes, for TNFR1-mediated and FAS-mediated but not TRAIL-R1-mediated responses. Mechanistically, we demonstrate that loss of SLC39A7 resulted in augmented ER stress and impaired receptor trafficking, thereby globally affecting downstream signaling. The newly established cellular model also allowed genome-wide gain-of-function screening for genes conferring resistance to necroptosis via the CRISPR/Cas9-based synergistic activation mediator approach. Among these, we found cIAP1 and cIAP2, and characterized the role of TNIP1, which prevented pathway activation in a ubiquitin-binding dependent manner. Altogether, the gain-of-function and loss-of-function screens described here provide a global genetic chart of the molecular factors involved in necroptosis and death receptor signaling, prompting further investigation of their individual contribution and potential role in pathological conditions.
Collapse
Affiliation(s)
- Astrid Fauster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| | - Katharina L Willmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
| | - Adrian César-Razquin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Fiorella Schischlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Stefania Scorzoni
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Manuela Bruckner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Justyna Konecka
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Katrin Hörmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|