1
|
Diorio C, Teachey DT, Grupp SA. Allogeneic chimeric antigen receptor cell therapies for cancer: progress made and remaining roadblocks. Nat Rev Clin Oncol 2025; 22:10-27. [PMID: 39548270 DOI: 10.1038/s41571-024-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are revolutionizing cancer therapy, particularly for haematological malignancies, conferring durable and sometimes curative responses in patients with advanced-stage disease. The CAR T cell products currently approved for clinical use are all autologous and are often effective; however, in patients who are lymphopenic and/or heavily pretreated with chemotherapy, autologous T cells can be difficult to harvest in sufficient numbers or have functional impairments that might ultimately render them less efficacious. Moreover, autologous products take several weeks to produce, and each product can be used in only one patient. By contrast, allogeneic CAR T cells can be produced for many patients using T cells from a single healthy donor, can be optimized for safety and efficacy, can be instantly available for 'off-the-shelf' use and, therefore, might also be more cost-effective. Despite these potential advantages, the development of allogeneic CAR T cells has lagged behind that of autologous products, owing to the additional challenges such as avoiding graft-versus-host disease and host-mediated graft rejection. Over the past few years, the development of advanced genome-editing techniques has facilitated the generation of novel allogeneic CAR T cell products. Furthermore, CAR cell products derived from other cell types such as induced pluripotent stem cells and natural killer cells are being investigated for clinical use. In this Review, we discuss the potential of allogeneic CAR cell products to expand life-saving immunotherapy to a much broader population of patients in the coming years, the progress made to date and strategies to overcome remaining hurdles.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephan A Grupp
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Agliardi G, Dias J, Rampotas A, Garcia J, Roddie C. Accelerating and optimising CAR T-cell manufacture to deliver better patient products. Lancet Haematol 2025; 12:e57-e67. [PMID: 39510106 DOI: 10.1016/s2352-3026(24)00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 11/15/2024]
Abstract
Autologous chimeric antigen receptor (CAR) T-cell therapy has transformed the management of B-cell leukaemia and lymphoma. However, current manufacturing processes present logistical hurdles, restricting broader application. As clinical outcomes can be heavily influenced by the quality of autologous starting materials and production processes, strategies to improve product phenotype are crucial. Short manufacturing processes have the advantage of bringing products to patients more quickly and, in parallel, avoiding the highly differentiated and exhausted CAR T-cell phenotypes associated with prolonged ex vivo manufacture. This Review examines advances in our understanding of what constitutes an effective CAR T-cell product and approaches to improve product quality. Historically, strategies have relied on adjustments in medium composition and selection of less differentiated cell subtypes. Since 2020, the field has been shifting towards reduced-expansion protocols, no-activation protocols, and point-of-care manufacturing. These approaches have the advantage of a rapid turnaround while maintaining a less differentiated and exhausted phenotype. These efforts are leading to ultrarapid production methods and even elimination of ex vivo manipulation with the use of in vivo manufacturing approaches. In this Review, we focus on the advances needed to accelerate CAR T-cell manufacture (including near-patient methods), with an emphasis on improved therapeutic efficacy and rapid turnaround time, and simplified quality control procedures required to fully realise the clinical potential of CAR T-cell therapies.
Collapse
Affiliation(s)
- Giulia Agliardi
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Juliana Dias
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Alexandros Rampotas
- Cancer Institute, University College London, London, UK; Department of Haematology, University College London Hospitals, London, UK
| | - John Garcia
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Claire Roddie
- Cancer Institute, University College London, London, UK; Department of Haematology, University College London Hospitals, London, UK.
| |
Collapse
|
3
|
Kearl TJ, Furqan F, Shah NN. CAR T-cell therapy for B-cell lymphomas: outcomes and resistance mechanisms. Cancer Metastasis Rev 2024; 44:12. [PMID: 39617795 DOI: 10.1007/s10555-024-10228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are an exciting curative intent approach to the treatment of non-Hodgkin lymphomas (NHLs). Several products have received FDA approval for 2nd or 3rd line indications, and studies are underway for their use earlier in the disease course. These CAR T cells are ex vivo manufactured autologous cell products that specifically target tumor antigens to optimize tumor specificity and minimize off-tumor side effects-in NHLs, this is typically achieved by targeting B-cell antigens. Engagement of the CAR and corresponding antigen is designed to result in T-cell activation and subsequent tumor clearance. While curative for many NHL patients, too many patients fail to respond to or relapse following CAR T-cell treatment, and salvage options post CAR T-cell therapy are limited. Treatment failures occur because of myriad resistance mechanisms including CAR T-cell dysfunction, generalized immune dysregulation, and intrinsic tumor resistance. Focusing on patients with NHL, we review the clinical outcomes of CAR T-cell therapy and the major resistance mechanisms that lead to poor outcomes. We also review the many innovative and encouraging strategies that are being developed to improve CAR T-cell therapy for NHL.
Collapse
Affiliation(s)
- Tyce J Kearl
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fateeha Furqan
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nirav N Shah
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Chang JF, Landmann JH, Chang TC, Selli ME, Tenzin Y, Warrington JM, Ritchey J, Hsu YS, Slade M, Gupta DK, DiPersio JF, Holehouse AS, Singh N. Rational Protein Engineering to Enhance MHC-Independent T-cell Receptors. Cancer Discov 2024; 14:2109-2121. [PMID: 38980802 PMCID: PMC11530325 DOI: 10.1158/2159-8290.cd-23-1393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/04/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Chimeric antigen receptor (CAR)-based therapies have pioneered synthetic cellular immunity but remain limited in their long-term efficacy. Emerging data suggest that dysregulated CAR-driven T-cell activation causes T-cell dysfunction and therapeutic failure. To re-engage the precision of the endogenous T-cell response, we designed MHC-independent T-cell receptors (miTCR) by linking antibody variable domains to T-cell receptor constant chains. Using predictive modeling, we observed that this standard "cut and paste" approach to synthetic protein design resulted in myriad biochemical conflicts at the hybrid variable-constant domain interface. Through iterative modeling and sequence modifications, we developed structure-enhanced miTCRs which significantly improved receptor-driven T-cell function across multiple tumor models. We found that 41BB costimulation specifically prolonged miTCR T-cell persistence and enabled improved leukemic control in vivo compared with classic CAR T cells. Collectively, we have identified core features of hybrid receptor structure responsible for regulating function. Significance: Improving the durability of engineered T-cell immunotherapies is critical to enhancing efficacy. We used a structure-informed design to evolve improved miTCR function across several models. This work underscores the central role of synthetic receptor structure in T-cell function and provides a framework for improved receptor engineering.
Collapse
Affiliation(s)
- Ju-Fang Chang
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - Jack H. Landmann
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - Tien-Ching Chang
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - Mehmet Emrah Selli
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - Yangdon Tenzin
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - John M. Warrington
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - Julie Ritchey
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - Yu-Sung Hsu
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - Michael Slade
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - Deepesh Kumar Gupta
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - John F. DiPersio
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine
- Center for Biomolecular Condensates, Washington University School of Medicine
| | - Nathan Singh
- Division of Oncology, Section of Cellular Therapy, Washington University School of Medicine
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine
| |
Collapse
|
5
|
Grégoire C, Coutinho de Oliveira B, Caimi PF, Caers J, Melenhorst JJ. Chimeric antigen receptor T-cell therapy for haematological malignancies: Insights from fundamental and translational research to bedside practice. Br J Haematol 2024; 205:1699-1713. [PMID: 39262037 DOI: 10.1111/bjh.19751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Autologous chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of lymphoid malignancies, leading to the approval of CD19-CAR T cells for B-cell lymphomas and acute leukaemia, and more recently, B-cell maturation antigen-CAR T cells for multiple myeloma. The long-term follow-up of patients treated in the early clinical trials demonstrates the possibility for long-term remission, suggesting a cure. This is associated with a low incidence of significant long-term side effects and a rapid improvement in the quality of life for responders. In contrast, other types of immunotherapies require prolonged treatments or carry the risk of long-term side effects impairing the quality of life. Despite impressive results, some patients still experience treatment failure or ultimately relapse, underscoring the imperative to improve CAR T-cell therapies and gain a better understanding of their determinants of efficacy to maximize positive outcomes. While the next-generation of CAR T cells will undoubtingly be more potent, there are already opportunities for optimization when utilizing the currently available CAR T cells. This review article aims to summarize the current evidence from clinical, translational and fundamental research, providing clinicians with insights to enhance their understanding and use of CAR T cells.
Collapse
Affiliation(s)
- Céline Grégoire
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Clinical Hematology and Laboratory of Hematology (GIGA I3), University Hospital Center of Liège and University of Liège, Liège, Belgium
| | - Beatriz Coutinho de Oliveira
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paolo F Caimi
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Jo Caers
- Department of Clinical Hematology and Laboratory of Hematology (GIGA I3), University Hospital Center of Liège and University of Liège, Liège, Belgium
| | - Jan Joseph Melenhorst
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
7
|
Han J, Huang J, Hu J, Shi W, Wang H, Zhang W, Wang J, Shao H, Shen H, Bo H, Tao C, Wu F. miR-744-5p promotes T-cell differentiation via inhibiting STK11. Gene 2024; 926:148635. [PMID: 38830518 DOI: 10.1016/j.gene.2024.148635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
T cells utilized in adoptive T cell immunotherapy are typically activated in vitro. Although these cells demonstrate proliferation and anti-tumor activity following activation, they often face difficulties in sustaining long-term survival post-reinfusion. This issue is attributed to the induction of T cells into a terminal differentiation state upon activation, whereas early-stage differentiated T cells exhibit enhanced proliferation potential and survival capabilities. In previous study, we delineated four T cell subsets at varying stages of differentiation: TN, TSCM, TCM, and TEM, and acquired their miRNA expression profiles via high-throughput sequencing. In the current study, we performed a differential analysis of miRNA across these subsets, identifying a distinct miRNA, hsa-miR-744-5p, characterized by progressively increasing expression levels upon T cell activation. This miRNA is not expressed in TSCM but is notably present in TEM. Target genes of miR-744-5p were predicted, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, revealing that these genes predominantly associate with pathways related to the 'Wnt signaling pathway'. We established that miR-744-5p directly targets STK11, influencing its expression. Further, we investigated the implications of miR-744-5p on T cell differentiation and functionality. Overexpression of miR-744-5p in T cells resulted in heightened apoptosis, reduced proliferation, an increased proportion of late-stage differentiated T cells, and elevated secretion of the cytokine TNF-α. Moreover, post-overexpression of miR-744-5p led to a marked decline in the expression of early-stage differentiation-associated genes in T cells (CCR7, CD62L, LEF1, BCL2) and a significant rise in late-stage differentiation-associated genes (KLRG1, PDCD1, GZMB). In conclusion, our findings affirm that miR-744-5p contributes to the progressive differentiation of T cells by downregulating the STK11 gene expression.
Collapse
Affiliation(s)
- Jiayi Han
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jieming Hu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenkai Shi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongqiong Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaben Bo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
8
|
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 2024:10.1038/s41577-024-01093-7. [PMID: 39433885 DOI: 10.1038/s41577-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.
Collapse
Affiliation(s)
- Susana Minguet
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Department of Synthetic Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcela V Maus
- Cellular Immunotherapy Program and Krantz Family Center for Cancer Research, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Canciani G, Fabozzi F, Pinacchio C, Ceccarelli M, Del Bufalo F. Developing CAR T-Cell Therapies for Pediatric Solid Tumors. Paediatr Drugs 2024:10.1007/s40272-024-00653-7. [PMID: 39382819 DOI: 10.1007/s40272-024-00653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/10/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of hematological malignancies, inducing notable and durable clinical responses. However, for solid tumors, including but not limited to pediatric tumors, several peculiar biological features posed substantial challenges for achieving comparable results. Despite sound pre-clinical evidence of the ability of CAR T cells to eradicate solid malignancies, their activity remains suboptimal when facing the in vivo complexity of solid tumors, characterized by antigen heterogeneity, scarce T-cell infiltration, and an immunosuppressive microenvironment. Neuroblastoma was amongst the first tumors to be evaluated as a potential candidate for GD2-targeting CAR T cells, which recently documented promising results in high-risk, heavily pre-treated patients. Moreover, innovative engineering strategies for generating more potent and persistent CAR T cells suggest the possibility to reproduce, and potentially improve, these promising results on a larger scale. In the next years, harnessing the full therapeutic potential of CAR T cells and other immunotherapeutic strategies may open new possibilities for effectively treating the most aggressive forms of pediatric tumors.
Collapse
Affiliation(s)
- Gabriele Canciani
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudia Pinacchio
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Manuela Ceccarelli
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
10
|
Jallouk AP, Sengsayadeth S, Savani BN, Dholaria B, Oluwole O. Allogeneic and other innovative chimeric antigen receptor platforms. Clin Hematol Int 2024; 6:61-72. [PMID: 39351308 PMCID: PMC11441714 DOI: 10.46989/001c.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 10/04/2024] Open
Affiliation(s)
- Andrew P Jallouk
- Medicine, Hematology OncologyVanderbilt University Medical Center
| | | | - Bipin N Savani
- Medicine, Hematology OncologyVanderbilt University Medical Center
| | | | - Olalekan Oluwole
- Medicine, Hematology OncologyVanderbilt University Medical Center
| |
Collapse
|
11
|
Mansoori S, Noei A, Maali A, Seyed-Motahari SS, Sharifzadeh Z. Recent updates on allogeneic CAR-T cells in hematological malignancies. Cancer Cell Int 2024; 24:304. [PMID: 39227937 PMCID: PMC11370086 DOI: 10.1186/s12935-024-03479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
CAR-T cell therapy is known as an effective therapy in patients with hematological malignancies. Since 2017, several autologous CAR-T cell (auto-CAR-T) drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of some kinds of relapsed/refractory hematological malignancies. However, some patients fail to respond to these drugs due to high manufacturing time, batch-to-batch variation, poor quality and insufficient quantity of primary T cells, and their insufficient expansion and function. CAR-T cells prepared from allogeneic sources (allo-CAR-Ts) can be an alternative option to overcome these obstacles. Recently, several allo-CAR-Ts have entered into the early clinical trials. Despite their promising preclinical and clinical results, there are two main barriers, including graft-versus-host disease (GvHD) and allo-rejection that may decline the safety and efficacy of allo-CAR-Ts in the clinic. The successful development of these products depends on the starter cell source, the gene editing method, and the ability to escape immune rejection and prevent GvHD. Here, we summarize the gene editing technologies and the potential of various cell sources for developing allo-CAR-Ts and highlight their advantages for the treatment of hematological malignancies. We also describe preclinical and clinical data focusing on allo-CAR-T therapy in blood malignancies and discuss challenges and future perspectives of allo-CAR-Ts for therapeutic applications.
Collapse
Affiliation(s)
| | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | |
Collapse
|
12
|
Bar O, Porgador A, Cooks T. Exploring the potential of the convergence between extracellular vesicles and CAR technology as a novel immunotherapy approach. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70011. [PMID: 39328262 PMCID: PMC11424882 DOI: 10.1002/jex2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Cancer therapy is a dynamically evolving field, witnessing the emergence of innovative approaches that offer a promising outlook for patients grappling with persistent disease. Within the realm of therapeutic exploration, chimeric antigen receptor (CAR) T cells as well as CAR NK cells, have surfaced as novel approaches, each possessing unique attributes and transformative potential. Immune cells engineered to express CARs recognizing tumour-specific antigens, have shown remarkable promise in treating terminal cancers by combining the precision of antibody specificity with the potent cytotoxic function of T cells. However, their application in solid tumours is still in its nascent stages, presenting unique major challenges. On the same note, CAR NK cells offer a distinct immunotherapeutic approach, utilizing CARs on NK cells, providing advantages in safety, manufacturing simplicity, and a broader scope for cancer treatment. Extracellular vesicles (EVs) have emerged as promising therapeutic agents due to their ability to carry crucial biomarkers and biologically active molecules, serving as vital messengers in the intercellular communication network. In the context of cancer, the therapeutic potential of EVs lies in delivering tumour-suppressing proteins, nucleic acid components, or targeting drugs with precision, thereby redefining the paradigm of precision medicine. The fusion of CAR technology with the capabilities of EVs has given rise to a new therapeutic frontier. CAR T EVs and CAR NK EVs, leveraging the power of EVs, have the potential to alleviate challenges associated with live-cell therapies. EVs are suggested to reduce the side effects linked to CAR T cell therapy and hold the potential to revolutionize the penetrance in solid tumours. EVs act as carriers of pro-apoptotic molecules and RNA components, enhancing immune responses and thereby expanding their therapeutic potential. In this review article, we navigate dynamic landscapes, with our objective being to evaluate comparative efficacy, safety profiles, manufacturing complexities, and clinical applicability.
Collapse
Affiliation(s)
- Ofir Bar
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University Beer-Sheva Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University Beer-Sheva Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University Beer-Sheva Israel
| |
Collapse
|
13
|
Li J, Zhou W, Wang W. Artificial antigen-presenting cells: the booster for the obtaining of functional adoptive cells. Cell Mol Life Sci 2024; 81:378. [PMID: 39215816 PMCID: PMC11365909 DOI: 10.1007/s00018-024-05412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Adoptive cell therapy (ACT) achieves substantial efficacy in the treatment of hematological malignancies and solid tumours, while enormous endeavors have been made to reduce relapse and extend the remission duration after ACT. For the genetically engineered T cells, their functionality and long-term anti-tumour potential depend on the specificity of the T cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, the therapeutic benefit is directly to sufficient activation and proliferation of engineered T cells. Artificial antigen-presenting cells (aAPCs), as powerful boosters for ACT, have been applied to provide sustained stimulation of the cognate antigen and facilitate the expansion of sufficient T cells for infusion. In this review, we summarize the aAPCs used to generate effector cells for ACT and underline the mechanism by which aAPCs enhance the functionality of the effector cells. The manuscript includes investigations ranging from basic research to clinical trials, which we hope will highlight the importance of aAPCs and provide guidance for novel strategies to improve the effectiveness of ACT.
Collapse
Affiliation(s)
- Jing Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
14
|
Sierro-Martínez B, Escamilla-Gómez V, Pérez-Ortega L, Guijarro-Albaladejo B, Hernández-Díaz P, de la Rosa-Garrido M, Lara-Chica M, Rodríguez-Gil A, Reguera-Ortega JL, Sanoja-Flores L, Arribas-Arribas B, Montiel-Aguilera MÁ, Carmona G, Robles MJ, Caballero-Velázquez T, Briones J, Einsele H, Hudecek M, Pérez-Simón JA, García-Guerrero E. Next-generation BCMA-targeted chimeric antigen receptor CARTemis-1: the impact of manufacturing procedure on CAR T-cell features. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00984-0. [PMID: 39192092 DOI: 10.1007/s13402-024-00984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
PURPOSE CAR therapy targeting BCMA is under investigation as treatment for multiple myeloma. However, given the lack of plateau in most studies, pursuing more effective alternatives is imperative. We present the preclinical and clinical validation of a new optimized anti-BCMA CAR (CARTemis-1). In addition, we explored how the manufacturing process could impact CAR-T cell product quality and fitness. METHODS CARTemis-1 optimizations were evaluated at the preclinical level both, in vitro and in vivo. CARTemis-1 generation was validated under GMP conditions, studying the dynamics of the immunophenotype from leukapheresis to final product. Here, we studied the impact of the manufacturing process on CAR-T cells to define optimal cell culture protocol and expansion time to increase product fitness. RESULTS Two different versions of CARTemis-1 with different spacers were compared. The longer version showed increased cytotoxicity. The incorporation of the safety-gene EGFRt into the CARTemis-1 structure can be used as a monitoring marker. CARTemis-1 showed no inhibition by soluble BCMA and presents potent antitumor effects both in vitro and in vivo. Expansion with IL-2 or IL-7/IL-15 was compared, revealing greater proliferation, less differentiation, and less exhaustion with IL-7/IL-15. Three consecutive batches of CARTemis-1 were produced under GMP guidelines meeting all the required specifications. CARTemis-1 cells manufactured under GMP conditions showed increased memory subpopulations, reduced exhaustion markers and selective antitumor efficacy against MM cell lines and primary myeloma cells. The optimal release time points for obtaining the best fit product were > 6 and < 10 days (days 8-10). CONCLUSIONS CARTemis-1 has been rationally designed to increase antitumor efficacy, overcome sBCMA inhibition, and incorporate the expression of a safety-gene. The generation of CARTemis-1 was successfully validated under GMP standards. A phase I/II clinical trial for patients with multiple myeloma will be conducted (EuCT number 2022-503063-15-00).
Collapse
Affiliation(s)
- Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Virginia Escamilla-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Laura Pérez-Ortega
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Beatriz Guijarro-Albaladejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Paola Hernández-Díaz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María de la Rosa-Garrido
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Maribel Lara-Chica
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Juan Luis Reguera-Ortega
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Luzalba Sanoja-Flores
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Blanca Arribas-Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
- Programa doctorado Tecnología y Ciencias del Medicamento, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Miguel Ángel Montiel-Aguilera
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
| | - Gloria Carmona
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
| | - Maria Jose Robles
- Unidad de Patología Comparada, Biobanco Virgen del Rocío-IBiS, Unidad de Gestión Clínica de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Teresa Caballero-Velázquez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Javier Briones
- Servicio de Hematología, Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Hermann Einsele
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jose Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| | - Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
15
|
Hew BE, Gupta S, Sato R, Waller DF, Stoytchev I, Short JE, Sharek L, Tran CT, Badran AH, Owens JB. Directed evolution of hyperactive integrases for site specific insertion of transgenes. Nucleic Acids Res 2024; 52:e64. [PMID: 38953167 DOI: 10.1093/nar/gkae534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
The ability to deliver large transgenes to a single genomic sequence with high efficiency would accelerate biomedical interventions. Current methods suffer from low insertion efficiency and most rely on undesired double-strand DNA breaks. Serine integrases catalyze the insertion of large DNA cargos at attachment (att) sites. By targeting att sites to the genome using technologies such as prime editing, integrases can target safe loci while avoiding double-strand breaks. We developed a method of phage-assisted continuous evolution we call IntePACE, that we used to rapidly perform hundreds of rounds of mutagenesis to systematically improve activity of PhiC31 and Bxb1 serine integrases. Novel hyperactive mutants were generated by combining synergistic mutations resulting in integration of a multi-gene cargo at rates as high as 80% of target chromosomes. Hyperactive integrases inserted a 15.7 kb therapeutic DNA cargo containing von Willebrand Factor. This technology could accelerate gene delivery therapeutics and our directed evolution strategy can easily be adapted to improve novel integrases from nature.
Collapse
Affiliation(s)
- Brian E Hew
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Sabranth Gupta
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Ryuei Sato
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - David F Waller
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Ilko Stoytchev
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - James E Short
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Lisa Sharek
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Christopher T Tran
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Ahmed H Badran
- Department of Chemistry, Department of Integrative Structural and Computational Biology, Beckman Center for Chemical Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesse B Owens
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| |
Collapse
|
16
|
Wei X, Jin C, Li D, Wang Y, Zheng S, Feng Q, Shi N, Kong W, Ma X, Wang J. Single-cell transcriptomics reveals CD8 + T cell structure and developmental trajectories in idiopathic pulmonary fibrosis. Mol Immunol 2024; 172:85-95. [PMID: 38936318 DOI: 10.1016/j.molimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Collapse
Affiliation(s)
- Xuemei Wei
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Chengji Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China
| | - Yujie Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Qiong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Ning Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Weina Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China.
| | - Jing Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
17
|
Rezvan A, Romain G, Fathi M, Heeke D, Martinez-Paniagua M, An X, Bandey IN, Montalvo MJ, Adolacion JRT, Saeedi A, Sadeghi F, Fousek K, Puebla-Osorio N, Cooper LJN, Bernatchez C, Singh H, Ahmed N, Mattie M, Bot A, Neelapu S, Varadarajan N. Identification of a clinically efficacious CAR T cell subset in diffuse large B cell lymphoma by dynamic multidimensional single-cell profiling. NATURE CANCER 2024; 5:1010-1023. [PMID: 38750245 DOI: 10.1038/s43018-024-00768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
Chimeric antigen receptor (CAR) T cells used for the treatment of B cell malignancies can identify T cell subsets with superior clinical activity. Here, using infusion products of individuals with large B cell lymphoma, we integrated functional profiling using timelapse imaging microscopy in nanowell grids with subcellular profiling and single-cell RNA sequencing to identify a signature of multifunctional CD8+ T cells (CD8-fit T cells). CD8-fit T cells are capable of migration and serial killing and harbor balanced mitochondrial and lysosomal volumes. Using independent datasets, we validate that CD8-fit T cells (1) are present premanufacture and are associated with clinical responses in individuals treated with axicabtagene ciloleucel, (2) longitudinally persist in individuals after treatment with CAR T cells and (3) are tumor migrating cytolytic cells capable of intratumoral expansion in solid tumors. Our results demonstrate the power of multimodal integration of single-cell functional assessments for the discovery and application of CD8-fit T cells as a T cell subset with optimal fitness in cell therapy.
Collapse
Affiliation(s)
- Ali Rezvan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Gabrielle Romain
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | | | | | | | - Xingyue An
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Irfan N Bandey
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa J Montalvo
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Jay R T Adolacion
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Arash Saeedi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Fatemeh Sadeghi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Kristen Fousek
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Chantale Bernatchez
- Department of Biologics Development, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harjeet Singh
- Divsion of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nabil Ahmed
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Mike Mattie
- Kite, a Gilead Company, Santa Monica, CA, USA
| | - Adrian Bot
- Kite, a Gilead Company, Santa Monica, CA, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
18
|
Khoshandam M, Soltaninejad H, Hamidieh AA, Hosseinkhani S. CRISPR, CAR-T, and NK: Current applications and future perspectives. Genes Dis 2024; 11:101121. [PMID: 38545126 PMCID: PMC10966184 DOI: 10.1016/j.gendis.2023.101121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 08/16/2023] [Indexed: 11/11/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy represents a breakthrough in personalized cancer treatments. In this regard, synthetic receptors comprised of antigen recognition domains, signaling, and stimulatory domains are used to reprogram T-cells to target tum or cells and destroy them. Despite the success of this approach in refractory B-cell malignancies, the optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been validated. Natural killer cells are powerful cytotoxic lymphocytes specialized in recognizing and dispensing the tumor cells in coordination with other anti-tumor immunity cells. Based on these studies, many investigations are focused on the accurate designing of CAR T-cells with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system or other novel gene editing tools that can induce hereditary changes with or without the presence of a double-stranded break into the genome. These methodologies can be specifically focused on negative controllers of T-cells, induce modifications to a particular gene, and produce reproducible, safe, and powerful allogeneic CAR T-cells for on-demand cancer immunotherapy. The improvement of the CRISPR/Cas9 innovation offers an adaptable and proficient gene-editing capability in activating different pathways to help natural killer cells interact with novel CARs to particularly target tumor cells. Novel achievements and future challenges of combining next-generation CRISPR-Cas9 gene editing tools to optimize CAR T-cell and natural killer cell treatment for future clinical trials toward the foundation of modern cancer treatments have been assessed in this review.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom branch 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Hossein Soltaninejad
- Department of stem cells technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran 15614, Iran
- Pediatric Cell Therapy and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1417935840, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell Therapy and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1417935840, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 15614, Iran
| |
Collapse
|
19
|
Kasuya H, Zhang H, Ito Y, Yoshikawa T, Nakashima T, Li Y, Matsukawa T, Inoue S, Kagoya Y. High CD62L expression predicts the generation of chimeric antigen receptor T cells with potent effector functions. Int Immunol 2024; 36:353-364. [PMID: 38517027 DOI: 10.1093/intimm/dxae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
The efficient generation of chimeric antigen receptor (CAR) T cells is highly influenced by the quality of apheresed T cells. Healthy donor-derived T cells usually proliferate better than patients-derived T cells and are precious resources to generate off-the-shelf CAR-T cells. However, relatively little is known about the determinants that affect the efficient generation of CAR-T cells from healthy donor-derived peripheral blood mononuclear cells (PBMCs) compared with those from the patients' own PBMCs. We here examined the efficiency of CAR-T cell generation from multiple healthy donor samples and analyzed its association with the phenotypic features of the starting peripheral blood T cells. We found that CD62L expression levels within CD8+ T cells were significantly correlated with CAR-T cell expansion. Moreover, high CD62L expression within naïve T cells was associated with the efficient expansion of T cells with a stem cell-like memory phenotype, an indicator of high-quality infusion products. Intriguingly, genetic disruption of CD62L significantly impaired CAR-T cell proliferation and cytokine production upon antigen stimulation. Conversely, ectopic expression of a shedding-resistant CD62L mutant augmented CAR-T cell effector functions compared to unmodified CAR-T cells, resulting in improved antitumor activity in vivo. Collectively, we identified the surface expression of CD62L as a concise indicator of potent T-cell proliferation. CD62L expression is also associated with the functional properties of CAR-T cells. These findings are potentially applicable to selecting optimal donors to massively generate CAR-T cell products.
Collapse
Affiliation(s)
- Hitomi Kasuya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Haosong Zhang
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Ito
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Yoshikawa
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Nakashima
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Yang Li
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Matsukawa
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Inoue
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Kagoya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Locatelli F, del Bufalo F, Quintarelli C. Allogeneic chimeric antigen receptor T cells for children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Haematologica 2024; 109:1689-1699. [PMID: 38832424 PMCID: PMC11141659 DOI: 10.3324/haematol.2023.284604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/01/2024] [Indexed: 06/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a breakthrough cancer therapy over the past decade. Remarkable outcomes in B-cell lymphoproliferative disorders and multiple myeloma have been reported in both pivotal trials and real-word studies. Traditionally, the use of a patient's own (autologous) T cells to manufacture CAR products has been the standard practice. Nevertheless, this approach has some drawbacks, including manufacturing delays, dependence on the functional fitness of the patient's T cells, which can be compromised by both the disease and prior therapies, and contamination of the product with blasts. A promising alternative is offered by the development of allogeneic CAR-cell products. This approach has the potential to yield more efficient drug products and enables the use of effector cells with negligible alloreactive potential and a significant CAR-independent antitumor activity through their innate receptors (i.e., natural killer cells, γδ T cells and cytokine induced killer cells). In addition, recent advances in genome editing tools offer the potential to overcome the primary challenges associated with allogeneic CAR T-cell products, namely graft-versus-host disease and host allo-rejection, generating universal, off-the-shelf products. In this review, we summarize the current pre-clinical and clinical approaches based on allogeneic CAR T cells, as well as on alternative effector cells, which represent exciting opportunities for multivalent approaches and optimized antitumor activity.
Collapse
Affiliation(s)
- Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy – IRCCS, Bambino Gesù Children’s Hospital, Rome
- Catholic University of the Sacred Heart, Department of Life Sciences and Public Health, Rome
| | - Francesca del Bufalo
- Department of Hematology/Oncology, Cell and Gene Therapy – IRCCS, Bambino Gesù Children’s Hospital, Rome
| | - Concetta Quintarelli
- Department of Hematology/Oncology, Cell and Gene Therapy – IRCCS, Bambino Gesù Children’s Hospital, Rome
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Oliver-Caldes A, Español-Rego M, Zabaleta A, González-Calle V, Navarro-Velázquez S, Inogés S, de Cerio ALD, Cabañas V, López-Muñoz N, Rodríguez-Otero P, Reguera JL, Moreno DF, Martínez-Cibrian N, López-Corral L, Pérez-Amill L, Martin-Antonio B, Rosiñol L, Cid J, Tovar N, Sáez-Peñataro J, López-Parra M, Olesti E, Guillén E, Varea S, Rodríguez-Lobato LG, Battram AM, González MS, Sánchez-Salinas A, González-Navarro A, Ortiz-Maldonado V, Delgado J, Prósper F, Juan M, Martínez-López J, Moraleda JM, Mateos MV, Urbano-Ispizua Á, Paiva B, Pascal M, Fernández de Larrea C. Biomarkers of Efficacy and Safety of the Academic BCMA-CART ARI0002h for the Treatment of Refractory Multiple Myeloma. Clin Cancer Res 2024; 30:2085-2096. [PMID: 38466644 DOI: 10.1158/1078-0432.ccr-23-3759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE B-cell maturation antigen (BCMA)-chimeric antigen receptor T-cells (CART) improve results obtained with conventional therapy in the treatment of relapsed/refractory multiple myeloma. However, the high demand and expensive costs associated with CART therapy might prove unsustainable for health systems. Academic CARTs could potentially overcome these issues. Moreover, response biomarkers and resistance mechanisms need to be identified and addressed to improve efficacy and patient selection. Here, we present clinical and ancillary results of the 60 patients treated with the academic BCMA-CART, ARI0002h, in the CARTBCMA-HCB-01 trial. PATIENTS AND METHODS We collected apheresis, final product, peripheral blood and bone marrow samples before and after infusion. We assessed BCMA, T-cell subsets, CART kinetics and antibodies, B-cell aplasia, cytokines, and measurable residual disease by next-generation flow cytometry, and correlated these to clinical outcomes. RESULTS At cut-off date March 17, 2023, with a median follow-up of 23.1 months (95% CI, 9.2-37.1), overall response rate in the first 3 months was 95% [95% confidence interval (CI), 89.5-100]; cytokine release syndrome (CRS) was observed in 90% of patients (5% grades ≥3) and grade 1 immune effector cell-associated neurotoxicity syndrome was reported in 2 patients (3%). Median progression-free survival was 15.8 months (95% CI, 11.5-22.4). Surface BCMA was not predictive of response or survival, but soluble BCMA correlated with worse clinical outcomes and CRS severity. Activation marker HLA-DR in the apheresis was associated with longer progression-free survival and increased exhaustion markers correlated with poorer outcomes. ARI0002h kinetics and loss of B-cell aplasia were not predictive of relapse. CONCLUSIONS Despite deep and sustained responses achieved with ARI0002h, we identified several biomarkers that correlate with poor outcomes.
Collapse
Affiliation(s)
- Aina Oliver-Caldes
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Hospital Universitari Son Espases, IDISBA, Palma de Mallorca, Spain
| | - Marta Español-Rego
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Aintzane Zabaleta
- Clínica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, CIBER-ONC Number CB16/12/00369, Pamplona, Spain
| | - Verónica González-Calle
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), Salamanca, Spain
| | | | - Susana Inogés
- Clínica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, CIBER-ONC Number CB16/12/00369, Pamplona, Spain
| | - Ascensión López-Díaz de Cerio
- Clínica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, CIBER-ONC Number CB16/12/00369, Pamplona, Spain
| | - Valentín Cabañas
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Nieves López-Muñoz
- Hospital Universitario 12 de Octubre, Complutense University, i+12, CNIO, Madrid, Spain
| | - Paula Rodríguez-Otero
- Clínica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, CIBER-ONC Number CB16/12/00369, Pamplona, Spain
| | - Juan Luis Reguera
- Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), University of Sevilla, Sevilla, Spain
| | - David F Moreno
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Lucía López-Corral
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), Salamanca, Spain
| | - Lorena Pérez-Amill
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Beatriz Martin-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria- Fundación Jiménez Díaz, University Autonomous of Madrid, Madrid, Spain
| | - Laura Rosiñol
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Joan Cid
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Natalia Tovar
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Miriam López-Parra
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), Salamanca, Spain
| | - Eulalia Olesti
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Elena Guillén
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Sara Varea
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Anthony M Battram
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Andrés Sánchez-Salinas
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | | | | | - Julio Delgado
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Felipe Prósper
- Clínica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, CIBER-ONC Number CB16/12/00369, Pamplona, Spain
| | - Manel Juan
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - José M Moraleda
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Maria Victoria Mateos
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), Salamanca, Spain
| | | | - Bruno Paiva
- Clínica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, CIBER-ONC Number CB16/12/00369, Pamplona, Spain
| | - Mariona Pascal
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
22
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
23
|
Gahvari Z, Brunner M, Schmidt T, Callander NS. Update on the current and future use of CAR-T to treat multiple myeloma. Eur J Haematol 2024; 112:493-503. [PMID: 38099401 DOI: 10.1111/ejh.14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 03/19/2024]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has become an important intervention in the management of relapsed and relapsed/refractory multiple myeloma (MM). Currently, B-cell maturation antigen (BCMA) is the most targeted surface protein due to its ubiquitous expression on plasma cells, with increasing expression of this essential transmembrane protein on malignant plasma cells as patients develop more advanced disease. This review will explore the earliest CAR-T trials in myeloma, discuss important issues involved in CAR-T manufacturing and processing, as well as review current clinical trials that led to the approval of the two commercially available CAR-T products, Idecabtagene vicleucel and ciltacabtagene autoleucel. The most recent data from trials investigating the use of CAR-T as an earlier line of therapy will be presented. Finally, the problem of relapses after CAR-T will be presented, including several theories as to why CAR-T therapies fail and possible clinical caveats. The next generation of MM-specific CAR-T will likely include new targets such as G-protein-coupled receptor class C, Group 5, member D (GPRC5D) and signaling lymphocyte activation molecular Family 7 (SLAMF7). The role of CAR-T in the treatment of MM will undoubtedly increase exponentially in the next decade.
Collapse
Affiliation(s)
- Zhubin Gahvari
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Brunner
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy Schmidt
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Natalie S Callander
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
24
|
García-García L, G. Sánchez E, Ivanova M, Pastora K, Alcántara-Sánchez C, García-Martínez J, Martín-Antonio B, Ramírez M, González-Murillo Á. Choosing T-cell sources determines CAR-T cell activity in neuroblastoma. Front Immunol 2024; 15:1375833. [PMID: 38601159 PMCID: PMC11004344 DOI: 10.3389/fimmu.2024.1375833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The clinical success of chimeric antigen receptor-modified T cells (CAR-T cells) for hematological malignancies has not been reproduced for solid tumors, partly due to the lack of cancer-type specific antigens. In this work, we used a novel combinatorial approach consisting of a versatile anti-FITC CAR-T effector cells plus an FITC-conjugated neuroblastoma (NB)-targeting linker, an FITC-conjugated monoclonal antibody (Dinutuximab) that recognizes GD2. Methods We compared cord blood (CB), and CD45RA-enriched peripheral blood leukapheresis product (45RA) as allogeneic sources of T cells, using peripheral blood (PB) as a control to choose the best condition for anti-FITC CAR-T production. Cells were manufactured under two cytokine conditions (IL-2 versus IL-7+IL-15+IL-21) with or without CD3/CD28 stimulation. Immune phenotype, vector copy number, and genomic integrity of the final products were determined for cell characterization and quality control assessment. Functionality and antitumor capacity of CB/45RA-derived anti-FITC CAR-T cells were analyzed in co-culture with different anti-GD2-FITC labeled NB cell lines. Results The IL-7+IL-15+IL-21 cocktail, in addition to co-stimulation signals, resulted in a favorable cell proliferation rate and maintained less differentiated immune phenotypes in both CB and 45RA T cells. Therefore, it was used for CAR-T cell manufacturing and further characterization. CB and CD45RA-derived anti-FITC CAR-T cells cultured with IL-7+IL-15+IL-21 retained a predominantly naïve phenotype compared with controls. In the presence of the NB-FITC targeting, CD4+ CB-derived anti-FITC CAR-T cells showed the highest values of co-stimulatory receptors OX40 and 4-1BB, and CD8+ CAR-T cells exhibited high levels of PD-1 and 4-1BB and low levels of TIM3 and OX40, compared with CAR-T cells form the other sources studied. CB-derived anti-FITC CAR-T cells released the highest amounts of cytokines (IFN-γ and TNF-α) into co-culture supernatants. The viability of NB target cells decreased to 30% when co-cultured with CB-derived CAR-T cells during 48h. Conclusion CB and 45RA-derived T cells may be used as allogeneic sources of T cells to produce CAR-T cells. Moreover, ex vivo culture with IL-7+IL-15+IL-21 could favor CAR-T products with a longer persistence in the host. Our strategy may complement the current use of Dinutuximab in treating NB through its combination with a targeted CAR-T cell approach.
Collapse
Affiliation(s)
- Lorena García-García
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Elena G. Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Mariya Ivanova
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Keren Pastora
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Cristina Alcántara-Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Jorge García-Martínez
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Manuel Ramírez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| | - África González-Murillo
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| |
Collapse
|
25
|
Knight E T, Oluwole O, Kitko C. The Implementation of Chimeric Antigen Receptor (CAR) T-cell Therapy in Pediatric Patients: Where Did We Come From, Where Are We Now, and Where are We Going? Clin Hematol Int 2024; 6:96-115. [PMID: 38817691 PMCID: PMC11108586 DOI: 10.46989/001c.94386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 06/01/2024] Open
Abstract
CD19-directed Chimeric Antigen Receptor (CAR) T-cell therapy has revolutionized the treatment of patients with B-cell acute lymphoblastic leukemia (B-ALL). Somewhat uniquely among oncologic clinical trials, early clinical development occurred simultaneously in both children and adults. In subsequent years however, the larger number of adult patients with relapsed/refractory (r/r) malignancies has led to accelerated development of multiple CAR T-cell products that target a variety of malignancies, resulting in six currently FDA-approved for adult patients. By comparison, only a single CAR-T cell therapy is approved by the FDA for pediatric patients: tisagenlecleucel, which is approved for patients ≤ 25 years with refractory B-cell precursor ALL, or B-cell ALL in second or later relapse. Tisagenlecleucel is also under evaluation in pediatric patients with relapsed/refractory B-cell non-Hodgkin lymphoma, but is not yet been approved for this indication. All the other FDA-approved CD19-directed CAR-T cell therapies available for adult patients (axicabtagene ciloleucel, brexucabtagene autoleucel, and lisocabtagene maraleucel) are currently under investigations among children, with preliminary results available in some cases. As the volume and complexity of data continue to grow, so too does the necessity of rapid assimilation and implementation of those data. This is particularly true when considering "atypical" situations, e.g. those arising when patients do not precisely conform to the profile of those included in pivotal clinical trials, or when alternative treatment options (e.g. hematopoietic stem cell transplantation (HSCT) or bispecific T-cell engagers (BITEs)) are also available. We have therefore developed a relevant summary of the currently available literature pertaining to the use of CD19-directed CAR-T cell therapies in pediatric patients, and sought to provide guidance for clinicians seeking additional data about specific clinical situations.
Collapse
Affiliation(s)
| | - Olalekan Oluwole
- Medicine Hematology and Oncology, Vanderbilt University Medical Center
| | | |
Collapse
|
26
|
Singh N. Analysis of pre-treatment tumors reveals gatekeepers of response to CAR T cells. Mol Ther 2024; 32:567-568. [PMID: 38402613 PMCID: PMC10928268 DOI: 10.1016/j.ymthe.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Affiliation(s)
- Nathan Singh
- Division on Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Ligon JA, Ramakrishna S, Ceppi F, Calkoen FGJ, Diorio C, Davis KL, Jacoby E, Gottschalk S, Schultz LM, Capitini CM. INSPIRED Symposium Part 4B: Chimeric Antigen Receptor T Cell Correlative Studies-Established Findings and Future Priorities. Transplant Cell Ther 2024; 30:155-170. [PMID: 37863355 DOI: 10.1016/j.jtct.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.
Collapse
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology/Oncology, University of Florida, Gainesville, Florida; University of Florida Health Cancer Center, Gainesville, Florida.
| | - Sneha Ramakrishna
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Francesco Ceppi
- Division of Pediatrics, Department of Woman-Mother-Child, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Friso G J Calkoen
- Division of Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kara L Davis
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Elad Jacoby
- Pediatric Hemato-Oncology, Sheba Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liora M Schultz
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
28
|
Baguet C, Larghero J, Mebarki M. Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies. Blood Adv 2024; 8:337-342. [PMID: 38052048 PMCID: PMC10788849 DOI: 10.1182/bloodadvances.2023011992] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T-cell therapies have shown significant benefits in the treatment of hematologic malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL) and B-cell lymphoma. Despite the therapeutic advances offered by these innovative treatments, failures are still observed in 15% to 40% of patients with B-ALL and >50% of patients with B-cell lymphoma. Several hypotheses have emerged including CD19-negative or -positive relapses, low CAR T-cell activation and/or expansion in vivo, or T-cell exhaustion. To date, in the European Union, CAR T cells granted with marketing authorization are autologous and thus associated with a strong heterogeneity between products. Indeed, the manufacturing of a single batch requires cellular starting material collection by apheresis for each patient, with variable cellular composition, and then challenging pharmaceutical companies to standardize as much as possible the production process. In addition, these cost and time-consuming therapies are associated with a risk of manufacturing failure reaching 25%. Thus, there is a growing need to identify early risk factors of unsuccessful production and/or therapeutic escape. Quality of the apheresis product, pathology progression, as well as previous treatments have been reported as predictive factors of the variability in clinical response. The aim of this review is to report and discuss predictive factors that could help to anticipate the manufacturing success and clinical response.
Collapse
Affiliation(s)
- Clémentine Baguet
- Université Paris Cité, Assistance Publique – Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Jérôme Larghero
- Université Paris Cité, Assistance Publique – Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
- Université Paris Cité, Assistance Publique – Hôpitaux de Paris, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire et Génique, Paris, France
- INSERM, Centre d’investigation Clinique de Biothérapies CBT501, Paris, France
| | - Miryam Mebarki
- Université Paris Cité, Assistance Publique – Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
- INSERM, Centre d’investigation Clinique de Biothérapies CBT501, Paris, France
- Faculté de pharmacie, Université Paris Cité, Paris, France
| |
Collapse
|
29
|
Negishi S, Girsch JH, Siegler EL, Bezerra ED, Miyao K, Sakemura RL. Treatment strategies for relapse after CAR T-cell therapy in B cell lymphoma. Front Pediatr 2024; 11:1305657. [PMID: 38283399 PMCID: PMC10811220 DOI: 10.3389/fped.2023.1305657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Clinical trials of anti-CD19 chimeric antigen receptor T (CART19) cell therapy have shown high overall response rates in patients with relapsed/refractory B-cell malignancies. CART19 cell therapy has been approved by the US Food and Drug Administration for patients who relapsed less than 12 months after initial therapy or who are refractory to first-line therapy. However, durable remission of CART19 cell therapy is still lacking, and 30%-60% of patients will eventually relapse after CART19 infusion. In general, the prognosis of patients who relapse after CART19 cell therapy is poor, and various strategies to treat this patient population have been investigated extensively. CART19 failures can be broadly categorized by the emergence of either CD19-positive or CD19-negative lymphoma cells. If CD19 expression is preserved on the lymphoma cells, a second infusion of CART19 cells or reactivation of previously infused CART19 cells with immune checkpoint inhibitors can be considered. When patients develop CD19-negative relapse, targeting different antigens (e.g., CD20 or CD22) with CAR T cells, investigational chemotherapies, or hematopoietic stem cell transplantation are potential treatment options. However, salvage therapies for relapsed large B-cell lymphoma after CART19 cell therapy have not been fully explored and are conducted based on clinicians' case-by-case decisions. In this review, we will focus on salvage therapies reported to date and discuss the management of relapsed/refractory large B-cell lymphomas after CART19 cell therapy.
Collapse
Affiliation(s)
- Shuto Negishi
- Department of Hematology and Oncology, Konan Kosei Hospital, Konan, Japan
| | - James H. Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth L. Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Evandro D. Bezerra
- Department of Hematology and Oncology, Ohio State University, Columbus, OH, United States
| | - Kotaro Miyao
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - R. Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
30
|
Kaczanowska S, Murty T, Alimadadi A, Contreras CF, Duault C, Subrahmanyam PB, Reynolds W, Gutierrez NA, Baskar R, Wu CJ, Michor F, Altreuter J, Liu Y, Jhaveri A, Duong V, Anbunathan H, Ong C, Zhang H, Moravec R, Yu J, Biswas R, Van Nostrand S, Lindsay J, Pichavant M, Sotillo E, Bernstein D, Carbonell A, Derdak J, Klicka-Skeels J, Segal JE, Dombi E, Harmon SA, Turkbey B, Sahaf B, Bendall S, Maecker H, Highfill SL, Stroncek D, Glod J, Merchant M, Hedrick CC, Mackall CL, Ramakrishna S, Kaplan RN. Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer Cell 2024; 42:35-51.e8. [PMID: 38134936 PMCID: PMC10947809 DOI: 10.1016/j.ccell.2023.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Chimeric antigen receptor T cells (CAR-Ts) have remarkable efficacy in liquid tumors, but limited responses in solid tumors. We conducted a Phase I trial (NCT02107963) of GD2 CAR-Ts (GD2-CAR.OX40.28.z.iC9), demonstrating feasibility and safety of administration in children and young adults with osteosarcoma and neuroblastoma. Since CAR-T efficacy requires adequate CAR-T expansion, patients were grouped into good or poor expanders across dose levels. Patient samples were evaluated by multi-dimensional proteomic, transcriptomic, and epigenetic analyses. T cell assessments identified naive T cells in pre-treatment apheresis associated with good expansion, and exhausted T cells in CAR-T products with poor expansion. Myeloid cell assessment identified CXCR3+ monocytes in pre-treatment apheresis associated with good expansion. Longitudinal analysis of post-treatment samples identified increased CXCR3- classical monocytes in all groups as CAR-T numbers waned. Together, our data uncover mediators of CAR-T biology and correlates of expansion that could be utilized to advance immunotherapies for solid tumor patients.
Collapse
Affiliation(s)
- Sabina Kaczanowska
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ahmad Alimadadi
- La Jolla Institute for Immunology, La Jolla, CA, USA; Immunology Center of Georgia, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Cristina F Contreras
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Oncology, University of Oxford, Oxford, UK
| | - Caroline Duault
- Stanford Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyanka B Subrahmanyam
- Stanford Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Warren Reynolds
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Reema Baskar
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Catherine J Wu
- Broad Institute, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Yang Liu
- Broad Institute, Cambridge, MA, USA
| | | | - Vandon Duong
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hima Anbunathan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Ong
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hua Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Radim Moravec
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Yu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Mina Pichavant
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Donna Bernstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda Carbonell
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joanne Derdak
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacquelyn Klicka-Skeels
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julia E Segal
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baris Turkbey
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean Bendall
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Holden Maecker
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Steven L Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - David Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melinda Merchant
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine C Hedrick
- La Jolla Institute for Immunology, La Jolla, CA, USA; Immunology Center of Georgia, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sneha Ramakrishna
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Anderson LD, Dhakal B, Jain T, Oluwole OO, Shah GL, Sidana S, Perales MA, Pasquini MC. Chimeric Antigen Receptor T Cell Therapy for Myeloma: Where Are We Now and What Is Needed to Move Chimeric Antigen Receptor T Cells Forward to Earlier Lines of Therapy? Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Transplant Cell Ther 2024; 30:17-37. [PMID: 37913909 PMCID: PMC10873054 DOI: 10.1016/j.jtct.2023.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Since 2021, 2 B cell maturation antigen (BCMA)-directed chimeric antigen receptor T cell (CAR-T) therapies-idecabtagene vicleucel (ide-cel), and ciltacabtagene autoleucel (cilta-cel)-have been approved by the US Food and Drug Administration (FDA) for treating relapsed or refractory multiple myeloma (RRMM) after 4 or more prior lines of therapy, including an immunomodulatory drug, a proteasome inhibitor, and an anti-CD38 antibody. The 2 products have shown unprecedented activity in RRMM, but relapses remain common, and access to and safety of CAR-T therapy in patients with rapidly progressing advanced disease are not ideal. Sequencing CAR-T therapy with other options, including the 2 recently approved BCMA-directed T cell-engaging bispecific antibodies teclistamab and elranatamab, has become increasingly challenging owing to data showing inferior outcomes from CAR-T therapy after prior BCMA-directed therapy. This has led to the consideration of CAR-T therapy earlier in the course of disease for myeloma, when T cells are potentially healthier and the myeloma is less aggressive. To address the question of earlier use of CAR-T therapy, several trials are either ongoing or planned, and results have recently been reported for 2 randomized trials of CAR-T therapy showing improved progression-free survival compared to standard of care therapy in second-line (CARTITUDE-4) or third-line therapy (KarMMA-3). With the anticipation of the FDA possibly expanding approval of CAR-T to earlier lines of myeloma therapy, the American Society for Transplantation and Cellular Therapy convened a group of experts to provide a comprehensive review of the studies that led to the approval of CAR-T therapy in late-line therapy for myeloma, discuss the recently reported and ongoing studies designed to move CAR-T therapy to earlier lines of therapy, and share insights and considerations for sequencing therapy and optimization of patient selection for BCMA-directed therapies in current practice.
Collapse
Affiliation(s)
- Larry D Anderson
- Myeloma, Waldenstrom's, and Amyloidosis Program, Hematologic Malignancies and Cellular Therapy Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Binod Dhakal
- BMT & Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tania Jain
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olalekan O Oluwole
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Gunjan L Shah
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Surbhi Sidana
- Stanford University School of Medicine, Stanford, California
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Marcelo C Pasquini
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
32
|
Kasamatsu T. Implications of Senescent T Cells for Cancer Immunotherapy. Cancers (Basel) 2023; 15:5835. [PMID: 38136380 PMCID: PMC10742305 DOI: 10.3390/cancers15245835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
T-cell senescence is thought to result from the age-related loss of the ability to mount effective responses to pathogens and tumor cells. In addition to aging, T-cell senescence is caused by repeated antigenic stimulation and chronic inflammation. Moreover, we demonstrated that T-cell senescence was induced by treatment with DNA-damaging chemotherapeutic agents. The characteristics of therapy-induced senescent T (TIS-T) cells and general senescent T cells are largely similar. Senescent T cells demonstrate an increase in the senescence-associated beta-galactosidase-positive population, cell cycle arrest, secretion of senescence-associated secretory phenotypic factors, and metabolic reprogramming. Furthermore, senescent T cells downregulate the expression of the co-stimulatory molecules CD27 and CD28 and upregulate natural killer cell-related molecules. Moreover, TIS-T cells showed increased PD-1 expression. However, the loss of proliferative capacity and decreased expression of co-stimulatory molecules associated with T-cell senescence cause a decrease in T-cell immunocompetence. In this review, we discuss the characteristics of senescent T-cells, including therapy-induced senescent T cells.
Collapse
Affiliation(s)
- Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi 371-8514, Gunma, Japan
| |
Collapse
|
33
|
Zhang M, Long X, Xiao Y, Jin J, Chen C, Meng J, Liu W, Liu A, Chen L. Assessment and predictive ability of the absolute neutrophil count in peripheral blood for in vivo CAR T cells expansion and CRS. J Immunother Cancer 2023; 11:e007790. [PMID: 38016717 PMCID: PMC10685953 DOI: 10.1136/jitc-2023-007790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy is an advanced and effective immunotherapy for relapsed or refractory B-cell malignancies. High expansion of CAR T cells in vivo and durable antitumor activity indicate a persistent therapeutic response. However, this treatment is linked to a high frequency of adverse events, such as cytokine release syndrome (CRS), which affects its efficacy and can even be life-threatening. At present, a variety of markers associated with clinical response and treatment toxicity after CAR T cells infusion have been reported. Although these biomarkers can act as effective indicators reflecting CAR T cells expansion as well as CRS, they fail to predict the expansion rate of CAR T cells. Hence, further investigation is urgent to find a new biomarker to fill this void. METHODS We analyzed the association between the absolute neutrophil count (ANC) and CAR expansion and CRS in 45 patients with B-cell malignancies from two clinical trials. We proposed that ANC could be a practical biomarker for CAR T cells expansion and CRS, and conducted a feasibility analysis on its predictive ability. RESULTS In this study, 17 B-cell hematological malignancy patients with anti-B-cell maturation antigen CAR-treated and 28 with CAR19/22 T-cell-treated were enrolled and divided into an ANC-absence group and an ANC-presence group. The results showed that ANC absence correlated positively with CAR expansion and the expansion rate. The ANC can be used as a predictive marker for CAR T cells expansion. Moreover, the patients with ANC absence experienced a more severe CRS, and ANC performed a predictive ability for CRS. In addition, the peak serum concentration of several cytokines involved in CRS was higher in patients with ANC absence. CONCLUSION Thus, we suggest ANC as an evaluative and predictive biomarker for CAR expansion and CRS during CAR T cell therapy, which can help to maximize clinical efficacy, reduce treatment-related toxicity and prolong survival.
Collapse
Affiliation(s)
- Man Zhang
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaolu Long
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Caixia Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiao Meng
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wanying Liu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
34
|
Dunn ZS, Qu Y, MacMullan M, Chen X, Cinay G, Wang P. Secretion of 4-1BB Ligand Crosslinked to PD-1 Checkpoint Inhibitor Potentiates Chimeric Antigen Receptor T Cell Solid Tumor Efficacy. Hum Gene Ther 2023; 34:1145-1161. [PMID: 36851890 DOI: 10.1089/hum.2022.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of hematological malignancies but has yet to achieve similar success in solid tumors due to a lack of persistence and function in the tumor microenvironment. We previously reported the augmentation of CAR T cell therapy in an engineered solid tumor model through the secretion of anti-PD-1 single-chain fragment variable region (scFv), as shown by enhanced CAR T cell antitumor efficacy, expansion, and vitality. We have since improved the platform to create a superior cellular product-CAR T cells secreting single-chain trimeric 4-1BB ligand fused to anti-PD-1 scFv (αPD1-41BBL). 4-1BB signaling promotes cytotoxic T lymphocyte proliferation and survival but targeting 4-1BB with agonist antibodies in the clinic has been hindered by low antitumor activity and high toxicity. CAR T cells using 4-1BB endodomain for costimulatory signals have demonstrated milder antitumor response and longer persistence compared to CAR T cells costimulated by CD28 endodomain. We have, for the first time, engineered CD28-costimulated CAR T cells to secrete a fusion protein containing the soluble trimeric 4-1BB ligand. In vitro and in vivo, CAR19.αPD1-41BBL T cells exhibited reduced inhibitory receptor upregulation, enhanced persistence and proliferation, and a less differentiated memory status compared to CAR T cells without additional 4-1BB:4-1BBL costimulation. Accordingly, CAR19.αPD1-41BBL T cell-treated mice displayed significantly improved tumor growth control and overall survival. Spurred on by our preclinical success targeting CD19 as a model antigen, we produced mesothelin-targeting CAR T cells and confirmed the enhanced solid tumor efficacy of αPD1-41BBL-secreting CAR T cells.
Collapse
Affiliation(s)
- Zachary S Dunn
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Yun Qu
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Melanie MacMullan
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Xianhui Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Gunce Cinay
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
35
|
Li Z, Zhao L, Zhang Y, Zhu L, Mu W, Ge T, Jin J, Tan J, Cheng J, Wang J, Wang N, Zhou X, Chen L, Chang Z, Liu C, Bian Z, Liu B, Ye L, Lan Y, Huang L, Zhou J. Functional diversification and dynamics of CAR-T cells in patients with B-ALL. Cell Rep 2023; 42:113263. [PMID: 37851569 DOI: 10.1016/j.celrep.2023.113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/03/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Understanding of cellular evolution and molecular programs of chimeric antigen receptor-engineered (CAR)-T cells post-infusion is pivotal for developing better treatment strategies. Here, we construct a longitudinal high-precision single-cell transcriptomic landscape of 7,578 CAR-T cells from 26 patients with B cell acute lymphoblastic leukemia (B-ALL) post-infusion. We molecularly identify eight CAR-T cell subtypes, including three cytotoxic subtypes with distinct kinetics and three dual-identity subtypes with non-T cell characteristics. Remarkably, long-term remission is coincident with the dominance of cytotoxic subtypes, while leukemia progression is correlated with the emergence of subtypes with B cell transcriptional profiles, which have dysfunctional features and might predict relapse. We further validate in vitro that the generation of B-featured CAR-T cells is induced by excessive tumor antigen stimulation or suppressed TCR signaling, while it is relieved by exogenous IL-12. Moreover, we define transcriptional hallmarks of CAR-T cell subtypes and reveal their molecular changes along computationally inferred cellular evolution in vivo. Collectively, these results decipher functional diversification and dynamics of peripheral CAR-T cells post-infusion.
Collapse
Affiliation(s)
- Zongcheng Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| | - Lei Zhao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuanyuan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhilin Chang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
36
|
Wang Y, Tong C, Lu Y, Wu Z, Guo Y, Liu Y, Wei J, Wang C, Yang Q, Han W. Characteristics of premanufacture CD8 +T cells determine CAR-T efficacy in patients with diffuse large B-cell lymphoma. Signal Transduct Target Ther 2023; 8:409. [PMID: 37875502 PMCID: PMC10598004 DOI: 10.1038/s41392-023-01659-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Although chimeric antigen receptor (CAR) T cells have become an important treatment option for patients with relapsed/refractory B-cell malignancies, more than 60% of patients with diffuse large B-cell lymphoma (DLBCL) treated with CAR-T cell therapies fail to achieve a durable response. To reveal changes in CAR-T cell therapy and identify response biomarkers, we conducted a retrospective analysis of pre-manufacture source T cells and CAR-T cell products and their association with outcome in 58 patients with r/rDLBCL who received tandem CD19/CD20 CAR-T cell therapy. We performed bulk RNA-Seq, single-cell RNA-Seq, and paired T cell receptor sequencing on CAR-T cell products and pre-manufacture T cells from DLBCL patients. We note that a CD8+ stem cell-like memory T cell population with a higher proportion and enhanced activating capacity of the CAR-T cell products was key to achieving durable clinical response. By analysing autologously-derived, pre-manufacture T cells, our data suggest that heterogeneity in the cellular and molecular features of pre-manufacture T cells contribute to the variation in efficacy after CAR-T cell therapy in DLBCL. The differences in anti-tumour efficacy of CAR-T cells among patients with different clinical outcomes appear to be due to the loss of CCR7 gene expression, coupled with increased expression of activation- and inhibitor-related genes in the CD8+ naïve-T cell populations among the apheresis T cells from patients with a poor molecular response. These findings significantly advance our understanding of the underlying molecular determinants of pre-manufacture T cell function.
Collapse
Affiliation(s)
- Yao Wang
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Chuan Tong
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuting Lu
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Wu
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yelei Guo
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | - Chunmeng Wang
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qingming Yang
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Department of Bio-Therapeutic, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
- Changping Laboratory, Beijing, PR China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
37
|
Singh N, Maus MV. Synthetic manipulation of the cancer-immunity cycle: CAR-T cell therapy. Immunity 2023; 56:2296-2310. [PMID: 37820585 DOI: 10.1016/j.immuni.2023.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Synthetic immunity to cancer has been pioneered by the application of chimeric antigen receptor (CAR) engineering into autologous T cells. CAR T cell therapy is highly amenable to molecular engineering to bypass barriers of the cancer immunity cycle, such as endogenous antigen presentation, immune priming, and natural checkpoints that constrain immune responses. Here, we review CAR T cell design and the mechanisms that drive sustained CAR T cell effector activity and anti-tumor function. We discuss engineering approaches aimed at improving anti-tumor function through a variety of mechanistic interventions for both hematologic and solid tumors. The ability to engineer T cells in such a variety of ways, including by modifying their trafficking, antigen recognition, costimulation, and addition of synthetic genes, circuits, knockouts and base edits to finely tune complex functions, is arguably the most powerful way to manipulate the cancer immunity cycle in patients.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Oncology, Washington University in St Louis School of Medicine, St. Louis, MO 63110, USA.
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Cho S, Miller A, Mosha M, McNerney KO, Metts J. Clinical Trials on Cellular Therapy for Children and Adolescents With Cancer: A 15-Year Trend in the United States. Cureus 2023; 15:e47885. [PMID: 38021600 PMCID: PMC10681796 DOI: 10.7759/cureus.47885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Cellular therapies are frequently studied in clinical trials for pediatric patients with malignant disease. Characteristics of ongoing and completed cellular therapy clinical trials in the U.S. involving children and adolescents have not previously been reported. METHODS We searched ClinicalTrials.gov for clinical trials involving cellular therapies enrolling patients under 18 years of age in the U.S. Trials were initially stratified into child-only (maximum age of eligibility <18 years), child/adolescent and young adult (AYA) (maximum age of eligibility ≤21 years), and child/adult (maximum age of eligibility >21 years). Descriptive characteristics and trends over time were analyzed. RESULTS We included 202 trials posted 2007-2022. Of the 202 trials, only three trials were child-only; thus, our subsequent analysis focused on comparing child/AYA (≤21 years) and child/adult trials (>21 years). One hundred sixty-nine (84%) enrolled both child and adult populations. The vast majority of trials were early phase (phase 1, 1/2, and 2, 198/202, 98%). Chimeric antigen receptor T cell therapies were most commonly studied (88/202, 44%), while natural-killer cell therapies were most common in child/AYA trials (42% vs. 16%). Most trials were single institution-only (130/202, 64%) and did not receive industry funding (163/202, 81%). Studies with industry funding were more likely to be multicenter (64% vs. 29%) and international (31% vs. 0.6%). Notably, no central nervous system tumor-specific trials had industry funding. There was no difference in therapy type based on funding source. Yearly new trial activations increased over the time period studied (p=0.01). CONCLUSION The frequency of cellular therapy trial activations enrolling child/AYA patients with cancer in the U.S. has increased over time. Most studies were phase 1 or 2, single institution-only, and not industry-supported. Future opportunities for cell therapy for pediatric cancer should include multi-institutional approaches.
Collapse
Affiliation(s)
- Sukjoo Cho
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, USA
| | - Alexandra Miller
- Data Coordinating Center for Pediatric Multicenter Studies, Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, USA
| | - Maua Mosha
- Data Coordinating Center for Pediatric Multicenter Studies, Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, USA
| | - Kevin O McNerney
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, USA
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
39
|
Tan X, Wang XQ, Zhang C, Zhao XL, Yao H, Chen G, Ma YY, Wen Q, Gao L, Gao L, Kong PY, Shen Y, Zhang X, Lou SF. Donor-derived CD19 CAR-T Cells versus Chemotherapy Plus Donor Lymphocyte Infusion for Treatment of Recurrent CD19-positive B-ALL After Allogeneic Hematopoietic Stem Cell Transplantation. Curr Med Sci 2023; 43:733-740. [PMID: 37330456 DOI: 10.1007/s11596-023-2746-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 06/19/2023]
Abstract
OBJECTIVE This study aimed to compare the efficacy of anti-CD19 chimeric antigen receptor T cells (CAR-T cells) versus chemotherapy plus donor lymphocyte infusion (chemo-DLI) for treating relapsed CD19-positive B-cell acute lymphoblastic leukemia (B-ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS Clinical data of 43 patients with B-ALL who relapsed after allo-HSCT were retrospectively analyzed. Twenty-two patients were treated with CAR-T cells (CAR-T group), and 21 with chemotherapy plus DLI (chemo-DLI group). The complete remission (CR) and minimal residual disease (MRD)-negative CR rates, leukemia-free survival (LFS) rate, overall survival (OS) rate, and incidence of acute graft-versus-host disease (aGVHD), cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) were compared between the two groups. RESULTS The CR and MRD-negative CR rates in the CAR-T group (77.3% and 61.5%) were significantly higher than those in the chemo-DLI group (38.1% and 23.8%) (P=0.008 and P=0.003). The 1- and 2-year LFS rates in the CAR-T group were superior to those in the chemo-DLI group: 54.5% and 50.0% vs. 9.5% and 4.8% (P=0.0001 and P=0.00004). The 1- and 2-year OS rates in the CAR-T versus chemo-DLI group were 59.1% and 54.5% vs. 19% and 9.5% (P=0.011 and P=0.003). Six patients (28.6%) with grade 2-4 aGVHD were identified in the chemo-DLI group. Two patients (9.1%) in the CAR-T group developed grade 1-2 aGVHD. Nineteen patients (86.4%) developed CRS in the CAR-T group, comprising grade 1-2 CRS in 13 patients (59.1%) and grade 3 CRS in 6 patients (27.3%). Two patients (9.1%) developed grade 1-2 ICANS. CONCLUSION Donor-derived anti-CD19 CAR-T-cell therapy may be better, safer, and more effective than chemo-DLI for B-ALL patients who relapse after allo-HSCT.
Collapse
Affiliation(s)
- Xu Tan
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Xiao-Qi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Xian-Lan Zhao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Han Yao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Guo Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Ying-Ying Ma
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Pei-Yan Kong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China
| | - Yan Shen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Cobmined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Shi-Feng Lou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
40
|
Rejeski K, Jain MD, Smith EL. Mechanisms of Resistance and Treatment of Relapse after CAR T-cell Therapy for Large B-cell Lymphoma and Multiple Myeloma. Transplant Cell Ther 2023; 29:418-428. [PMID: 37076102 PMCID: PMC10330792 DOI: 10.1016/j.jtct.2023.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Although chimeric antigen receptor (CAR) T cell therapy (CAR-T) has altered the treatment landscape for relapsed/refractory B cell malignancies and multiple myeloma, only a minority of patients attain long-term disease remission. The underlying reasons for CAR-T resistance are multifaceted and can be broadly divided into host-related, tumor-intrinsic, microenvironmental and macroenvironmental, and CAR-T-related factors. Emerging host-related determinants of response to CAR-T relate to gut microbiome composition, intact hematopoietic function, body composition, and physical reserve. Emerging tumor-intrinsic resistance mechanisms include complex genomic alterations and mutations to immunomodulatory genes. Furthermore, the extent of systemic inflammation prior to CAR-T is a potent biomarker of response and reflects a proinflammatory tumor micromilieu characterized by infiltration of myeloid-derived suppressor cells and regulatory T cell populations. The tumor and its surrounding micromilieu also can shape the response of the host to CAR-T infusion and the subsequent expansion and persistence of CAR T cells, a prerequisite for efficient eradication of tumor cells. Here, focusing on both large B cell lymphoma and multiple myeloma, we review resistance mechanisms, explore therapeutic avenues to overcome resistance to CAR-T, and discuss the management of patients who relapse after CAR-T.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, USA
| | | |
Collapse
|
41
|
Cai M, Huang X, Huang X, Ju D, Zhu YZ, Ye L. Research progress of interleukin-15 in cancer immunotherapy. Front Pharmacol 2023; 14:1184703. [PMID: 37251333 PMCID: PMC10213988 DOI: 10.3389/fphar.2023.1184703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Interleukin-15 (IL-15) is a cytokine that belongs to the interleukin-2 (IL-2) family and is essential for the development, proliferation, and activation of immune cells, including natural killer (NK) cells, T cells and B cells. Recent studies have revealed that interleukin-15 also plays a critical role in cancer immunotherapy. Interleukin-15 agonist molecules have shown that interleukin-15 agonists are effective in inhibiting tumor growth and preventing metastasis, and some are undergoing clinical trials. In this review, we will summarize the recent progress in interleukin-15 research over the past 5 years, highlighting its potential applications in cancer immunotherapy and the progress of interleukin-15 agonist development.
Collapse
Affiliation(s)
- Menghan Cai
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Xuan Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiting Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Li Ye
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Jo T, Yoshihara S, Okuyama Y, Fujii K, Henzan T, Kahata K, Yamazaki R, Takeda W, Umezawa Y, Fukushima K, Ashida T, Yamada-Fujiwara M, Hanajiri R, Yonetani N, Tada Y, Shimura Y, Nishikii H, Shiba N, Mimura N, Ando J, Sato T, Nakashima Y, Ikemoto J, Iwaki K, Fujiwara SI, Ri M, Nagamura-Inoue T, Tanosaki R, Arai Y. Risk factors for CAR-T cell manufacturing failure among DLBCL patients: A nationwide survey in Japan. Br J Haematol 2023. [PMID: 37096915 DOI: 10.1111/bjh.18831] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
For successful chimeric antigen receptor T (CAR-T) cell therapy, CAR-T cells must be manufactured without failure caused by suboptimal expansion. In order to determine risk factors for CAR-T cell manufacturing failure, we performed a nationwide cohort study in Japan and analysed patients with diffuse large B-cell lymphoma (DLBCL) who underwent tisagenlecleucel production. We compared clinical factors between 30 cases that failed (7.4%) with those that succeeded (n = 378). Among the failures, the proportion of patients previously treated with bendamustine (43.3% vs. 14.8%; p < 0.001) was significantly higher, and their platelet counts (12.0 vs. 17.0 × 104 /μL; p = 0.01) and CD4/CD8 T-cell ratio (0.30 vs. 0.56; p < 0.01) in peripheral blood at apheresis were significantly lower than in the successful group. Multivariate analysis revealed that repeated bendamustine use with short washout periods prior to apheresis (odds ratio [OR], 5.52; p = 0.013 for ≥6 cycles with washout period of 3-24 months; OR, 57.09; p = 0.005 for ≥3 cycles with washout period of <3 months), low platelet counts (OR, 0.495 per 105 /μL; p = 0.022) or low CD4/CD8 ratios (<one third) (OR, 3.249; p = 0.011) in peripheral blood at apheresis increased the risk of manufacturing failure. Manufacturing failure remains an obstacle to CAR-T cell therapy for DLBCL patients. Avoiding risk factors, such as repeated bendamustine administration without sufficient washout, and risk-adapted strategies may help to optimize CAR-T cell therapy for DLBCL patients.
Collapse
Affiliation(s)
- Tomoyasu Jo
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Yoshihara
- Department of Transfusion Medicine and Cell Therapy, Hyogo Medical University Hospital, Nishinomiya, Japan
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Japan
| | - Yoshiki Okuyama
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Keiko Fujii
- Division of Transfusion, Okayama University Hospital, Okayama, Japan
| | - Tomoko Henzan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kaoru Kahata
- Department of Hematology, Hokkaido University, Faculty of Medicine, Sapporo, Japan
| | - Rie Yamazaki
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Takeda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Ashida
- Division of Hematology and Rheumatology, Department of Internal Medicine, Kindai University Hospital, Osakasayama, Japan
| | - Minami Yamada-Fujiwara
- Division of Blood Transfusion and Cell Therapy, Tohoku University Hospital, Sendai, Japan
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noboru Yonetani
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yuma Tada
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuji Shimura
- Department of Blood Transfusion, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Norio Shiba
- Department of Division of Blood Transfusion and Cell Therapy, Yokohama City University, Yokohama, Japan
| | - Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Jun Ando
- Department of Cell Therapy and Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Takayuki Sato
- Department of Haematology and Oncology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Junko Ikemoto
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Japan
| | - Keita Iwaki
- Division of Blood Transfusion and Cell Therapy, Tohoku University Hospital, Sendai, Japan
| | - Shin-Ichiro Fujiwara
- Division of Cell Transplantation and Transfusion, Jichi Medical University Hospital, Tochigi, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryuji Tanosaki
- Department of Hematology, Hokkaido University, Faculty of Medicine, Sapporo, Japan
| | - Yasuyuki Arai
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
43
|
Meyran D, Zhu JJ, Butler J, Tantalo D, MacDonald S, Nguyen TN, Wang M, Thio N, D'Souza C, Qin VM, Slaney C, Harrison A, Sek K, Petrone P, Thia K, Giuffrida L, Scott AM, Terry RL, Tran B, Desai J, Prince HM, Harrison SJ, Beavis PA, Kershaw MH, Solomon B, Ekert PG, Trapani JA, Darcy PK, Neeson PJ. T STEM-like CAR-T cells exhibit improved persistence and tumor control compared with conventional CAR-T cells in preclinical models. Sci Transl Med 2023; 15:eabk1900. [PMID: 37018415 DOI: 10.1126/scitranslmed.abk1900] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Patients who receive chimeric antigen receptor (CAR)-T cells that are enriched in memory T cells exhibit better disease control as a result of increased expansion and persistence of the CAR-T cells. Human memory T cells include stem-like CD8+ memory T cell progenitors that can become either functional stem-like T (TSTEM) cells or dysfunctional T progenitor exhausted (TPEX) cells. To that end, we demonstrated that TSTEM cells were less abundant in infused CAR-T cell products in a phase 1 clinical trial testing Lewis Y-CAR-T cells (NCT03851146), and the infused CAR-T cells displayed poor persistence in patients. To address this issue, we developed a production protocol to generate TSTEM-like CAR-T cells enriched for expression of genes in cell replication pathways. Compared with conventional CAR-T cells, TSTEM-like CAR-T cells had enhanced proliferative capacity and increased cytokine secretion after CAR stimulation, including after chronic CAR stimulation in vitro. These responses were dependent on the presence of CD4+ T cells during TSTEM-like CAR-T cell production. Adoptive transfer of TSTEM-like CAR-T cells induced better control of established tumors and resistance to tumor rechallenge in preclinical models. These more favorable outcomes were associated with increased persistence of TSTEM-like CAR-T cells and an increased memory T cell pool. Last, TSTEM-like CAR-T cells and anti-programmed cell death protein 1 (PD-1) treatment eradicated established tumors, and this was associated with increased tumor-infiltrating CD8+CAR+ T cells producing interferon-γ. In conclusion, our CAR-T cell protocol generated TSTEM-like CAR-T cells with enhanced therapeutic efficacy, resulting in increased proliferative capacity and persistence in vivo.
Collapse
Affiliation(s)
- Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Université de Paris, Inserm, U976 HIPI Unit, Institut de Recherche Saint-Louis, Paris F-75010, France
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Jeanne Butler
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Daniela Tantalo
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Sean MacDonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Thu Ngoc Nguyen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Minyu Wang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Niko Thio
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Criselle D'Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Vicky Mengfei Qin
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Clare Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Aaron Harrison
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Pasquale Petrone
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Kevin Thia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Andrew M Scott
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rachael L Terry
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 1466, Australia
| | - Ben Tran
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jayesh Desai
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Ben Solomon
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul G Ekert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 1466, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW 1466, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
44
|
Neo SY, Xu S, Chong J, Lam KP, Wu J. Harnessing novel strategies and cell types to overcome immune tolerance during adoptive cell therapy in cancer. J Immunother Cancer 2023; 11:jitc-2022-006434. [PMID: 37100458 PMCID: PMC10151952 DOI: 10.1136/jitc-2022-006434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
Cell therapy encompasses an expanding spectrum of cell-based regimes for the treatment of human ailments, such as the use of immune cells, in particular T cells, for combating tumors and the modulation of inflammatory immune responses. In this review, we focus on cell therapy in the immuno-oncology space, which is largely driven by interests and demands from the clinics for better solutions to target various hard-to-treat cancers. We discuss recent advances in various types of cell therapies, including T cell receptor-T cells, chimeric antigen receptor (CAR)-T cells, tumor-infiltrating lymphocytes and natural killer cells. Particularly, the present review focuses on the strategies to improve therapeutic responses by either enhancing tumor recognition or the resilience of infused immune cells within tumor microenvironment. Finally, we discuss the potential of other innate or innate-like immune cell types currently being explored as promising CAR-cell alternatives that seek to address the limitations of conventional adoptive cell therapies.
Collapse
Affiliation(s)
- Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Joni Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| |
Collapse
|
45
|
Selli ME, Landmann JH, Arveseth C, Singh N. Inducing T cell dysfunction by chronic stimulation of CAR-engineered T cells targeting cancer cells in suspension cultures. STAR Protoc 2023; 4:101954. [PMID: 36607811 PMCID: PMC9826863 DOI: 10.1016/j.xpro.2022.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Several pre-clinical models reveal that chronic chimeric antigen receptor (CAR) stimulation drives a dysfunctional state that mimics in vivo failure. In this protocol, we describe steps to induce T cell dysfunction by persistent and long-term stimulation of CAR-engineered T cells using antigen-expressing cancer cells in suspension cultures. We first described a validated method for manufacturing of CAR T cells, followed by a detailed method for chronic stimulation of CAR T cells and a strategy to evaluate these cells during the process of chronic stimulation. For complete details on the use and execution of this protocol, please refer to Singh et al. (2020).1.
Collapse
Affiliation(s)
- Mehmet Emrah Selli
- Washington University School of Medicine, Division of Oncology, St. Louis, MO 63105, USA
| | - Jack H Landmann
- Washington University School of Medicine, Division of Oncology, St. Louis, MO 63105, USA
| | - Corvin Arveseth
- Washington University School of Medicine, Division of Oncology, St. Louis, MO 63105, USA
| | - Nathan Singh
- Washington University School of Medicine, Division of Oncology, St. Louis, MO 63105, USA.
| |
Collapse
|
46
|
Myers RM, Shah NN, Pulsipher MA. How I use risk factors for success or failure of CD19 CAR T cells to guide management of children and AYA with B-cell ALL. Blood 2023; 141:1251-1264. [PMID: 36416729 PMCID: PMC10082355 DOI: 10.1182/blood.2022016937] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
By overcoming chemotherapeutic resistance, chimeric antigen receptor (CAR) T cells facilitate deep, complete remissions and offer the potential for long-term cure in a substantial fraction of patients with chemotherapy refractory disease. However, that success is tempered with 10% to 30% of patients not achieving remission and over half of patients treated eventually experiencing relapse. With over a decade of experience using CAR T cells in children, adolescents, and young adults (AYA) to treat relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) and 5 years since the first US Food and Drug Administration approval, data defining the nuances of patient-specific risk factors are emerging. With the commercial availability of 2 unique CD19 CAR T-cell constructs for B-ALL, in this article, we review the current literature, outline our approach to patients, and discuss how individual factors inform strategies to optimize outcomes in children and AYA receiving CD19 CAR T cells. We include data from both prospective and recent large retrospective studies that offer insight into understanding when the risks of CAR T-cell therapy failure are high and offer perspectives suggesting when consolidative hematopoietic cell transplantation or experimental CAR T-cell and/or alternative immunotherapy should be considered. We also propose areas where prospective trials addressing the optimal use of CAR T-cell therapy are needed.
Collapse
Affiliation(s)
- Regina M. Myers
- Division of Oncology, Cell Therapy and Transplant Section, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael A. Pulsipher
- Division of Hematology and Oncology, Intermountain Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| |
Collapse
|
47
|
Naeem M, Hazafa A, Bano N, Ali R, Farooq M, Razak SIA, Lee TY, Devaraj S. Explorations of CRISPR/Cas9 for improving the long-term efficacy of universal CAR-T cells in tumor immunotherapy. Life Sci 2023; 316:121409. [PMID: 36681183 DOI: 10.1016/j.lfs.2023.121409] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Chimeric antigen receptor (CAR) T therapy has shown remarkable success in discovering novel CAR-T cell products for treating malignancies. Despite of successful results from clinical trials, CAR-T cell therapy is ineffective for long-term disease progression. Numerous challenges of CAR-T cell immunotherapy such as cell dysfunction, cytokine-related toxicities, TGF-β resistance, GvHD risks, antigen escape, restricted trafficking, and tumor cell infiltration still exist that hamper the safety and efficacy of CAR-T cells for malignancies. The accumulated data revealed that these challenges could be overcome with the advanced CRISPR genome editing technology, which is the most promising tool to knockout TRAC and HLA genes, inhibiting the effects of dominant negative receptors (PD-1, TGF-β, and B2M), lowering the risks of cytokine release syndrome (CRS), and regulating CAR-T cell function in the tumor microenvironment (TME). CRISPR technology employs DSB-free genome editing methods that robustly allow efficient and controllable genetic modification. The present review explored the innovative aspects of CRISPR/Cas9 technology for developing next-generation/universal allogeneic CAR-T cells. The present manuscript addressed the ongoing status of clinical trials of CRISPR/Cas9-engineered CAR-T cells against cancer and pointed out the off-target effects associated with CRISPR/Cas9 genome editing. It is concluded that CAR-T cells modified by CRISPR/Cas9 significantly improved antitumor efficacy in a cost-effective manner that provides opportunities for novel cancer immunotherapies.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, 050024 Shijiazhuang, China
| | - Abu Hazafa
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy; Department of Biochemistry, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan.
| | - Naheed Bano
- Department of Fisheries and Aquaculture, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Rashid Ali
- Department of Zoology, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Zoology, Faculty of Science, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group (BioInspira), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Tze Yan Lee
- School of Liberal Arts, Science and Technology (PUScLST) Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan Damansara Heights, 50490 Kuala Lumpur, Malaysia
| | - Sutha Devaraj
- Faculty of Medicine, AIMST University, 08100 Bedong, Kedah, Malaysia
| |
Collapse
|
48
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
49
|
de Lima SCG, Fantacini DMC, Furtado IP, Rossetti R, Silveira RM, Covas DT, de Souza LEB. Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:85-110. [PMID: 37486518 DOI: 10.1007/978-3-031-33325-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.
Collapse
Affiliation(s)
- Sarah Caroline Gomes de Lima
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Izadora Peter Furtado
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Rossetti
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberta Maraninchi Silveira
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
50
|
Wang Z, Chen C, Wang L, Jia Y, Qin Y. Chimeric antigen receptor T-cell therapy for multiple myeloma. Front Immunol 2022; 13:1050522. [PMID: 36618390 PMCID: PMC9814974 DOI: 10.3389/fimmu.2022.1050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cell disorder that remains incurable for most patients, as persistent clonal evolution drives new mutations which confer MM high-risk signatures and resistance to standard care. The past two decades have significantly refashioned the therapeutic options for MM, especially adoptive T cell therapy contributing to impressive response rate and clinical efficacy. Despite great promises achieved from chimeric antigen receptor T-cell (CAR-T) therapy, the poor durability and severe toxicity (cytokine release syndrome and neurotoxicity) are still huge challenges. Therefore, relapsed/refractory multiple myeloma (RRMM), characterized by the nature of clinicopathologic and molecular heterogeneity, is frequently associated with poor prognosis. B Cell Maturation Antigen (BCMA) is the most successful target for CAR-T therapy, and other potential targets either for single-target or dual-target CAR-T are actively being studied in numerous clinical trials. Moreover, mechanisms driving resistance or relapse after CAR-T therapy remain uncharacterized, which might refer to T-cell clearance, antigen escape, and immunosuppressive tumor microenvironment. Engineering CAR T-cell to improve both efficacy and safety continues to be a promising area for investigation. In this review, we aim to describe novel tumor-associated neoantigens for MM, summarize the data from current MM CAR-T clinical trials, introduce the mechanism of disease resistance/relapse after CAR-T infusion, highlight innovations capable of enhanced efficacy and reduced toxicity, and provide potential directions to optimize manufacturing processes.
Collapse
Affiliation(s)
| | | | | | - Yongxu Jia
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| | - Yanru Qin
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| |
Collapse
|