1
|
Ueda D, Suzumori K, Nabae H, Ishikawa Y, Oda T. Soft Robotic Heart Formed with a Myocardial Band for Cardiac Functions. Soft Robot 2025. [PMID: 39905945 DOI: 10.1089/soro.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
The myocardial contracting ratio is approximately 20%, whereas ejection fraction exceeds 60%. Understanding the structure and kinetic mechanisms of the heart that enable this high ejection fraction is crucial in both basic and clinical medicine. However, these mechanisms remain incompletely elucidated. The authors have developed a functional model based on the unique myocardial band theory, which posits that the ventricle is formed by a single myocardial band winding into a spiral. According to this theory, a muscle band, which incorporated thin McKibben artificial muscles embedded within a soft elastomer, was formed, and it was subsequently rolled to replicate the ventricle's structure. Thin McKibben muscles are well-suited for mimicking cardiac muscles due to their longitudinal contraction, radial expansion, and ability to operate in a curved position. In general, animal hearts exhibit approximately 20% myocardial contracting ratio, a 1.2-fold change in myocardial band thickness, and an ejection fraction in the range 50-70%. In comparison, soft robotic hearts demonstrated values of 17.3%, a 1.28-fold thickness change, and a 47.8% ejection fraction, respectively, which closely approximated those of real hearts. Water ejection experiments conducted using a soft robotic heart revealed that the maximum pressure during contraction reached 200 mmHg, generating a pressure-volume loop similar to that observed in the human heart. Thus, soft robotic hearts hold the potential for a wide range of clinical applications, including the elucidation of heart failure pathophysiology and the development of surgical treatments.
Collapse
Affiliation(s)
- Daiki Ueda
- Department of Mechanical Engineering, School of Engineering, Institute of Science Tokyo, Meguro-ku, Japan
| | - Koichi Suzumori
- Department of Mechanical Engineering, School of Engineering, Institute of Science Tokyo, Meguro-ku, Japan
| | - Hiroyuki Nabae
- Department of Mechanical Engineering, School of Engineering, Institute of Science Tokyo, Meguro-ku, Japan
| | - Yuta Ishikawa
- Department of Mechanical Engineering, School of Engineering, Institute of Science Tokyo, Meguro-ku, Japan
| | - Teiji Oda
- Division of Cardiovascular Surgery, Department of Surgery, Shimane University Faculty of Medicine, Matsue, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
2
|
Ji A, Davies J, Phan PT, Nguyen CC, Sharma B, Zhu K, Nicotra E, Wan J, Phan HP, Hayward C, Lovell NH, Do TN. Development of a Self-Deploying Extra-Aortic Compression Device for Medium-Term Hemodynamic Stabilization: A Feasibility Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412120. [PMID: 39731354 DOI: 10.1002/advs.202412120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Indexed: 12/29/2024]
Abstract
Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and effective hemodynamic support. Current mechanical assistive devices, such as intra-aortic balloon pumps (IABP) and extracorporeal membrane oxygenation (ECMO), offer temporary stabilization but are limited to short-term use due to risks associated with prolonged blood contact. This research presents a novel proof-of-concept soft robotic device designed with the aim of achieving low-risk, medium-term counterpulsation therapy. The device employs a nature-inspired growing mechanism for potentially minimally invasive deployment around the ascending aorta, coupled with hydraulic artificial muscles for aortic compression. It demonstrated a maximum stroke volume of 16.48 ± 0.21 mL (SD, n = 5), outperforming all other non-pneumatic extra-aortic devices. In addition, in vitro tests with a mock circulation loop (MCL) show a drop in aortic end-diastolic pressure by 6.32 mmHg and enhance coronary flow under mild aortic stenosis, which attenuate the device's assistive effect. These findings highlight the device's strong potential for optimization as a promising solution to improve outcomes for hemodynamically unstable HF patients.
Collapse
Affiliation(s)
- Adrienne Ji
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - James Davies
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - Phuoc Thien Phan
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - Bibhu Sharma
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - Kefan Zhu
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - Emanuele Nicotra
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - Jingjing Wan
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - Christopher Hayward
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Xie N, Tian J, Li Z, Shi N, Li B, Cheng B, Li Y, Li M, Xu F. Invited Review for 20th Anniversary Special Issue of PLRev "AI for Mechanomedicine". Phys Life Rev 2024; 51:328-342. [PMID: 39489078 DOI: 10.1016/j.plrev.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Mechanomedicine is an interdisciplinary field that combines different areas including biomechanics, mechanobiology, and clinical applications like mechanodiagnosis and mechanotherapy. The emergence of artificial intelligence (AI) has revolutionized mechanomedicine, providing advanced tools to analyze the complex interactions between mechanics and biology. This review explores how AI impacts mechanomedicine across four key aspects, i.e., biomechanics, mechanobiology, mechanodiagnosis, and mechanotherapy. AI improves the accuracy of biomechanical characterizations and models, deepens the understanding of cellular mechanotransduction pathways, and enables early disease detection through mechanodiagnosis. In addition, AI optimizes mechanotherapy that targets biomechanical features and mechanobiological markers by personalizing treatment strategies based on real-time patient data. Even with these advancements, challenges still exist, particularly in data quality and the ethical integration into AI in clinical practice. The integration of AI with mechanomedicine offers transformative potential, enabling more accurate diagnostics and personalized treatments, and discovering novel mechanobiological pathways.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Jin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, PR China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061 China
| | - Bin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Moxiao Li
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Yang Y, Read H, Sbai M, Zareei A, Forte AE, Melancon D, Bertoldi K. Complex Deformation in Soft Cylindrical Structures via Programmable Sequential Instabilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406611. [PMID: 39240015 DOI: 10.1002/adma.202406611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Indexed: 09/07/2024]
Abstract
The substantial deformation exhibited by hyperelastic cylindrical shells under pressurization makes them an ideal platform for programmable inflatable structures. If negative pressure is applied, the cylindrical shell will buckle, leading to a sequence of rich deformation modes, all of which are fully recoverable due to the hyperelastic material choice. While the initial buckling event under vacuum is well understood, here, the post-buckling regime is explored and a region in the design space is identified in which a coupled twisting-contraction deformation mode occurs; by carefully controlling the geometry of our homogeneous shells, the proportion of contraction versus twist can be controlled. Additionally, bending as a post-buckling deformation mode can be unlocked by varying the thickness of our shells across the circumference. Since these soft shells can fully recover from substantial deformations caused by buckling, then these instability-driven deformations are harnessed to build soft machines capable of a programmable sequence of movements with a single actuation input.
Collapse
Affiliation(s)
- Yi Yang
- J.A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Helen Read
- J.A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Mohammed Sbai
- J.A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ahmad Zareei
- J.A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Antonio Elia Forte
- J.A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Engineering, King's College London, London, WC2R 2LS, UK
| | - David Melancon
- J.A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Mechanical Engineering, Polytechnique Montreal, Quebec, H3T 1J4, Canada
| | - Katia Bertoldi
- J.A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
5
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Mao Z, Suzuki S, Wiranata A, Zheng Y, Miyagawa S. Bio-inspired circular soft actuators for simulating defecation process of human rectum. J Artif Organs 2024:10.1007/s10047-024-01477-5. [PMID: 39443339 DOI: 10.1007/s10047-024-01477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Soft robots have found extensive applications in the medical field, particularly in rehabilitation exercises, assisted grasping, and artificial organs. Despite significant advancements in simulating various components of the digestive system, the rectum has been largely neglected due to societal stigma. This study seeks to address this gap by developing soft circular muscle actuators (CMAs) and rectum models to replicate the defecation process. Using soft materials, both the rectum and the actuators were fabricated to enable seamless integration and attachment. We designed, fabricated, and tested three types of CMAs and compared them to the simulated results. A pneumatic system was employed to control the actuators, and simulated stool was synthesized using sodium alginate and calcium chloride. Experimental results indicated that the third type of actuator exhibited superior performance in pressure generation, enabling the area contraction to reach a maximum value of 1. The successful simulation of the defecation process highlights the potential of these soft actuators in biomedical applications, providing a foundation for further research and development in the field of soft robotics.
Collapse
Affiliation(s)
- Zebing Mao
- Faculty of Engineering, Yamaguchi University, Yamaguchi, Japan.
| | - Sota Suzuki
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Ardi Wiranata
- Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yanqiu Zheng
- Department of Mechanical Engineering, Ritsumeikan University, Shiga, Japan
| | - Shoko Miyagawa
- Faculty of Nursing and Medical Care, Keio University, Kanagawa, Japan
| |
Collapse
|
7
|
Zhang Y, Ge Q, Wang Z, Qin Y, Wu Y, Wang M, Shi M, Xue L, Guo W, Zhang Y, Wang G, Wang D. Extracorporeal Closed-Loop Respiratory Regulation for Patients With Respiratory Difficulty Using a Soft Bionic Robot. IEEE Trans Biomed Eng 2024; 71:2923-2935. [PMID: 38753478 DOI: 10.1109/tbme.2024.3401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Respiratory regulation is critical for patients with respiratory dysfunction. Clinically used ventilators can lead to long-term dependence and injury. Extracorporeal assistance approaches such as iron-lung devices provide a noninvasive alternative, however, artificial actuator counterparts have not achieved marvelous biomimetic ventilation as human respiratory muscles. Here, we propose a bionic soft exoskeleton robot that can achieve extracorporeal closed-loop respiratory regulation by emulating natural human breath. METHODS For inspiration, a soft vacuum chamber is actuated to produce negative thoracic pressure and thus expand lung volume by pulling the rib cage up and outward through use of external negative pressure. For expiration, a soft origami array under positive pressure pushes the abdominal muscles inward and the diaphragm upward. To achieve in vitro measurement of respiratory profile, we describe a wireless respiratory monitoring device to measure respiratory profiles with high accuracy, validated by quantitative comparisons with spirometer as gold-standard reference. By constructing a human-robot coupled respiratory mechanical model, a model-based proportional controller is designed for continuous tracking of the target respiratory profile. RESULTS In experiments with ten healthy participants and ten patients with respiratory difficulty, the robot can adjust its assistive forces in real time and drive human-robot coupling respiratory system to track the target profile. CONCLUSION The biomimetic robot can achieve extracorporeal closed-loop respiratory regulation for a diverse population. SIGNIFICANCE The soft robot has important potential to assist respiration for people with respiratory difficulty, whether in a hospital or a home setting.
Collapse
|
8
|
Mendez K, Whyte W, Freedman BR, Fan Y, Varela CE, Singh M, Cintron-Cruz JC, Rothenbücher SE, Li J, Mooney DJ, Roche ET. Mechanoresponsive Drug Release from a Flexible, Tissue-Adherent, Hybrid Hydrogel Actuator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303301. [PMID: 37310046 DOI: 10.1002/adma.202303301] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Soft robotic technologies for therapeutic biomedical applications require conformal and atraumatic tissue coupling that is amenable to dynamic loading for effective drug delivery or tissue stimulation. This intimate and sustained contact offers vast therapeutic opportunities for localized drug release. Herein, a new class of hybrid hydrogel actuator (HHA) that facilitates enhanced drug delivery is introduced. The multi-material soft actuator can elicit a tunable mechanoresponsive release of charged drug from its alginate/acrylamide hydrogel layer with temporal control. Dosing control parameters include actuation magnitude, frequency, and duration. The actuator can safely adhere to tissue via a flexible, drug-permeable adhesive bond that can withstand dynamic device actuation. Conformal adhesion of the hybrid hydrogel actuator to tissue leads to improved mechanoresponsive spatial delivery of the drug. Future integration of this hybrid hydrogel actuator with other soft robotic assistive technologies can enable a synergistic, multi-pronged treatment approach for the treatment of disease.
Collapse
Affiliation(s)
- Keegan Mendez
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 01238, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Claudia E Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Juan C Cintron-Cruz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 01238, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Sandra E Rothenbücher
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A 0C3, Canada
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 01238, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Pirozzi I, Kight A, Han AK, Cutkosky MR, Dual SA. Circulatory Support: Artificial Muscles for the Future of Cardiovascular Assist Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210713. [PMID: 36827651 DOI: 10.1002/adma.202210713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Artificial muscles enable the design of soft implantable devices which are poised to transform the way we mechanically support the heart today. Heart failure is a prevalent and deadly disease, which is treated with the implantation of rotary blood pumps as the only alternative to heart transplantation. The clinically used mechanical devices are associated with severe adverse events, which are reflected here in a comprehensive list of critical requirements for soft active devices of the future: low power, no blood contact, pulsatile support, physiological responsiveness, high cycle life, and less-invasive implantation. In this review, prior art in artificial muscles for their applicability in the short and long term is investigated and critically evaluated. The main challenges regarding the effectiveness, controllability, and implantability of recently proposed actuators are highlighted and the future perspectives for attachment, physiological responsiveness, durability, and biodegradability as well as equitable design considerations are explored.
Collapse
Affiliation(s)
- Ileana Pirozzi
- Department of Bioengineering, Stanford University, Palo Alto, CA 94301, USA
| | - Ali Kight
- Department of Bioengineering, Stanford University, Palo Alto, CA 94301, USA
| | - Amy Kyungwon Han
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mark R Cutkosky
- Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94301, USA
| | - Seraina A Dual
- Department of Biomedical Engineering, KTH Royal Institute of Technology, Huddinge, 14157, Sweden
| |
Collapse
|
10
|
Davies J, Thai MT, Sharma B, Hoang TT, Nguyen CC, Phan PT, Vuong TNAM, Ji A, Zhu K, Nicotra E, Toh YC, Stevens M, Hayward C, Phan HP, Lovell NH, Do TN. Soft robotic artificial left ventricle simulator capable of reproducing myocardial biomechanics. Sci Robot 2024; 9:eado4553. [PMID: 39321276 DOI: 10.1126/scirobotics.ado4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
The heart's intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives. This work introduces a bioinspired soft robotic left ventricle simulator capable of reproducing the minutiae of cardiac motion while providing physiological pressures. This device uses thin-filament artificial muscles to mimic the multilayered myocardial architecture. To demonstrate the device's ability to follow the cardiac motions observed in the literature, we used canine myocardial strain data as input signals that were subsequently applied to each artificial myocardial layer. The device's ability to reproduce physiological volume and pressure under healthy and heart failure conditions, as well as effective simulation of a cardiac support device, were experimentally demonstrated in a left-sided mock circulation loop. This work also has the potential to deliver faithful simulated cardiac motion for preclinical device and surgical procedure testing, with the potential to simulate patient-specific myocardial architecture and motion.
Collapse
Affiliation(s)
- James Davies
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Bibhu Sharma
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Trung Thien Hoang
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Phuoc Thien Phan
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Thao Nhu Anne Marie Vuong
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Adrienne Ji
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kefan Zhu
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Emanuele Nicotra
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Michael Stevens
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christopher Hayward
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hoang-Phuong Phan
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nigel Hamilton Lovell
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Mora V, Geraldo J, Roldán I, Galiana E, Gil C, Escribano P, Arbucci R, Hidalgo A, Gramage P, Trainini J, Carreras F, Lowenstein J. A New Coding System for the Identification of Left Ventricular Rotation Patterns and Their Relevance to Myocardial Function. Ann Biomed Eng 2024; 52:2509-2520. [PMID: 38853207 PMCID: PMC11573865 DOI: 10.1007/s10439-024-03539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024]
Abstract
Rotational mechanics is a fundamental determinant of left ventricular ejection fraction (LVEF). The coding system currently employed in clinical practice does not distinguish between rotational patterns. We propose an alternative coding system that makes possible to identify the rotational pattern of the LV and relate it to myocardial function. Echocardiographic images were used to generate speckle tracking-derived transmural global longitudinal strain (tGLS) and rotational parameters. The existence of twist (basal and apical rotations in opposite directions) is expressed as a rotational gradient with a positive value that is the sum of the basal and apical rotation angles. Conversely, when there is rigid rotation (basal and apical rotations in the same direction) the resulting gradient is assigned a negative value that is the subtraction between the two rotation angles. The rotational patterns were evaluated in 87 healthy subjects and 248 patients with LV hypertrophy (LVH) and contrasted with their myocardial function. Our approach allowed us to distinguish between the different rotational patterns. Twist pattern was present in healthy controls and 104 patients with LVH and normal myocardial function (tGLS ≥ 17%, both). Among 144 patients with LVH and myocardial dysfunction (tGLS < 17%), twist was detected in 83.3% and rigid rotation in 16.7%. LVEF was < 50% in 34.7%, and all patients with rigid rotation had a LVEF < 50%. The gradient rotational values showed a close relationship with LVEF (r = 0.73; p < 0.001). The proposed coding system allows us to identify the rotational patterns of the LV and to relate their values with LVEF.
Collapse
Affiliation(s)
- Vicente Mora
- Department of Cardiology, Hospital Universitario Dr Peset, 46017, Valencia, Spain
| | - Juan Geraldo
- Department of Cardiology, Hospital Universitario Dr Peset, 46017, Valencia, Spain
| | - Ildefonso Roldán
- Cardiology Department, Universitat de València, Hospital Universitario Dr Peset, Avda Gaspar Aguilar 90, 46017, Valencia, Spain.
| | - Ester Galiana
- Department of Cardiology, Hospital Universitario Dr Peset, 46017, Valencia, Spain
| | - Celia Gil
- Department of Cardiology, Hospital Universitario Dr Peset, 46017, Valencia, Spain
| | - Pablo Escribano
- Department of Cardiology, Hospital Universitario Dr Peset, 46017, Valencia, Spain
| | - Rosina Arbucci
- Cardiodiagnosis Department, Medical Research, 1425, Buenos Aires, Argentina
| | - Alberto Hidalgo
- Department of Cardiology, Hospital Universitario Dr Peset, 46017, Valencia, Spain
| | - Paula Gramage
- Department of Cardiology, Hospital Universitario Dr Peset, 46017, Valencia, Spain
| | - Jorge Trainini
- Cardiodiagnosis Department, Medical Research, 1425, Buenos Aires, Argentina
| | - Francesc Carreras
- Department of Cardiology, Hospital Sant Pau, 08025, Barcelona, Spain
| | - Jorge Lowenstein
- Cardiodiagnosis Department, Medical Research, 1425, Buenos Aires, Argentina
| |
Collapse
|
12
|
Xu J, Xu B, Yue H, Xie Z, Tian Y, Yang F. Origami-Inspired Bionic Soft Robot Stomach with Self-Powered Sensing. Adv Healthc Mater 2024; 13:e2302761. [PMID: 38018459 DOI: 10.1002/adhm.202302761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The stomach is a vital organ in the human digestive system, and its digestive condition is critical to human health. The physical movement of the stomach during digestion is controlled by the circular and oblique muscles. Existing stomach simulators are unable to realistically reproduce the physical movement of the stomach. Due to the complexity of gastric motility, it is challenging to simulate and sense gastric motility. This study proposes for the first time a bionic soft robotic stomach (BSRS) with an integrated drive and sensing structure inspired by origami and self-powered sensing technology. This soft stomach (SS) can realistically simulate and sense the movements of various parts of the human stomach in real-time. The contraction force and contraction rate of the BSRS are investigated with different viscosity contents, and the experimental values are similar to the physiological range (maximum contraction force is 3.2 N, and maximum contraction rate is 0.8). This paper provides an experimental basis for the study of gastric digestive medicine and food science by simulating the peristaltic motion of the BSRS according to the human stomach and by combining the triboelectric nanogenerator (TENG) sensing technology to monitor the motion of the BSRS in real-time.
Collapse
Affiliation(s)
- Jinsui Xu
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Boyi Xu
- Light Industry College, Harbin University of Commerce, Harbin, 150028, China
| | - Honghao Yue
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhijie Xie
- College of mechanical and electrical engineering, Northeast Forestry University, Harbin, 150042, China
| | - Ye Tian
- Light Industry College, Harbin University of Commerce, Harbin, 150028, China
| | - Fei Yang
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
13
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Li P, Chang Y, Song J. Advances in preclinical surgical therapy of cardiovascular diseases. Int J Surg 2024; 110:4965-4975. [PMID: 38701509 PMCID: PMC11326035 DOI: 10.1097/js9.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Cardiovascular disease is the most common cause of death worldwide, resulting in millions of deaths annually. Currently, there are still some deficiencies in the treatment of cardiovascular diseases. Innovative surgical treatments are currently being developed and tested in response to this situation. Large animal models, which are similar to humans in terms of anatomy, physiology, and genetics, play a crucial role in connecting basic research and clinical applications. This article reviews recent preclinical studies and the latest clinical advancements in cardiovascular disease based on large animal models, with a focus on targeted delivery, neural regulation, cardiac remodeling, and hemodynamic regulation. It provides new perspectives and ideas for clinical translation and offers new methods for clinical treatment.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of Cardiac Surgery, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | |
Collapse
|
15
|
Pontin M, Damian DD. Multimodal soft valve enables physical responsiveness for preemptive resilience of soft robots. Sci Robot 2024; 9:eadk9978. [PMID: 39047079 DOI: 10.1126/scirobotics.adk9978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Resilience is crucial for the self-preservation of biological systems: Humans recover from wounds thanks to an immune system that autonomously enacts a multistage response to promote healing. Similar passive mechanisms can enable pneumatic soft robots to overcome common faults such as bursts originating from punctures or overpressurization. Recent technological advancements, ranging from fault-tolerant controllers for robot reconfigurability to self-healing materials, have paved the way for robot resilience. However, these techniques require powerful processors and large datasets or external hardware. How to extend the operational life span of damaged soft robots with minimal computational and physical resources remains unclear. In this study, we demonstrated a multimodal pneumatic soft valve capable of passive resilient reactions, triggered by faults, to prevent or isolate damage in soft robots. In its forward operation mode, the valve, requiring a single supply pressure, isolated punctured soft inflatable elements from the rest of the soft robot in as fast as 21 milliseconds. In its reverse operation mode, the valve can passively protect robots against overpressurization caused by external disturbances, avoiding plastic deformations and bursts. Furthermore, the two modes combined enabled the creation of an endogenously controlled valve capable of autonomous burst isolation. We demonstrated the passive and quick response and the possibility of monolithic integration of the soft valve in grippers and crawling robots. The approach proposed in this study provides a distributed small-footprint alternative to controller-based resilience and is expected to help soft robots achieve uninterrupted long-lasting operation.
Collapse
Affiliation(s)
- Marco Pontin
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
- Sheffield Robotics, University of Sheffield, Sheffield, UK
| | - Dana D Damian
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
- Sheffield Robotics, University of Sheffield, Sheffield, UK
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Singh M, Roubertie F, Ozturk C, Borchiellini P, Rames A, Bonnemain J, Gollob SD, Wang SX, Naulin J, El Hamrani D, Dugot-Senant N, Gosselin I, Grenet C, L'Heureux N, Roche ET, Kawecki F. Hemodynamic evaluation of biomaterial-based surgery for Tetralogy of Fallot using a biorobotic heart, in silico, and ovine models. Sci Transl Med 2024; 16:eadk2936. [PMID: 38985852 DOI: 10.1126/scitranslmed.adk2936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Tetralogy of Fallot is a congenital heart disease affecting newborns and involves stenosis of the right ventricular outflow tract (RVOT). Surgical correction often widens the RVOT with a transannular enlargement patch, but this causes issues including pulmonary valve insufficiency and progressive right ventricle failure. A monocusp valve can prevent pulmonary regurgitation; however, valve failure resulting from factors including leaflet design, morphology, and immune response can occur, ultimately resulting in pulmonary insufficiency. A multimodal platform to quantitatively evaluate the effect of shape, size, and material on clinical outcomes could optimize monocusp design. This study introduces a benchtop soft biorobotic heart model, a computational fluid model of the RVOT, and a monocusp valve made from an entirely biological cell-assembled extracellular matrix (CAM) to tackle the multifaceted issue of monocusp failure. The hydrodynamic and mechanical performance of RVOT repair strategies was assessed in biorobotic and computational platforms. The monocusp valve design was validated in vivo in ovine models through echocardiography, cardiac magnetic resonance, and catheterization. These models supported assessment of surgical feasibility, handling, suturability, and hemodynamic and mechanical monocusp capabilities. The CAM-based monocusp offered a competent pulmonary valve with regurgitation of 4.6 ± 0.9% and a transvalvular pressure gradient of 4.3 ± 1.4 millimeters of mercury after 7 days of implantation in sheep. The biorobotic heart model, in silico analysis, and in vivo RVOT modeling allowed iteration in monocusp design not now feasible in a clinical environment and will support future surgical testing of biomaterials for complex congenital heart malformations.
Collapse
Affiliation(s)
- Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - François Roubertie
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33604 Pessac, France
- Congenital Heart Diseases Department, CHU de Bordeaux, F-33604 Pessac, France
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Paul Borchiellini
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Adeline Rames
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Samuel Dutra Gollob
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sophie X Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jérôme Naulin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33604 Pessac, France
| | - Dounia El Hamrani
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33604 Pessac, France
| | - Nathalie Dugot-Senant
- Plateforme d'histopathologie, TBMcore INSERM US005-CNRS 3427, F-33000 Bordeaux, France
| | - Isalyne Gosselin
- Plateforme d'histopathologie, TBMcore INSERM US005-CNRS 3427, F-33000 Bordeaux, France
| | - Célia Grenet
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Nicolas L'Heureux
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fabien Kawecki
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| |
Collapse
|
17
|
Huang X, Shen Y, Liu Y, Zhang H. Current status and future directions in pediatric ventricular assist device. Heart Fail Rev 2024; 29:769-784. [PMID: 38530587 DOI: 10.1007/s10741-024-10396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
A ventricular assist device (VAD) is a form of mechanical circulatory support that uses a mechanical pump to partially or fully take over the function of a failed heart. In recent decades, the VAD has become a crucial option in the treatment of end-stage heart failure in adult patients. However, due to the lack of suitable devices and more complicated patient profiles, this therapeutic approach is still not widely used for pediatric populations. This article reviews the clinically available devices, adverse events, and future directions of design and implementation in pediatric VADs.
Collapse
Affiliation(s)
- Xu Huang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
| | - Yi Shen
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
| | - Yiwei Liu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
| |
Collapse
|
18
|
Deng J, Wu J, Chen X, Sarrafian TL, Varela CE, Whyte W, Guo CF, Roche ET, Griffiths LG, Yuk H, Nabzdyk CS, Zhao X. A bioadhesive pacing lead for atraumatic cardiac monitoring and stimulation in rodent and porcine models. Sci Transl Med 2024; 16:eado9003. [PMID: 38896601 DOI: 10.1126/scitranslmed.ado9003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Current clinically used electronic implants, including cardiac pacing leads for epicardial monitoring and stimulation of the heart, rely on surgical suturing or direct insertion of electrodes to the heart tissue. These approaches can cause tissue trauma during the implantation and retrieval of the pacing leads, with the potential for bleeding, tissue damage, and device failure. Here, we report a bioadhesive pacing lead that can directly interface with cardiac tissue through physical and covalent interactions to support minimally invasive adhesive implantation and gentle on-demand removal of the device with a detachment solution. We developed 3D-printable bioadhesive materials for customized fabrication of the device by graft-polymerizing polyacrylic acid on hydrophilic polyurethane and mixing with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to obtain electrical conductivity. The bioadhesive construct exhibited mechanical properties similar to cardiac tissue and strong tissue adhesion, supporting stable electrical interfacing. Infusion of a detachment solution to cleave physical and covalent cross-links between the adhesive interface and the tissue allowed retrieval of the bioadhesive pacing leads in rat and porcine models without apparent tissue damage. Continuous and reliable cardiac monitoring and pacing of rodent and porcine hearts were demonstrated for 2 weeks with consistent capture threshold and sensing amplitude, in contrast to a commercially available alternative. Pacing and continuous telemetric monitoring were achieved in a porcine model. These findings may offer a promising platform for adhesive bioelectronic devices for cardiac monitoring and treatment.
Collapse
Affiliation(s)
- Jue Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | | | - Claudia E Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ellen T Roche
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Christoph S Nabzdyk
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y, Bai W. Skin-inspired, sensory robots for electronic implants. Nat Commun 2024; 15:4777. [PMID: 38839748 PMCID: PMC11153219 DOI: 10.1038/s41467-024-48903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sicheng Xing
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hiep Thanh Tran
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Chuqi Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wei Luo
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | | | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Samuel Hankley
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Amber Huang
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Brynn Brusseau
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jett Messenger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yici Zou
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
20
|
Jia H, Chang Y, Song J. The pig as an optimal animal model for cardiovascular research. Lab Anim (NY) 2024; 53:136-147. [PMID: 38773343 DOI: 10.1038/s41684-024-01377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Cardiovascular disease is a worldwide health problem and a leading cause of morbidity and mortality. Preclinical cardiovascular research using animals is needed to explore potential targets and therapeutic options. Compared with rodents, pigs have many advantages, with their anatomy, physiology, metabolism and immune system being more similar to humans. Here we present an overview of the available pig models for cardiovascular diseases, discuss their advantages over other models and propose the concept of standardized models to improve translation to the clinical setting and control research costs.
Collapse
Affiliation(s)
- Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
21
|
Zhang Y, Sun Y, Nan J, Yang F, Wang Z, Li Y, Wang C, Chu F, Liu Y, Wang C. In Situ Polymerization of Hydrogel Electrolyte on Electrodes Enabling the Flexible All-Hydrogel Supercapacitors with Low-Temperature Adaptability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309900. [PMID: 38312091 DOI: 10.1002/smll.202309900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Indexed: 02/06/2024]
Abstract
All-hydrogel supercapacitors are emerging as promising power sources for next-generation wearable electronics due to their intrinsic mechanical flexibility, eco-friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all-hydrogel supercapacitors. Here, an all-hydrogel supercapacitor is reported with robust interfacial contact and anti-freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes. The robust interfacial adhesion is developed by the synergistic effect of a tough hydrogel matrix and topological entanglements. Meanwhile, the incorporation of zinc chloride (ZnCl2) in the hydrogel electrolyte prevents the freezing of water solvents and endows the all-hydrogel supercapacitor with mechanical flexibility and fatigue resistance across a wide temperature range of 20 °C to -60 °C. Such all-hydrogel supercapacitor demonstrates satisfactory low-temperature electrochemical performance, delivering a high energy density of 11 mWh cm-2 and excellent cycling stability with a capacitance retention of 90% over 10000 cycles at -40 °C. Notably, the fabricated all-hydrogel supercapacitor can endure dynamic deformations and operate well under 2000 tension cycles even at -40 °C, without experiencing delamination and electrochemical failure. This work offers a promising strategy for flexible energy storage devices with low-temperature adaptability.
Collapse
Affiliation(s)
- Yijing Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yue Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jingya Nan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Fusheng Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Zihao Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Yuxi Li
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Chuchu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yupeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
22
|
Baturalp TB, Bozkurt S. Design and Analysis of a Polymeric Left Ventricular Simulator via Computational Modelling. Biomimetics (Basel) 2024; 9:269. [PMID: 38786479 PMCID: PMC11117906 DOI: 10.3390/biomimetics9050269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Preclinical testing of medical devices is an essential step in the product life cycle, whereas testing of cardiovascular implants requires specialised testbeds or numerical simulations using computer software Ansys 2016. Existing test setups used to evaluate physiological scenarios and test cardiac implants such as mock circulatory systems or isolated beating heart platforms are driven by sophisticated hardware which comes at a high cost or raises ethical concerns. On the other hand, computational methods used to simulate blood flow in the cardiovascular system may be simplified or computationally expensive. Therefore, there is a need for low-cost, relatively simple and efficient test beds that can provide realistic conditions to simulate physiological scenarios and evaluate cardiovascular devices. In this study, the concept design of a novel left ventricular simulator made of latex rubber and actuated by pneumatic artificial muscles is presented. The designed left ventricular simulator is geometrically similar to a native left ventricle, whereas the basal diameter and long axis length are within an anatomical range. Finite element simulations evaluating left ventricular twisting and shortening predicted that the designed left ventricular simulator rotates approximately 17 degrees at the apex and the long axis shortens around 11 mm. Experimental results showed that the twist angle is 18 degrees and the left ventricular simulator shortens 5 mm. Twist angles and long axis shortening as in a native left ventricle show it is capable of functioning like a native left ventricle and simulating a variety of scenarios, and therefore has the potential to be used as a test platform.
Collapse
Affiliation(s)
- Turgut Batuhan Baturalp
- Department of Mechanical Engineering, Texas Tech University, P.O. Box 41021, Lubbock, TX 79409, USA
| | - Selim Bozkurt
- School of Engineering, Ulster University, York Street, Belfast BT15 1AP, UK
| |
Collapse
|
23
|
Dvorak N, Liu Z, Mouthuy PA. Soft bioreactor systems: a necessary step toward engineered MSK soft tissue? Front Robot AI 2024; 11:1287446. [PMID: 38711813 PMCID: PMC11070535 DOI: 10.3389/frobt.2024.1287446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
A key objective of tissue engineering (TE) is to produce in vitro funcional grafts that can replace damaged tissues or organs in patients. TE uses bioreactors, which are controlled environments, allowing the application of physical and biochemical cues to relevant cells growing in biomaterials. For soft musculoskeletal (MSK) tissues such as tendons, ligaments and cartilage, it is now well established that applied mechanical stresses can be incorporated into those bioreactor systems to support tissue growth and maturation via activation of mechanotransduction pathways. However, mechanical stresses applied in the laboratory are often oversimplified compared to those found physiologically and may be a factor in the slow progression of engineered MSK grafts towards the clinic. In recent years, an increasing number of studies have focused on the application of complex loading conditions, applying stresses of different types and direction on tissue constructs, in order to better mimic the cellular environment experienced in vivo. Such studies have highlighted the need to improve upon traditional rigid bioreactors, which are often limited to uniaxial loading, to apply physiologically relevant multiaxial stresses and elucidate their influence on tissue maturation. To address this need, soft bioreactors have emerged. They employ one or more soft components, such as flexible soft chambers that can twist and bend with actuation, soft compliant actuators that can bend with the construct, and soft sensors which record measurements in situ. This review examines types of traditional rigid bioreactors and their shortcomings, and highlights recent advances of soft bioreactors in MSK TE. Challenges and future applications of such systems are discussed, drawing attention to the exciting prospect of these platforms and their ability to aid development of functional soft tissue engineered grafts.
Collapse
Affiliation(s)
| | | | - Pierre-Alexis Mouthuy
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Stanley AA, Roby ES, Keller SJ. High-speed fluidic processing circuits for dynamic control of haptic and robotic systems. SCIENCE ADVANCES 2024; 10:eadl3014. [PMID: 38569043 PMCID: PMC10990265 DOI: 10.1126/sciadv.adl3014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Fluidic logic circuits simplify system design for soft robotics by eliminating bulky components while enabling operation in a range of hostile environments that are incompatible with electronics but at the expense of limited computational capabilities and response times on the order of seconds. This paper presents a four-terminal fluidic transistor optimized for fast switching times, reduced component count, low unit cost, and high reproducibility to achieve complex fluidic control circuits while maintaining flow rates of liters per minute. A ring oscillator using three fluidic transistors achieves oscillation frequencies up to a kilohertz with full signal propagation, tolerating billions of cycles without failure. Fundamental processor circuits like a full adder and a 3-bit analog-to-digital converter require just seven transistors each. A decode circuit drives a high-resolution soft haptic display with refresh times below the human perception threshold for latency, and an electronics-free control circuit performs closed-loop position control of a pneumatic actuator with disturbance rejection, demonstrating the value across domains.
Collapse
Affiliation(s)
| | - Erik S. Roby
- Meta Platforms Inc., Reality Labs Research, Redmond, WA, USA
| | - Sean J. Keller
- Meta Platforms Inc., Reality Labs Research, Redmond, WA, USA
| |
Collapse
|
25
|
Dual SA, Cowger J, Roche E, Nayak A. The Future of Durable Mechanical Circulatory Support: Emerging Technological Innovations and Considerations to Enable Evolution of the Field. J Card Fail 2024; 30:596-609. [PMID: 38431185 DOI: 10.1016/j.cardfail.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
The field of durable mechanical circulatory support (MCS) has undergone an incredible evolution over the past few decades, resulting in significant improvements in longevity and quality of life for patients with advanced heart failure. Despite these successes, substantial opportunities for further improvements remain, including in pump design and ancillary technology, perioperative and postoperative management, and the overall patient experience. Ideally, durable MCS devices would be fully implantable, automatically controlled, and minimize the need for anticoagulation. Reliable and long-term total artificial hearts for biventricular support would be available; and surgical, perioperative, and postoperative management would be informed by the individual patient phenotype along with computational simulations. In this review, we summarize emerging technological innovations in these areas, focusing primarily on innovations in late preclinical or early clinical phases of study. We highlight important considerations that the MCS community of clinicians, engineers, industry partners, and venture capital investors should consider to sustain the evolution of the field.
Collapse
Affiliation(s)
- Seraina A Dual
- KTH Royal Institute of Technology, Department of Biomedical Engineering and Health Systems, Stockholm, Sweden
| | | | - Ellen Roche
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Aditi Nayak
- Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
26
|
Saintyves B, Spenko M, Jaeger HM. A self-organizing robotic aggregate using solid and liquid-like collective states. Sci Robot 2024; 9:eadh4130. [PMID: 38266100 DOI: 10.1126/scirobotics.adh4130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Designing robotic systems that can change their physical form factor as well as their compliance to adapt to environmental constraints remains a major conceptual and technical challenge. To address this, we introduce the Granulobot, a modular system that blurs the distinction between soft, modular, and swarm robotics. The system consists of gear-like units that each contain a single actuator such that units can self-assemble into larger, granular aggregates using magnetic coupling. These aggregates can reconfigure dynamically and also split into subsystems that might later recombine. Aggregates can self-organize into collective states with solid- and liquid-like properties, thus displaying widely differing compliance. These states can be perturbed locally via actuators or externally via mechanical feedback from the environment to produce adaptive shape-shifting in a decentralized manner. This, in turn, can generate locomotion strategies adapted to different conditions. Aggregates can move over obstacles without using external sensors or coordinates to maintain a steady gait over different surfaces without electronic communication among units. The modular design highlights a physical, morphological form of control that advances the development of resilient robotic systems with the ability to morph and adapt to different functions and conditions.
Collapse
Affiliation(s)
| | - Matthew Spenko
- Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Heinrich M Jaeger
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Park C, Singh M, Saeed MY, Nguyen CT, Roche ET. Biorobotic hybrid heart as a benchtop cardiac mitral valve simulator. DEVICE 2024; 2:100217. [PMID: 38312504 PMCID: PMC10836162 DOI: 10.1016/j.device.2023.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
In this work, we developed a high-fidelity beating heart simulator that provides accurate mitral valve pathophysiology. The benchtop platform is based on a biorobotic hybrid heart that combines preserved intracardiac tissue with soft robotic cardiac muscle providing dynamic left ventricular motion and precise anatomical features designed for testing intracardiac devices, particularly for mitral valve repair. The heart model is integrated into a mock circulatory loop, and the active myocardium drives fluid circulation producing physiological hemodynamics without an external pulsatile pump. Using biomimetic soft robotic technology, the heart can replicate both ventricular and septal wall motion, as well as intraventricular pressure-volume relationships. This enables the system to recreate the natural motion and function of the mitral valve, which allows us to demonstrate various surgical and interventional techniques. The biorobotic cardiovascular simulator allows for real-time hemodynamic data collection, direct visualization of the intracardiac procedure, and compatibility with clinical imaging modalities.
Collapse
Affiliation(s)
- Clara Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
| | - Mossab Y. Saeed
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital; Charlestown, MA, USA 02114
- Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic; Cleveland, OH, USA 44195
- Imaging Sciences, Imaging Institute, Cleveland Clinic; Cleveland, OH, USA 44195
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic; Cleveland, OH, USA 44196
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
| |
Collapse
|
28
|
Sirithunge C, Wang H, Iida F. Soft touchless sensors and touchless sensing for soft robots. Front Robot AI 2024; 11:1224216. [PMID: 38312746 PMCID: PMC10830750 DOI: 10.3389/frobt.2024.1224216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Soft robots are characterized by their mechanical compliance, making them well-suited for various bio-inspired applications. However, the challenge of preserving their flexibility during deployment has necessitated using soft sensors which can enhance their mobility, energy efficiency, and spatial adaptability. Through emulating the structure, strategies, and working principles of human senses, soft robots can detect stimuli without direct contact with soft touchless sensors and tactile stimuli. This has resulted in noteworthy progress within the field of soft robotics. Nevertheless, soft, touchless sensors offer the advantage of non-invasive sensing and gripping without the drawbacks linked to physical contact. Consequently, the popularity of soft touchless sensors has grown in recent years, as they facilitate intuitive and safe interactions with humans, other robots, and the surrounding environment. This review explores the emerging confluence of touchless sensing and soft robotics, outlining a roadmap for deployable soft robots to achieve human-level dexterity.
Collapse
Affiliation(s)
| | - Huijiang Wang
- Bio-Inspired Robotics Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
29
|
Bo Y, Wang H, Niu H, He X, Xue Q, Li Z, Yang H, Niu F. Advancements in materials, manufacturing, propulsion and localization: propelling soft robotics for medical applications. Front Bioeng Biotechnol 2024; 11:1327441. [PMID: 38260727 PMCID: PMC10800571 DOI: 10.3389/fbioe.2023.1327441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Soft robotics is an emerging field showing immense potential for biomedical applications. This review summarizes recent advancements in soft robotics for in vitro and in vivo medical contexts. Their inherent flexibility, adaptability, and biocompatibility enable diverse capabilities from surgical assistance to minimally invasive diagnosis and therapy. Intelligent stimuli-responsive materials and bioinspired designs are enhancing functionality while improving biocompatibility. Additive manufacturing techniques facilitate rapid prototyping and customization. Untethered chemical, biological, and wireless propulsion methods are overcoming previous constraints to access new sites. Meanwhile, advances in tracking modalities like computed tomography, fluorescence and ultrasound imaging enable precision localization and control enable in vivo applications. While still maturing, soft robotics promises more intelligent, less invasive technologies to improve patient care. Continuing research into biocompatibility, power supplies, biomimetics, and seamless localization will help translate soft robots into widespread clinical practice.
Collapse
Affiliation(s)
- Yunwen Bo
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haochen Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Niu
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyang He
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Quhao Xue
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zexi Li
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
30
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Arjomandi Rad A, Vardanyan R, Rabiee P, Arjomandi Rad R, Miller G, Malawana J, Zubarevich A, Schmack B, Ruhparwar A, Weymann A. Implantable cardiac soft robotic sleeve: A promising technology for the millions with end-stage heart failure in low and middle-income countries. Artif Organs 2023; 47:1801-1804. [PMID: 37676107 DOI: 10.1111/aor.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/21/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Affiliation(s)
| | | | - Pedra Rabiee
- Hull York Medical School, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | | | - George Miller
- Centre for Digital Health and Education Research (CoDHER), University of Central Lancashire Medical School, Preston, UK
| | - Johann Malawana
- Centre for Digital Health and Education Research (CoDHER), University of Central Lancashire Medical School, Preston, UK
| | - Alina Zubarevich
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Bastian Schmack
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Alexander Weymann
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Tay RY, Song Y, Yao DR, Gao W. Direct-Ink-Writing 3D-Printed Bioelectronics. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 71:135-151. [PMID: 38222250 PMCID: PMC10786343 DOI: 10.1016/j.mattod.2023.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The development of wearable and implantable bioelectronics has garnered significant momentum in recent years, driven by the ever-increasing demand for personalized health monitoring, remote patient management, and real-time physiological data collection. The elevated sophistication and advancement of these devices have thus led to the use of many new and unconventional materials which cannot be fulfilled through traditional manufacturing techniques. Three-dimension (3D) printing, also known as additive manufacturing, is an emerging technology that opens new opportunities to fabricate next-generation bioelectronic devices. Some significant advantages include its capacity for material versatility and design freedom, rapid prototyping, and manufacturing efficiency with enhanced capabilities. This review provides an overview of the recent advances in 3D printing of bioelectronics, particularly direct ink writing (DIW), encompassing the methodologies, materials, and applications that have emerged in this rapidly evolving field. This review showcases the broad range of bioelectronic devices fabricated through 3D printing including wearable biophysical sensors, biochemical sensors, electrophysiological sensors, energy devices, multimodal systems, implantable devices, and soft robots. This review will also discuss the advantages, existing challenges, and outlook of applying DIW 3D printing for the development of bioelectronic devices toward healthcare applications.
Collapse
Affiliation(s)
- Roland Yingjie Tay
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Dickson R. Yao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
33
|
Rogatinsky J, Recco D, Feichtmeier J, Kang Y, Kneier N, Hammer P, O’Leary E, Mah D, Hoganson D, Vasilyev NV, Ranzani T. A multifunctional soft robot for cardiac interventions. SCIENCE ADVANCES 2023; 9:eadi5559. [PMID: 37878705 PMCID: PMC10599628 DOI: 10.1126/sciadv.adi5559] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
In minimally invasive endovascular procedures, surgeons rely on catheters with low dexterity and high aspect ratios to reach an anatomical target. However, the environment inside the beating heart presents a combination of challenges unique to few anatomic locations, making it difficult for interventional tools to maneuver dexterously and apply substantial forces on an intracardiac target. We demonstrate a millimeter-scale soft robotic platform that can deploy and self-stabilize at the entrance to the heart, and guide existing interventional tools toward a target site. In two exemplar intracardiac procedures within the right atrium, the robotic platform provides enough dexterity to reach multiple anatomical targets, enough stability to maintain constant contact on motile targets, and enough mechanical leverage to generate newton-level forces. Because the device addresses ongoing challenges in minimally invasive intracardiac intervention, it may enable the further development of catheter-based interventions.
Collapse
Affiliation(s)
- Jacob Rogatinsky
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Dominic Recco
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Yuchen Kang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Nicholas Kneier
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Peter Hammer
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Edward O’Leary
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Douglas Mah
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David Hoganson
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Nikolay V. Vasilyev
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tommaso Ranzani
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
34
|
Zijian L, Fangqun W, Fenglian Z, Yu G, Shaojun W. Optimal assist strategy exploration for a direct assist device under stress‒strain dynamics. BIOMED ENG-BIOMED TE 2023; 68:511-521. [PMID: 37222653 DOI: 10.1515/bmt-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES The aim of this paper is to introduce a new assist strategy for a direct assist device that can enhance the heart's pumping efficiency and decrease the chances of myocardial injury in contrast to the conventional assist strategy. METHODS We established a finite element model of a biventricular heart, divided the ventricles into several regions, and applied pressure to each region separately in order to identify the primary and secondary assist areas. Then combined and tested these areas to obtain the optimal assist strategy. RESULTS The results indicate that our method exhibits an assist efficiency approximately ten times higher than that of the traditional assist method. Additionally, the stress distribution in the ventricles is more uniform after assistance. CONCLUSIONS In summary, this approach can result in a more homogenous stress distribution within the heart while also minimizing the contact area with it, which can reduce the incidence of allergic reactions and the likelihood of myocardial injury.
Collapse
Affiliation(s)
- Li Zijian
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
| | - Wang Fangqun
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
| | - Zhu Fenglian
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
| | - Gao Yu
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
| | - Wang Shaojun
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
35
|
Pei X, Chen G. Kinetostatic Modeling of Soft Robots: Energy-Minimization Approach and 99-Line MATLAB Implementation. Soft Robot 2023; 10:972-987. [PMID: 37074411 DOI: 10.1089/soro.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Soft robots have received a great deal of attention from both academia and industry due to their unprecedented adaptability in unstructured environment and extreme dexterity for complicated operations. Due to the strong coupling between the material nonlinearity due to hyperelasticity and the geometric nonlinearity due to large deflections, modeling of soft robots is highly dependent on commercial finite element software packages. An approach that is accurate and fast, and whose implementation is open to designers, is in great need. Considering that the constitutive relation of the hyperelastic materials is commonly expressed by its energy density function, we present an energy-based kinetostatic modeling approach in which the deflection of a soft robot is formulated as a minimization problem of its total potential energy. A fixed Hessian matrix of strain energy is proposed and adopted in the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which significantly improves its efficiency for solving the minimization problem of soft robots without sacrificing prediction accuracy. The simplicity of the approach leads to an implementation of MATLAB with only 99-line codes, which provides an easy-to-use tool for designers who are designing and optimizing the structures of soft robots. The efficiency of the proposed approach for predicting kinetostatic behaviors of soft robots is demonstrated by seven pneumatic-driven and cable-driven soft robots. The capability of the approach for capturing buckling behaviors in soft robots is also demonstrated. The energy-minimization approach, as well as the MATLAB implementation, could be easily tailored to fulfill various tasks, including design, optimization, and control of soft robots.
Collapse
Affiliation(s)
- Xiaohui Pei
- School of Electro-Mechanical Engineering, Xidian University, Xi'an, China
| | - Guimin Chen
- State Key Laboratory for Manufacturing Systems Engineering and Shaanxi Key Lab of Intelligent Robots, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Weymann A, Foroughi J, Vardanyan R, Punjabi PP, Schmack B, Aloko S, Spinks GM, Wang CH, Arjomandi Rad A, Ruhparwar A. Artificial Muscles and Soft Robotic Devices for Treatment of End-Stage Heart Failure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207390. [PMID: 36269015 DOI: 10.1002/adma.202207390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/19/2022] [Indexed: 05/12/2023]
Abstract
Medical soft robotics constitutes a rapidly developing field in the treatment of cardiovascular diseases, with a promising future for millions of patients suffering from heart failure worldwide. Herein, the present state and future direction of artificial muscle-based soft robotic biomedical devices in supporting the inotropic function of the heart are reviewed, focusing on the emerging electrothermally artificial heart muscles (AHMs). Artificial muscle powered soft robotic devices can mimic the action of complex biological systems such as heart compression and twisting. These artificial muscles possess the ability to undergo complex deformations, aiding cardiac function while maintaining a limited weight and use of space. Two very promising candidates for artificial muscles are electrothermally actuated AHMs and biohybrid actuators using living cells or tissue embedded with artificial structures. Electrothermally actuated AHMs have demonstrated superior force generation while creating the prospect for fully soft robotic actuated ventricular assist devices. This review will critically analyze the limitations of currently available devices and discuss opportunities and directions for future research. Last, the properties of the cardiac muscle are reviewed and compared with those of different materials suitable for mechanical cardiac compression.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Javad Foroughi
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Robert Vardanyan
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Prakash P Punjabi
- Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, 72 Du Cane Rd, London, W12 0HS, UK
| | - Bastian Schmack
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Sinmisola Aloko
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Arian Arjomandi Rad
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| |
Collapse
|
37
|
Tang R, Chang Y, Song J. Advances in novel devices for the treatment of heart failure. Heart Fail Rev 2023; 28:331-345. [PMID: 36792818 DOI: 10.1007/s10741-022-10293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/17/2023]
Abstract
Heart failure (HF) is one of the leading causes of global health impairment. Current drugs are still limited in their effectiveness in the treatment and reversal of HF: for example, drugs for acute HF (AHF) help to reduce congestion and relieve symptoms, but they do little to improve survival; most conventional drugs for HF with preserved ejection fraction (HFpEF) do not improve the prognosis; and drugs have extremely limited effects on advanced HF. In recent years, progress in device therapies has bridged this gap to a certain extent. For example, the availability of the left ventricular assist device has brought new options to numerous advanced HF patients. In addition to this recognizable device, a range of promising novel devices with preclinical or clinical trial results are emerging that seek to treat or reverse HF by providing circulatory support, repairing structural abnormalities in the heart, or providing electrical stimulation. These devices may be useful for the treatment of HF. In this review, we summarized recent advances in novel devices for AHF, HFpEF, and HF with reduced ejection fraction (HFrEF) with the aim of providing a reference for clinical treatment and inspiration for novel device development.
Collapse
Affiliation(s)
- Renjie Tang
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
38
|
Ingber DE. From tensegrity to human organs-on-chips: implications for mechanobiology and mechanotherapeutics. Biochem J 2023; 480:243-257. [PMID: 36821520 PMCID: PMC9987949 DOI: 10.1042/bcj20220303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
The field of mechanobiology, which focuses on the key role that physical forces play in control of biological systems, has grown enormously over the past few decades. Here, I provide a brief personal perspective on the development of the tensegrity theory that contributed to the emergence of the mechanobiology field, the key role that crossing disciplines has played in its development, and how it has matured over time. I also describe how pursuing questions relating to mechanochemical transduction and mechanoregulation can lead to the creation of novel technologies and open paths for development of new therapeutic strategies for a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, U.S.A
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, U.S.A
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, U.S.A
| |
Collapse
|
39
|
Rosalia L, Ozturk C, Goswami D, Bonnemain J, Wang SX, Bonner B, Weaver JC, Puri R, Kapadia S, Nguyen CT, Roche ET. Soft robotic patient-specific hydrodynamic model of aortic stenosis and ventricular remodeling. Sci Robot 2023; 8:eade2184. [PMID: 36812335 PMCID: PMC10280738 DOI: 10.1126/scirobotics.ade2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Aortic stenosis (AS) affects about 1.5 million people in the United States and is associated with a 5-year survival rate of 20% if untreated. In these patients, aortic valve replacement is performed to restore adequate hemodynamics and alleviate symptoms. The development of next-generation prosthetic aortic valves seeks to provide enhanced hemodynamic performance, durability, and long-term safety, emphasizing the need for high-fidelity testing platforms for these devices. We propose a soft robotic model that recapitulates patient-specific hemodynamics of AS and secondary ventricular remodeling which we validated against clinical data. The model leverages 3D-printed replicas of each patient's cardiac anatomy and patient-specific soft robotic sleeves to recreate the patients' hemodynamics. An aortic sleeve allows mimicry of AS lesions due to degenerative or congenital disease, whereas a left ventricular sleeve recapitulates loss of ventricular compliance and diastolic dysfunction (DD) associated with AS. Through a combination of echocardiographic and catheterization techniques, this system is shown to recreate clinical metrics of AS with greater controllability compared with methods based on image-guided aortic root reconstruction and parameters of cardiac function that rigid systems fail to mimic physiologically. Last, we leverage this model to evaluate the hemodynamic benefit of transcatheter aortic valves in a subset of patients with diverse anatomies, etiologies, and disease states. Through the development of a high-fidelity model of AS and DD, this work demonstrates the use of soft robotics to recreate cardiovascular disease, with potential applications in device development, procedural planning, and outcome prediction in industrial and clinical settings.
Collapse
Affiliation(s)
- Luca Rosalia
- Health Sciences and Technology Program, Harvard–Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debkalpa Goswami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Health Sciences and Technology, ETH-Zürich, Zürich, Switzerland
- Institute of Robotics and Intelligent Systems, ETH-Zürich, Zürich, Switzerland
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sophie X. Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin Bonner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - James C. Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Kapadia
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
40
|
Tauber FJ, Slesarenko V. Early career scientists converse on the future of soft robotics. Front Robot AI 2023; 10:1129827. [PMID: 36909362 PMCID: PMC9994530 DOI: 10.3389/frobt.2023.1129827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
During the recent decade, we have witnessed an extraordinary flourishing of soft robotics. Rekindled interest in soft robots is partially associated with the advances in manufacturing techniques that enable the fabrication of sophisticated multi-material robotic bodies with dimensions ranging across multiple length scales. In recent manuscripts, a reader might find peculiar-looking soft robots capable of grasping, walking, or swimming. However, the growth in publication numbers does not always reflect the real progress in the field since many manuscripts employ very similar ideas and just tweak soft body geometries. Therefore, we unreservedly agree with the sentiment that future research must move beyond "soft for soft's sake." Soft robotics is an undoubtedly fascinating field, but it requires a critical assessment of the limitations and challenges, enabling us to spotlight the areas and directions where soft robots will have the best leverage over their traditional counterparts. In this perspective paper, we discuss the current state of robotic research related to such important aspects as energy autonomy, electronic-free logic, and sustainability. The goal is to critically look at perspectives of soft robotics from two opposite points of view provided by early career researchers and highlight the most promising future direction, that is, in our opinion, the employment of soft robotic technologies for soft bio-inspired artificial organs.
Collapse
Affiliation(s)
- Falk J. Tauber
- Cluster of Excellence livMatS, FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
- Plant Biomechanics Group (PBG) Freiburg, Botanic Garden of the University of Freiburg, Freiburg im Breisgau, Germany
| | - Viacheslav Slesarenko
- Cluster of Excellence livMatS, FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
41
|
Kight A, Pirozzi I, Liang X, McElhinney DB, Han AK, Dual SA, Cutkosky M. Decoupling Transmission and Transduction for Improved Durability of Highly Stretchable, Soft Strain Sensing: Applications in Human Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:1955. [PMID: 36850551 PMCID: PMC9967534 DOI: 10.3390/s23041955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This work presents a modular approach to the development of strain sensors for large deformations. The proposed method separates the extension and signal transduction mechanisms using a soft, elastomeric transmission and a high-sensitivity microelectromechanical system (MEMS) transducer. By separating the transmission and transduction, they can be optimized independently for application-specific mechanical and electrical performance. This work investigates the potential of this approach for human health monitoring as an implantable cardiac strain sensor for measuring global longitudinal strain (GLS). The durability of the sensor was evaluated by conducting cyclic loading tests over one million cycles, and the results showed negligible drift. To account for hysteresis and frequency-dependent effects, a lumped-parameter model was developed to represent the viscoelastic behavior of the sensor. Multiple model orders were considered and compared using validation and test data sets that mimic physiologically relevant dynamics. Results support the choice of a second-order model, which reduces error by 73% compared to a linear calibration. In addition, we evaluated the suitability of this sensor for the proposed application by demonstrating its ability to operate on compliant, curved surfaces. The effects of friction and boundary conditions are also empirically assessed and discussed.
Collapse
Affiliation(s)
- Ali Kight
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ileana Pirozzi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Xinyi Liang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Doff B. McElhinney
- Department of Cardiology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94305, USA
| | - Amy Kyungwon Han
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seraina A. Dual
- Department of Biomedical Engineering, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
| | - Mark Cutkosky
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
42
|
Paternò L, Lorenzon L. Soft robotics in wearable and implantable medical applications: Translational challenges and future outlooks. Front Robot AI 2023; 10:1075634. [PMID: 36845334 PMCID: PMC9945115 DOI: 10.3389/frobt.2023.1075634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
This work explores the recent research conducted towards the development of novel classes of devices in wearable and implantable medical applications allowed by the introduction of the soft robotics approach. In the medical field, the need for materials with mechanical properties similar to biological tissues is one of the first considerations that arises to improve comfort and safety in the physical interaction with the human body. Thus, soft robotic devices are expected to be able of accomplishing tasks no traditional rigid systems can do. In this paper, we describe future perspectives and possible routes to address scientific and clinical issues still hampering the accomplishment of ideal solutions in clinical practice.
Collapse
Affiliation(s)
- Linda Paternò
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy,Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy,*Correspondence: Linda Paternò,
| | - Lucrezia Lorenzon
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy,Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
43
|
Hu L, Bonnemain J, Saeed MY, Singh M, Quevedo Moreno D, Vasilyev NV, Roche ET. An implantable soft robotic ventilator augments inspiration in a pig model of respiratory insufficiency. Nat Biomed Eng 2023; 7:110-123. [PMID: 36509912 PMCID: PMC9991903 DOI: 10.1038/s41551-022-00971-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Abstract
Severe diaphragm dysfunction can lead to respiratory failure and to the need for permanent mechanical ventilation. Yet permanent tethering to a mechanical ventilator through the mouth or via tracheostomy can hinder a patient's speech, swallowing ability and mobility. Here we show, in a porcine model of varied respiratory insufficiency, that a contractile soft robotic actuator implanted above the diaphragm augments its motion during inspiration. Synchronized actuation of the diaphragm-assist implant with the native respiratory effort increased tidal volumes and maintained ventilation flow rates within the normal range. Robotic implants that intervene at the diaphragm rather than at the upper airway and that augment physiological metrics of ventilation may restore respiratory performance without sacrificing quality of life.
Collapse
Affiliation(s)
- Lucy Hu
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego Quevedo Moreno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
44
|
Nam S, Seo BR, Najibi AJ, McNamara SL, Mooney DJ. Active tissue adhesive activates mechanosensors and prevents muscle atrophy. NATURE MATERIALS 2023; 22:249-259. [PMID: 36357687 PMCID: PMC10411688 DOI: 10.1038/s41563-022-01396-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
While mechanical stimulation is known to regulate a wide range of biological processes at the cellular and tissue levels, its medical use for tissue regeneration and rehabilitation has been limited by the availability of suitable devices. Here we present a mechanically active gel-elastomer-nitinol tissue adhesive (MAGENTA) that generates and delivers muscle-contraction-mimicking stimulation to a target tissue with programmed strength and frequency. MAGENTA consists of a shape memory alloy spring that enables actuation up to 40% strain, and an adhesive that efficiently transmits the actuation to the underlying tissue. MAGENTA activates mechanosensing pathways involving yes-associated protein and myocardin-related transcription factor A, and increases the rate of muscle protein synthesis. Disuse muscles treated with MAGENTA exhibit greater size and weight, and generate higher forces compared to untreated muscles, demonstrating the prevention of atrophy. MAGENTA thus has promising applications in the treatment of muscle atrophy and regenerative medicine.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Stephanie L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
45
|
Arfaee M, Vis A, Kluin J. Future technologies in total artificial heart development: can a robot become as good as a donor heart? Eur Heart J 2022; 43:4970-4972. [PMID: 36171689 DOI: 10.1093/eurheartj/ehac512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maziar Arfaee
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Annemijn Vis
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Jolanda Kluin
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Vis A, Arfaee M, Khambati H, Slaughter MS, Gummert JF, Overvelde JTB, Kluin J. The ongoing quest for the first total artificial heart as destination therapy. Nat Rev Cardiol 2022; 19:813-828. [PMID: 35668176 DOI: 10.1038/s41569-022-00723-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
Many patients with end-stage heart disease die because of the scarcity of donor hearts. A total artificial heart (TAH), an implantable machine that replaces the heart, has so far been successfully used in over 1,700 patients as a temporary life-saving technology for bridging to heart transplantation. However, after more than six decades of research on TAHs, a TAH that is suitable for destination therapy is not yet available. High complication rates, bulky devices, poor durability, poor biocompatibility and low patient quality of life are some of the major drawbacks of current TAH devices that must be addressed before TAHs can be used as a destination therapy. Quickly emerging innovations in battery technology, wireless energy transmission, biocompatible materials and soft robotics are providing a promising opportunity for TAH development and might help to solve the drawbacks of current TAHs. In this Review, we describe the milestones in the history of TAH research and reflect on lessons learned during TAH development. We summarize the differences in the working mechanisms of these devices, discuss the next generation of TAHs and highlight emerging technologies that will promote TAH development in the coming decade. Finally, we present current challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Annemijn Vis
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Maziar Arfaee
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Husain Khambati
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Mark S Slaughter
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY, USA
| | - Jan F Gummert
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Johannes T B Overvelde
- Autonomous Matter Department, AMOLF, Amsterdam, The Netherlands.,Institute for Complex Molecular Systems and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jolanda Kluin
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands. .,Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Hashem R, Kazemi S, Stommel M, Cheng LK, Xu W. SoRSS: A Soft Robot for Bio-Mimicking Stomach Anatomy and Motility. Soft Robot 2022. [DOI: 10.1089/soro.2021.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ryman Hashem
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
| | - Shahab Kazemi
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
- Riddet Institute Centre of Research Excellence (CoRE), Palmerston North, New Zealand
| | - Martin Stommel
- Riddet Institute Centre of Research Excellence (CoRE), Palmerston North, New Zealand
- Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand
| | - Leo K. Cheng
- Riddet Institute Centre of Research Excellence (CoRE), Palmerston North, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Weiliang Xu
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
- Riddet Institute Centre of Research Excellence (CoRE), Palmerston North, New Zealand
| |
Collapse
|
48
|
Dong X, Luo X, Zhao H, Qiao C, Li J, Yi J, Yang L, Oropeza FJ, Hu TS, Xu Q, Zeng H. Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications. SOFT MATTER 2022; 18:7699-7734. [PMID: 36205123 DOI: 10.1039/d2sm01067d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Compared to traditional rigid-bodied robots, soft robots are constructed using physically flexible/elastic bodies and electronics to mimic nature and enable novel applications in industry, healthcare, aviation, military, etc. Recently, the fabrication of robots on soft matter with great flexibility and compliance has enabled smooth and sophisticated 'multi-degree-of-freedom' 3D actuation to seamlessly interact with humans, other organisms and non-idealized environments in a highly complex and controllable manner. Herein, we summarize the fabrication approaches, driving strategies, novel applications, and future trends of soft robots. Firstly, we introduce the different fabrication approaches to prepare soft robots and compare and systematically discuss their advantages and disadvantages. Then, we present the actuator-based and material-based driving strategies of soft robotics and their characteristics. The representative applications of soft robotics in artificial intelligence, medicine, sensors, and engineering are summarized. Also, some remaining challenges and future perspectives in soft robotics are provided. This work highlights the recent advances of soft robotics in terms of functional material selection, structure design, control strategies and biomimicry, providing useful insights into the development of next-generation functional soft robotics.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China.
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada.
| | - Xiaohang Luo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hong Zhao
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada.
| | - Jiapeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jianhong Yi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Li Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Francisco J Oropeza
- Department of Mechanical Engineering, California State University, Los Angeles, California 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, California 90032, USA
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada.
| |
Collapse
|
49
|
Yan B. Actuators for Implantable Devices: A Broad View. MICROMACHINES 2022; 13:1756. [PMID: 36296109 PMCID: PMC9610948 DOI: 10.3390/mi13101756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The choice of actuators dictates how an implantable biomedical device moves. Specifically, the concept of implantable robots consists of the three pillars: actuators, sensors, and powering. Robotic devices that require active motion are driven by a biocompatible actuator. Depending on the actuating mechanism, different types of actuators vary remarkably in strain/stress output, frequency, power consumption, and durability. Most reviews to date focus on specific type of actuating mechanism (electric, photonic, electrothermal, etc.) for biomedical applications. With a rapidly expanding library of novel actuators, however, the granular boundaries between subcategories turns the selection of actuators a laborious task, which can be particularly time-consuming to those unfamiliar with actuation. To offer a broad view, this study (1) showcases the recent advances in various types of actuating technologies that can be potentially implemented in vivo, (2) outlines technical advantages and the limitations of each type, and (3) provides use-specific suggestions on actuator choice for applications such as drug delivery, cardiovascular, and endoscopy implants.
Collapse
Affiliation(s)
- Bingxi Yan
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
50
|
Coles L, Oluwasanya PW, Karam N, Proctor CM. Fluidic enabled bioelectronic implants: opportunities and challenges. J Mater Chem B 2022; 10:7122-7131. [PMID: 35959561 PMCID: PMC9518646 DOI: 10.1039/d2tb00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Bioelectronic implants are increasingly facilitating novel strategies for clinical diagnosis and treatment. The integration of fluidic technologies into such implants enables new complementary routes for sensing and therapy alongside electrical interaction. Indeed, these two technologies, electrical and fluidic, can work synergistically in a bioelectronics implant towards the fabrication of a complete therapeutic platform. In this perspective article, the leading applications of fluidic enabled bioelectronic implants are highlighted and methods of operation and material choices are discussed. Furthermore, a forward-looking perspective is offered on emerging opportunities as well as critical materials and technological challenges.
Collapse
Affiliation(s)
- Lawrence Coles
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Pelumi W Oluwasanya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Nuzli Karam
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Christopher M Proctor
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|