1
|
Chen Z, Ye K, Wu H, Peng L, Chen Z. Thumb-sized 3D-Printed cymbal microneedle array (CyMA) for enhanced transdermal drug delivery. Eur J Pharm Biopharm 2025; 207:114629. [PMID: 39824326 DOI: 10.1016/j.ejpb.2025.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/01/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Transdermal drug delivery presents a compelling alternative to both needle injection and oral ingestion of medication, as it enhances patient adherence and convenience through its non-invasive and painless administration method. The use of microneedles penetrates the barrier of the stratum corneum, facilitating the sustained delivery of drugs across the skin. However, their efficacy has been limited by the slow diffusion of molecules and often requires external triggers. Herein, a lightweight and minimized 3D-printed microneedle array is introduced, employing a cymbal-type ultrasound transducer, as the external engine for deeper and faster transdermal drug delivery. A theoretical finite element model was developed and the optimization design was conducted for structural parameters. The optimized assembled prototype was fabricated using high-precision 3D printing and weighs only 20 g. In vivo experiments using a diabetic mouse model demonstrate that local insulin delivery with CyMA achieves systemic effects comparable to intraperitoneal administration. Such compact and effective microneedle delivery technology offers considerable promise therapeutic applications on the skin and intraoral use.
Collapse
Affiliation(s)
- Ziyan Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kai Ye
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Huayi Wu
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Lanyuan Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zeyu Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Rui J, Zhu S, Xu X, Wang Y, Liu Z, Cheng G, Long D, Cheng L, Dai F. High-performance silk/polylactic acid composite scaffold material with immunomodulation and osteogenesis function. Mater Today Bio 2024; 29:101316. [PMID: 39558930 PMCID: PMC11570744 DOI: 10.1016/j.mtbio.2024.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
The choice of suitable materials and effective structural design are crucial in influencing the therapeutic outcomes of bone tissue engineering scaffolds. This study introduces a controllable biodegradable composite scaffold composed of flat silkworm cocoon (FSC) and polylactic acid (PLA) as an innovative strategy for promoting bone healing in complex injuries. We focused on optimizing the scaffold's structural design, mechanical properties, and underlying mechanisms of osteogenesis. Initial experiments established the parameters for hot pressing the FSC, followed by mechanical performance tests to identify the optimal preparation conditions. Composite scaffolds incorporating PLA films were subsequently fabricated using these optimized parameters. The results indicate that the FSC/PLA composite scaffold exhibits outstanding biocompatibility, mechanical strength, and in vitro mineralization capabilities, alongside an appropriate degradation rate. Furthermore, the composite scaffolds demonstrated significant potential in promoting osteogenic differentiation and facilitating macrophage polarization toward an anti-inflammatory M2 phenotype. In vivo implantation of the scaffold in defective regions enhanced osteogenesis and mitigated inflammatory responses associated with degradation. This investigation presents an optimal composite scaffold that closely mimics the complex structure of bone, offering a novel approach to enhance bone regeneration and effectively address substantial bone defects.
Collapse
Affiliation(s)
| | | | - Xiang Xu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Yi Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Zulan Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Guotao Cheng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Dingpei Long
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Lan Cheng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Long M, Wu G, Tao F, Ma S, Dong X, Deng H. Nanofibrous textured silk aerogel with 3D channel arrays and adjustable mechanical properties for bone tissue regeneration. Int J Biol Macromol 2024; 278:134372. [PMID: 39134201 DOI: 10.1016/j.ijbiomac.2024.134372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Bone tissue engineering scaffolds are an important means of repairing bone defects, but current solutions do not adequately simulate complex extracellular microenvironment fibrous structures and adjustable mechanical properties. We use template-assisted fiber freeze-shaping technology to construct silk fibroin nanofiber aerogels (SNFAs) with nanofibrous textures and adjustable mechanical properties. The parallel arranged channels, the pores, electrospun nanofibers, and silk protein conformation together constitute the hierarchical structure of SNFAs. Especially, the introduced electrospun nanofibers formed a biomimetic nanofibrous texture similar to the extracellular matrix, providing favorable conditions for cell migration and tissue regeneration. In addition, Young's modulus of SNFAs can be adjusted freely between 7 and 88 kPa. The rationally designed 3D architecture makes SNFAs perfectly mimic the fiber structure of the extracellular matrix and can adjust its mechanical properties to match the bone tissue perfectly. Finally, fiber-containing SNFAs observably promoted cell adhesion, proliferation, and differentiation, accelerating the bone repair process. The bone density in the defect area reached 0.53 g/cm3 and the bone volume/total volume (BV/TV) ratio reached 57 % at 12 weeks, respectively. It can be expected that this kind of tissue engineering scaffold with highly simulating extracellular matrix microenvironment and adjustable mechanical properties will possess broad prospects in the field of bone repair.
Collapse
Affiliation(s)
- Min Long
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Guomin Wu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Shuai Ma
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Chu X, Xiong Y, Lu L, Wang Y, Wang J, Zeng R, Hu L, Yan C, Zhao Z, Lin S, Mi B, Liu G. Research progress of gene therapy combined with tissue engineering to promote bone regeneration. APL Bioeng 2024; 8:031502. [PMID: 39301183 PMCID: PMC11412735 DOI: 10.1063/5.0200551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Gene therapy has emerged as a highly promising strategy for the clinical treatment of large segmental bone defects and non-union fractures, which is a common clinical need. Meanwhile, many preclinical data have demonstrated that gene and cell therapies combined with optimal scaffold biomaterials could be used to solve these tough issues. Bone tissue engineering, an interdisciplinary field combining cells, biomaterials, and molecules with stimulatory capability, provides promising alternatives to enhance bone regeneration. To deliver and localize growth factors and associated intracellular signaling components into the defect site, gene therapy strategies combined with bioengineering could achieve a uniform distribution and sustained release to ensure mesenchymal stem cell osteogenesis. In this review, we will describe the process and cell molecular changes during normal fracture healing, followed by the advantages and disadvantages of various gene therapy vectors combined with bone tissue engineering. The growth factors and other bioactive peptides in bone regeneration will be particularly discussed. Finally, gene-activated biomaterials for bone regeneration will be illustrated through a description of characteristics and synthetic methods.
Collapse
Affiliation(s)
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | | | - Yiqing Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Wang
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
5
|
Shen Q, Li Z, Wang Y, Meyer MD, De Guzman MT, Lim JC, Xiao H, Bouchard RR, Lu GJ. 50-nm Gas-Filled Protein Nanostructures to Enable the Access of Lymphatic Cells by Ultrasound Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307123. [PMID: 38533973 PMCID: PMC11550859 DOI: 10.1002/adma.202307123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need for microbubbles, which cannot transverse many biological barriers due to their large size. Here, the authors introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles(GVs) that are referred to as 50 nmGVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to the authors' knowledge, the smallest stable, free-floating bubbles made to date. 50 nmGVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50 nmGVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. The authors anticipate that 50 nmGVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.
Collapse
Affiliation(s)
- Qionghua Shen
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Zongru Li
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, 77005, USA
| | - Marc T De Guzman
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Janie C Lim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Han Xiao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- SynthX Center, Rice University, Houston, TX, 77005, USA
| | - Richard R Bouchard
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George J Lu
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
6
|
Cui X, Xu L, Shan Y, Li J, Ji J, Wang E, Zhang B, Wen X, Bai Y, Luo D, Chen C, Li Z. Piezocatalytically-induced controllable mineralization scaffold with bone-like microenvironment to achieve endogenous bone regeneration. Sci Bull (Beijing) 2024; 69:1895-1908. [PMID: 38637224 DOI: 10.1016/j.scib.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Orderly hierarchical structure with balanced mechanical, chemical, and electrical properties is the basis of the natural bone microenvironment. Inspired by nature, we developed a piezocatalytically-induced controlled mineralization strategy using piezoelectric polymer poly-L-lactic acid (PLLA) fibers with ordered micro-nano structures to prepare biomimetic tissue engineering scaffolds with a bone-like microenvironment (pcm-PLLA), in which PLLA-mediated piezoelectric catalysis promoted the in-situ polymerization of dopamine and subsequently regulated the controllable growth of hydroxyapatite crystals on the fiber surface. PLLA fibers, as analogs of mineralized collagen fibers, were arranged in an oriented manner, and ultimately formed a bone-like interconnected pore structure; in addition, they also provided bone-like piezoelectric properties. The uniformly sized HA nanocrystals formed by controlled mineralization provided a bone-like mechanical strength and chemical environment. The pcm-PLLA scaffold could rapidly recruit endogenous stem cells, and promote their osteogenic differentiation by activating cell membrane calcium channels and PI3K signaling pathways through ultrasound-responsive piezoelectric signals. In addition, the scaffold also provided a suitable microenvironment to promote macrophage M2 polarization and angiogenesis, thereby enhancing bone regeneration in skull defects of rats. The proposed piezocatalytically-induced controllable mineralization strategy provides a new idea for the development of tissue engineering scaffolds that can be implemented for multimodal physical stimulation therapy.
Collapse
Affiliation(s)
- Xi Cui
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Xu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yizhu Shan
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxuan Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianying Ji
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Engui Wang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Baokun Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiaozhou Wen
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Bai
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Dan Luo
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Zhang Z, Qiu X, Deng C. Application of biomimetic three-dimensional scaffolds in bone tissue repairing. Macromol Res 2024; 32:493-504. [DOI: 10.1007/s13233-024-00253-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 01/06/2025]
|
8
|
Percival KM, Paul V, Husseini GA. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. Int J Mol Sci 2024; 25:6012. [PMID: 38892199 PMCID: PMC11172494 DOI: 10.3390/ijms25116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In exploring the challenges of bone repair and regeneration, this review evaluates the potential of bone tissue engineering (BTE) as a viable alternative to traditional methods, such as autografts and allografts. Key developments in biomaterials and scaffold fabrication techniques, such as additive manufacturing and cell and bioactive molecule-laden scaffolds, are discussed, along with the integration of bio-responsive scaffolds, which can respond to physical and chemical stimuli. These advancements collectively aim to mimic the natural microenvironment of bone, thereby enhancing osteogenesis and facilitating the formation of new tissue. Through a comprehensive combination of in vitro and in vivo studies, we scrutinize the biocompatibility, osteoinductivity, and osteoconductivity of these engineered scaffolds, as well as their interactions with critical cellular players in bone healing processes. Findings from scaffold fabrication techniques and bio-responsive scaffolds indicate that incorporating nanostructured materials and bioactive compounds is particularly effective in promoting the recruitment and differentiation of osteoprogenitor cells. The therapeutic potential of these advanced biomaterials in clinical settings is widely recognized and the paper advocates continued research into multi-responsive scaffold systems.
Collapse
Affiliation(s)
- Kelly M. Percival
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
9
|
Gao T, Niu L, Wu X, Dai D, Zhou Y, Liu M, Wu K, Yu Y, Guan N, Ye H. Sonogenetics-controlled synthetic designer cells for cancer therapy in tumor mouse models. Cell Rep Med 2024; 5:101513. [PMID: 38608697 PMCID: PMC11148564 DOI: 10.1016/j.xcrm.2024.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Bacteria-based therapies are powerful strategies for cancer therapy, yet their clinical application is limited by a lack of tunable genetic switches to safely regulate the local expression and release of therapeutic cargoes. Rapid advances in remote-control technologies have enabled precise control of biological processes in time and space. We developed therapeutically active engineered bacteria mediated by a sono-activatable integrated gene circuit based on the thermosensitive transcriptional repressor TlpA39. Through promoter engineering and ribosome binding site screening, we achieved ultrasound (US)-induced protein expression and secretion in engineered bacteria with minimal noise and high induction efficiency. Specifically, delivered either intratumorally or intravenously, engineered bacteria colonizing tumors suppressed tumor growth through US-irradiation-induced release of the apoptotic protein azurin and an immune checkpoint inhibitor, a nanobody targeting programmed death-ligand 1, in different tumor mouse models. Beyond developing safe and high-performance designer bacteria for tumor therapy, our study illustrates a sonogenetics-controlled therapeutic platform that can be harnessed for bacteria-based precision medicine.
Collapse
Affiliation(s)
- Tian Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lingxue Niu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xin Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Di Dai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Wuhu Hospital, Health Science Center, East China Normal University, Middle Jiuhua Road 263, Wuhu City, China
| | - Mengyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Ke Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuanhuan Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Ningzi Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Wuhu Hospital, Health Science Center, East China Normal University, Middle Jiuhua Road 263, Wuhu City, China.
| |
Collapse
|
10
|
Pan X, Huang W, Nie G, Wang C, Wang H. Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303180. [PMID: 37871967 DOI: 10.1002/adma.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Neurological diseases are a major global health challenge, affecting hundreds of millions of people worldwide. Ultrasound therapy plays an irreplaceable role in the treatment of neurological diseases due to its noninvasive, highly focused, and strong tissue penetration capabilities. However, the complexity of brain and nervous system and the safety risks associated with prolonged exposure to ultrasound therapy severely limit the applicability of ultrasound therapy. Ultrasound-sensitive intelligent nanosystems (USINs) are a novel therapeutic strategy for neurological diseases that bring greater spatiotemporal controllability and improve safety to overcome these challenges. This review provides a detailed overview of therapeutic strategies and clinical advances of ultrasound in neurological diseases, focusing on the potential of USINs-based ultrasound in the treatment of neurological diseases. Based on the physical and chemical effects induced by ultrasound, rational design of USINs is a prerequisite for improving the efficacy of ultrasound therapy. Recent developments of ultrasound-sensitive nanocarriers and nanoagents are systemically reviewed. Finally, the challenges and developing prospects of USINs are discussed in depth, with a view to providing useful insights and guidance for efficient ultrasound treatment of neurological diseases.
Collapse
Affiliation(s)
- Xueting Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
12
|
Zhao Q, Zhang X, Li Y, He Z, Qin K, Buhl EM, Mert Ü, Horst K, Hildebrand F, Balmayor ER, Greven J. Porcine Mandibular Bone Marrow-Derived Mesenchymal Stem Cell (BMSC)-Derived Extracellular Vesicles Can Promote the Osteogenic Differentiation Capacity of Porcine Tibial-Derived BMSCs. Pharmaceutics 2024; 16:279. [PMID: 38399333 PMCID: PMC10893405 DOI: 10.3390/pharmaceutics16020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Existing research suggests that bone marrow-derived mesenchymal stem cells (BMSCs) may promote endogenous bone repair. This may be through the secretion of factors that stimulate repair processes or directly through differentiation into osteoblast-progenitor cells. However, the osteogenic potential of BMSCs varies among different tissue sources (e.g., mandibular versus long BMSCs). The main aim of this study was to investigate the difference in osteogenic differentiation capacity between mandibular BMSCs (mBMSCs) and tibial BMSCs (tBMSCs). MATERIALS AND METHODS Bioinformatics analysis of the GSE81430 dataset taken from the Gene Expression Omnibus (GEO) database was performed using GEO2R. BMSCs were isolated from mandibular and tibial bone marrow tissue samples. Healthy pigs (n = 3) (registered at the State Office for Nature, Environment, and Consumer Protection, North Rhine-Westphalia (LANUV) 81-02.04.2020.A215) were used for this purpose. Cell morphology and osteogenic differentiation were evaluated in mBMSCs and tBMSCs. The expression levels of toll-like receptor 4 (TLR4) and nuclear transcription factor κB (NF-κB) were analyzed using quantitative polymerase chain reaction (qPCR) and Western blot (WB), respectively. In addition, mBMSC-derived extracellular vesicles (mBMSC-EVs) were gained and used as osteogenic stimuli for tBMSCs. Cell morphology and osteogenic differentiation capacity were assessed after mBMSC-EV stimulation. RESULTS Bioinformatic analysis indicated that the difference in the activation of the TLR4/NF-κB pathway was more pronounced compared to all other examined genes. Specifically, this demonstrated significant downregulation, whereas only 5-7 upregulated genes displayed significant variances. The mBMSC group showed stronger osteogenic differentiation capacity compared to the tBMSC group, confirmed via ALP, ARS, and von Kossa staining. Furthermore, qPCR and WB analysis revealed a significant decrease in the expression of the TLR4/NF-κB pathway in the mBMSC group compared to the tBMSC group (TLR4 fold changes: mBMSCs vs. tBMSCs p < 0.05; NF-κB fold changes: mBMSCs vs. tBMSCs p < 0.05). The osteogenic differentiation capacity was enhanced, and qPCR and WB analysis revealed a significant decrease in the expression of TLR4 and NF-κB in the tBMSC group with mBMSC-EVs added compared to tBMSCs alone (TLR4 fold changes: p < 0.05; NF-κB fold changes: p < 0.05). CONCLUSION Our results indicate that mBMSC-EVs can promote the osteogenic differentiation of tBMSCs in vitro. The results also provide insights into the osteogenic mechanism of mBMSCs via TLR4/NF-κB signaling pathway activation. This discovery promises a fresh perspective on the treatment of bone fractures or malunions, potentially offering a novel therapeutic method.
Collapse
Affiliation(s)
- Qun Zhao
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Xing Zhang
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - You Li
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Zhizhen He
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Kang Qin
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Shoulder and Elbow Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology and Medical Clinic II, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Ümit Mert
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Klemens Horst
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Elizabeth R. Balmayor
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Johannes Greven
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
13
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
14
|
Zhang N, Guo Y, Foiret J, Tumbale SK, Paulmurugan R, Ferrara KW. Protocol for in vitro sonoporation validation using non-targeted microbubbles for human studies of ultrasound-mediated gene delivery. STAR Protoc 2023; 4:102723. [PMID: 37976155 PMCID: PMC10692958 DOI: 10.1016/j.xpro.2023.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Microbubbles are currently approved for diagnostic ultrasound imaging and are under evaluation in therapeutic protocols. Here, we present a protocol for in vitro sonoporation validation using non-targeted microbubbles for gene delivery. We describe steps for computational simulation, experimental calibration, reagent preparation, ultrasound treatment, validation, and gene expression analysis. This protocol uses approved diagnostic microbubbles and parameters that are applicable for human use. For complete details on the use and execution of this protocol, please refer to Bez et al. (2017).1.
Collapse
Affiliation(s)
- Nisi Zhang
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Yutong Guo
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Spencer K Tumbale
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
15
|
Shi Y, Weng W, Chen M, Huang H, Chen X, Peng Y, Hu Y. Improving DNA vaccination performance through a new microbubble design and an optimized sonoporation protocol. ULTRASONICS SONOCHEMISTRY 2023; 101:106685. [PMID: 37976565 PMCID: PMC10692915 DOI: 10.1016/j.ultsonch.2023.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
As a non-viral transfection method, ultrasound and microbubble-induced sonoporation can achieve spatially targeted gene delivery with synergistic immunostimulatory effects. Here, we report for the first time the application of sonoporation for improving DNA vaccination performance. This study developed a new microbubble design with nanoscale DNA/PEI complexes loaded onto cationic microbubbles to attain significant increases in DNA-loading capacity (0.25 pg per microbubble) and in vitro transfection efficiency. Using live-cell imaging, we revealed the membrane perforation and cellular delivery characteristics of sonoporation. Using luciferase reporter gene for in vivo transfection, we showed that sonoporation increased the transfection efficiency by 40.9-fold when compared with intramuscular injection. Moreover, we comprehensively optimized the sonoporation protocol and further increased the transfection efficiency by 43.6-fold. Immunofluorescent staining results showed that sonoporation effectively activated the MHC-II+ immune cells. Using a hepatitis B DNA vaccine, sonoporation induced significantly higher serum antibody levels when compared with intramuscular injection, and the antibodies sustained for 56 weeks. In addition, we recorded the longest reported expression period (400 days) of the sonoporation-delivered gene. Whole genome resequencing confirmed that the gene with stable expression existed in an extrachromosomal state without integration. Our results demonstrated the potential of sonoporation for efficient and safe DNA vaccination.
Collapse
Affiliation(s)
- Yuanchao Shi
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Weixiong Weng
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Mengting Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Haoqiang Huang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Xin Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Yin Peng
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Yaxin Hu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
16
|
Polydorou AE, May JP, Makris K, Ferri S, Wu Q, Stride E, Carugo D, Evans ND. An investigation into the cytotoxic effects of microbubbles and their constituents on osteosarcoma and bone marrow stromal cells. Biochim Biophys Acta Gen Subj 2023; 1867:130481. [PMID: 37802372 DOI: 10.1016/j.bbagen.2023.130481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Ultrasound-responsive microbubbles offer a means of achieving minimally invasive, localised drug delivery in applications including regenerative medicine. To facilitate their use, however, it is important to determine any cytotoxic effects they or their constituents may have. The aim of this study was to test the hypothesis that phospholipid-shelled microbubbles are non-toxic to human bone-derived cells at biologically-relevant concentrations. METHODS Microbubbles were fabricated using combinations of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dibehenoyl-sn-glycero-3-phosphocholine (DBPC), polyoxyethylene(40) stearate (PEG40S) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene-glycol)-2000] (DSPE-PEG2000). Microbubble size and concentration were measured as a function of time and temperature by optical microscopy. Effects on MG63 osteosarcoma and human bone marrow stromal cells (BMSCs) were measured for up to 72 h by assay for viability, metabolic activity and proliferation. RESULTS DBPC:DSPE-PEG2000 microbubbles were significantly more stable than DSPC:PEG40S microbubbles under all conditions tested. Serum-containing medium had no detrimental effect on microbubble stability, but storage at 37 °C compared to at 4 °C reduced stability for both preparations, with almost complete dissolution of microbubbles at times ≥24 h. DSPC:PEG40S microbubbles had greater inhibitory effects on cell metabolism and growth than DBPC:DSPE-PEG2000 microbubbles, with PEG40S found to be the principle inhibitory component. These effects were only evident at high microbubble concentrations (≥20% (v/v)) or with prolonged culture (≥24 h). Increasing cell-microbubble contact by inversion culture in a custom-built device had no inhibitory effect on metabolism. CONCLUSIONS These data indicate that, over a broad range of concentrations and incubation times, DBPC:DSPE-PEG2000 and DSPC:PEG40S microbubbles have little effect on osteoblastic cell viability and growth, and that PEG40S is the principle inhibitory component in the formulations investigated.
Collapse
Affiliation(s)
- A E Polydorou
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research group, University of Southampton, United Kingdom; Bioengineering Sciences Group, Institute for Life Sciences, University of Southampton, United Kingdom
| | - J P May
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research group, University of Southampton, United Kingdom; Bioengineering Sciences Group, Institute for Life Sciences, University of Southampton, United Kingdom
| | - K Makris
- Bioengineering Sciences Group, Institute for Life Sciences, University of Southampton, United Kingdom
| | - S Ferri
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research group, University of Southampton, United Kingdom; Bioengineering Sciences Group, Institute for Life Sciences, University of Southampton, United Kingdom
| | - Q Wu
- Institute of Biomedical Engineering, University of Oxford, United Kingdom
| | - E Stride
- Institute of Biomedical Engineering, University of Oxford, United Kingdom; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, United Kingdom
| | - D Carugo
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, United Kingdom
| | - N D Evans
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research group, University of Southampton, United Kingdom; Bioengineering Sciences Group, Institute for Life Sciences, University of Southampton, United Kingdom.
| |
Collapse
|
17
|
Ball JR, Shelby T, Hernandez F, Mayfield CK, Lieberman JR. Delivery of Growth Factors to Enhance Bone Repair. Bioengineering (Basel) 2023; 10:1252. [PMID: 38002376 PMCID: PMC10669014 DOI: 10.3390/bioengineering10111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The management of critical-sized bone defects caused by nonunion, trauma, infection, malignancy, pseudoarthrosis, and osteolysis poses complex reconstruction challenges for orthopedic surgeons. Current treatment modalities, including autograft, allograft, and distraction osteogenesis, are insufficient for the diverse range of pathology encountered in clinical practice, with significant complications associated with each. Therefore, there is significant interest in the development of delivery vehicles for growth factors to aid in bone repair in these settings. This article reviews innovative strategies for the management of critical-sized bone loss, including novel scaffolds designed for controlled release of rhBMP, bioengineered extracellular vesicles for delivery of intracellular signaling molecules, and advances in regional gene therapy for sustained signaling strategies. Improvement in the delivery of growth factors to areas of significant bone loss has the potential to revolutionize current treatment for this complex clinical challenge.
Collapse
Affiliation(s)
- Jacob R. Ball
- Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, 1500 San Pablo St., Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
18
|
Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio 2023; 22:100741. [PMID: 37576867 PMCID: PMC10413201 DOI: 10.1016/j.mtbio.2023.100741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Traditional strategies in bone tissue engineering have focused primarily on mimicking the extracellular matrix (ECM) of bone in terms of structure and composition. However, the synergistic effects of other cues from the microenvironment during bone regeneration are often neglected. The bone microenvironment is a sophisticated system that includes physiological (e.g., neighboring cells such as macrophages), chemical (e.g., oxygen, pH), and physical factors (e.g., mechanics, acoustics) that dynamically interact with each other. Microenvironment-targeted strategies are increasingly recognized as crucial for successful bone regeneration and offer promising solutions for advancing bone tissue engineering. This review provides a comprehensive overview of current microenvironment-targeted strategies and challenges for bone regeneration and further outlines prospective directions of the approaches in construction of bone organoids.
Collapse
Affiliation(s)
- Shuyue Hao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| |
Collapse
|
19
|
Zhao Z, Ruan H, Chen A, Xiong W, Zhang M, Cai M, Cui W. Genetic Engineered Ultrasound-Triggered Injectable Hydrogels for Promoting Bone Reconstruction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0221. [PMID: 39830009 PMCID: PMC11740919 DOI: 10.34133/research.0221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/16/2023] [Indexed: 01/22/2025]
Abstract
Genetic engineering technology can achieve specific gene therapy for a variety of diseases, but the current strategy still has some flaws, such as a complex system, single treatment, and large implantation trauma. Herein, the genetic engineering injectable hydrogels were constructed by ultrasonic technology for the first time to realize in vivo ultrasound-triggered in situ cross-linking and cell gene transfection, and finally complete in situ gene therapy to promote bone reconstruction. First, ultrasound-triggered calcium release was used to activate transglutaminase and catalyze the transamidation between fibrinogen. Simultaneously, liposome loaded with Zinc-finger E-box-binding homeobox 1 (ZEB1) gene plasmid (Lip-ZEB1) was combined to construct an ultrasound-triggered in situ cross-linked hydrogels that can deliver Lip-ZEB1. Second, ultrasound-triggered injectable hydrogel introduced ZEB1 gene plasmid into endothelial cell genome through Lip-ZEB1 sustained release, and then acted on the ZEB1/Notch signal pathway of cells, promoting angiogenesis and local bone reconstruction of osteoporosis through genetic engineering. Overall, this strategy provides an advanced gene delivery system through genetic engineered ultrasound-triggered injectable hydrogels.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 Middle Yanchang Road, Shanghai 200072, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 Middle Yanchang Road, Shanghai 200072, China
| | - Wei Xiong
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 1 Dongjiao Minxiang, Beijing 100730, China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 1 Dongjiao Minxiang, Beijing 100730, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 Middle Yanchang Road, Shanghai 200072, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
20
|
Wen J, Song M, Zeng Y, Dong X. Effect of different HA/β-TCP coated 3D printed bioceramic scaffolds on repairing large bone defects in rabbits. J Orthop Surg (Hong Kong) 2023; 31:10225536231222121. [PMID: 38118163 DOI: 10.1177/10225536231222121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Treatment of large segmental bone defects is still a major clinical challenge, and bone grafting is the main method. The development of novel bone graft substitutes will help solve this problem. METHODS Porous bioceramics hydroxyapatite (HA) scaffolds coated with different ratios of HA/β-tricalcium phosphate (β-TCP) were prepared by 3D printing. The scaffolds were sampled and tested in large segmental bone defect rabbit models. X-ray, micro-computed tomography (CT), hematoxylin and eosin (HE) staining, Van-Gieson staining, and type I collagen staining were performed to find the best scaffolds for large segmental bone defect treatment. RESULTS The average length, diameter, compressive strength, and porosity of the bioceramics scaffolds were 15.05 ± 0.10 mm, 4.98 ± 0.06 mm, 11.11 ± 0.77 MPa, and 54.26 ± 5.38%, respectively. Postoperative lateral radiographs suggested the scaffold group got better bone healing and stability than the blank group. Micro-CT showed new bones grew into the scaffold from the two ends of the fracture along the scaffold and finally achieved bony union. The new bone volume around the scaffolds suggested the 3:7 HA/β-TCP-coated bioceramic scaffolds were more favorable for the healing of large segmental bone defects. The results of HE, Van-Gieson, and type I collagen staining also suggested more new bone formation in 3:7 HA/β-TCP-coated bioceramic scaffolds. CONCLUSION 3:7 HA/β-TCP-coated porous bioceramics scaffolds are more conducive to the repair of large bone defects in rabbits. The results of this study can provide some reference and theoretical support in this area.
Collapse
Affiliation(s)
- Jian Wen
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Meiling Song
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yu Zeng
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xieping Dong
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
21
|
Wu Z, Wang X, Shi J, Gupta A, Zhang Y, Zhang B, Cao Y, Wang L. Identification of Functional Modules and Key Pathways Associated with Innervation in Graft Bone-CGRP Regulates the Differentiation of Bone Marrow Mesenchymal Stem Cells via p38 MAPK and Wnt6/ β-Catenin. Stem Cells Int 2023; 2023:1154808. [PMID: 37621747 PMCID: PMC10447124 DOI: 10.1155/2023/1154808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Bone resorption occurs after bone grafting, however, contemporaneous reconstruction of the innervation of the bone graft is a potential treatment to maintain the bone mass of the graft. The innervation of bone is an emerging research topic. To understand the potential molecular mechanisms of bone innervation after bone grafting, we collected normal iliac bone tissue as well as bone grafts with or without innervation from nine patients 1 year after surgery and performed RNA sequencing. We identified differentially expressed genes) from these samples and used the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases for functional enrichment and signaling pathway analysis. In parallel, we established protein-protein interaction networks to screen functional modules. Based on bioinformatic results, we validated in vitro the osteogenic differentiation potential of rat bone marrow mesenchymal stem cells (BMMSCs) after calcitonin gene-related peptide (CGRP) stimulation and the expression of p38 MAPK and Wnt6/β-catenin pathways during osteogenesis. Our transcriptome analysis of bone grafts reveals functional modules and signaling pathways of innervation which play a vital role in the structural and functional integration of the bone graft. Simultaneously, we demonstrate that CGRP regulates the differentiation of BMMSCs through p38 MAPK and Wnt6/β-catenin.
Collapse
Affiliation(s)
- Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xudong Wang
- Department of Stomatology, Oriental Hospital, Tongji University, 200120, Shanghai, China
| | - Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, 160030, Chandigarh, India
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Department of Stomatology, Fengcheng Hospital, Fengxian District, Shanghai 201411, China
| |
Collapse
|
22
|
Zeng J, Xiong S, Zhou J, Wei P, Guo K, Wang F, Ouyang M, Long Z, Yao A, Li J, Xiong L, Wu D. Hollow Hydroxyapatite Microspheres Loaded with rhCXCL13 to Recruit BMSC for Osteogenesis and Synergetic Angiogenesis to Promote Bone Regeneration in Bone Defects. Int J Nanomedicine 2023; 18:3509-3534. [PMID: 37404852 PMCID: PMC10317543 DOI: 10.2147/ijn.s408905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Bone tissue engineering is a promising method to treat bone defects. However, the current methods of preparing composite materials that mimic the complex structure and biological activity of natural bone are challenging for recruitment of bone marrow mesenchymal stem cells (BMSCs), which affects the application of these materials in situ bone regeneration. Hollow hydroxyapatite microspheres (HHMs) possess a natural porous bone structure, good adsorption, and slow release of chemokines, but have low ability to recruit BMSCs and induce osteogenesis. In this study, The HHM/chitosan (CS) and recombinant human C-X-C motif chemokine ligand 13 (rhCXCL13)-HHM/CS biomimetic scaffolds that optimize bone regeneration and investigated their mechanism of BMSC recruitment and osteogenesis through cell and animal experiments and transcriptomic sequencing. Methods Evaluate the physical characteristics of the HHM/CS and rhCXCL13-HHM/CS biomimetic scaffolds through Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and the cumulative release curve of rhCXCL13. Transwell migration experiments and co-culture with BMSCs were conducted to study the recruitment ability and osteogenic differentiation of the scaffolds. Transcriptomic sequencing was performed to analyze the osteogenic differentiation mechanism. The osteogenesis and bone healing performance were evaluated using a rabbit radial defect model. Results SEM demonstrated that the rhCXCL13-HHM/CS scaffold comprised hydroxyapatite microspheres in a porous three-dimensional network. The rhCXCL13 showed excellent sustained release capability. The rhCXCL13-HHM/CS scaffold could recruit BMSCs and induce bone regeneration. Transcriptome sequencing and experimental results showed that the osteogenesis mechanism of rhCXCL13-HHM/CS was through the PI3K-AKT pathway. In vivo, the rhCXCL13-HHM/CS scaffold significantly promoted osteogenesis and angiogenesis at 12 weeks after surgery. Conclusion The rhCXCL13-HHM/CS scaffold demonstrates excellent potential for BMSC recruitment, osteogenesis, vascularized tissue-engineered bone reconstruction, and drug delivery, providing a theoretical basis for material osteogenesis mechanism study and promising clinical applications for treating large bone defects.
Collapse
Affiliation(s)
- Jianhua Zeng
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Spine Surgery, People’s Hospital of Ganxian District, Ganzhou, Jiangxi, 341100, China
| | - Shilang Xiong
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Jingyu Zhou
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Peng Wei
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Min Ouyang
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhisheng Long
- Department of Spine Surgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
| | - Aihua Yao
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jingtang Li
- Department of Traumatology, Jiangxi provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
| | - Long Xiong
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
23
|
Shen Q, Li Z, Meyer MD, De Guzman MT, Lim JC, Bouchard RR, Lu GJ. 50-nm gas-filled protein nanostructures to enable the access of lymphatic cells by ultrasound technologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546433. [PMID: 37425762 PMCID: PMC10327079 DOI: 10.1101/2023.06.27.546433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need of microbubbles, which cannot transverse many biological barriers due to their large size. Here we introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles that we referred to as 50nm GVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to our knowledge, the smallest stable, free-floating bubbles made to date. 50nm GVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50nm GVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. We anticipate that 50nm GVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.
Collapse
|
24
|
Atasoy-Zeybek A, Coenen MJ, Hawse GP, Logeart-Avramoglou D, Evans CH, De La Vega RE. Efficient autocrine and paracrine signaling explain the osteogenic superiority of transgenic BMP-2 over rhBMP-2. Mol Ther Methods Clin Dev 2023; 29:350-363. [PMID: 37214314 PMCID: PMC10196773 DOI: 10.1016/j.omtm.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) is an osteogenic protein used clinically to enhance bone healing. However, it must be applied in very high doses, causing adverse side effects and increasing costs while providing only incremental benefit. Preclinical models of bone healing using gene transfer to deliver BMP-2 suggest that transgenic BMP-2 is much more osteogenic than rhBMP-2. Using a reporter mesenchymal cell line, we found transgenic human BMP-2 cDNA to be at least 100-fold more effective than rhBMP-2 in signaling. Moreover, a substantial portion of the BMP-2 produced by the transduced cells remained cell associated. Signaling by transgenic BMP-2 occurred via binding to the type I receptor, activating the associated kinase and generating phospho-smads. Signaling was partially resistant to noggin, an important extracellular inhibitor of BMP-2, possibly because nascent BMP-2 binds to its cell surface receptor during secretion and thus signals in a protected peri-cellular environment. Although the amounts of BMP-2 secreted by the transduced cells were too low to affect distant cells, transduced cells were able to induce signaling in a paracrine fashion that required close proximity of the cells, possibly cell-to-cell contact. The greater osteogenic potency of transgenic BMP-2 was confirmed with human bone marrow stromal cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Rodolfo E. De La Vega
- Mayo Clinic, Rochester, MN, USA
- cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
25
|
Xie L, Wang J, Song L, Jiang T, Yan F. Cell-cycle dependent nuclear gene delivery enhances the effects of E-cadherin against tumor invasion and metastasis. Signal Transduct Target Ther 2023; 8:182. [PMID: 37150786 PMCID: PMC10164743 DOI: 10.1038/s41392-023-01398-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Gene delivery is the process by which foreign DNA is transferred to host cells, released from intracellular vesicles, and transported to the nuclei for transcription. This process is frequently inefficient and difficult to control spatiotemporally. We developed a gene delivery strategy that uses ultrasound to directly deliver plasmid DNA into nuclei via gas vesicles (GVs)-based intracellular cavitation. pDNA-binding GVs can be taken up by cells and cause intracellular cavitation when exposed to acoustic irradiation and delivering their pDNA payloads into nuclei. Importantly, GVs can remain stable in the cytoplasm in the absence of acoustic irradiation, allowing for temporally controlled nuclear gene delivery. We were able to achieve spatiotemporal control of E-cadherin nuclear gene delivery in this manner, demonstrating its efficacy in tumor invasion and metastasis inhibition. Interestingly, we discovered that nuclear gene delivery of E-cadherin during the G2/M phase of the cell cycle in C6 tumor cells inhibited tumor invasion and metastasis more effectively than during the G1 and S phases. The gene delivery of E-cadherin at the G2/M phase resulted in significantly lower expression of Fam50a, which reduced Fam50a/Runx2 interaction and led to reduced transactivation of MMP13, an important factor for epithelial-mesenchymal transition, as observed in a molecular mechanism assay. Thus, using remote acoustic control of intracellular cavitation of pDNA-GVs, we developed a high spatiotemporally controllable gene delivery strategy and achieved stronger tumor invasion and metastasis inhibition effects by delivering the E-cadherin gene at the G2/M phase.
Collapse
Affiliation(s)
- Liting Xie
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jieqiong Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tianan Jiang
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
27
|
Effect of direct current electrical stimulation on osteogenic differentiation and calcium influx. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Smolinska V, Csobonyeiova M, Zamborsky R, Danisovic L. Stem Cells and Their Derivatives: An Implication for the Regeneration of Nonunion Fractures. Cell Transplant 2023; 32:9636897231183530. [PMID: 37462248 PMCID: PMC10363876 DOI: 10.1177/09636897231183530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Despite advances in biomedical research, fracture nonunion rates have remained stable throughout the years. Long-bone fractures have a high likelihood of nonunion, but the specific biological pathways involved in this severe consequence are unknown. Fractures often heal in an organized sequence, including the production of a hematoma and an early stage of inflammation, the development of a soft callus and hard callus, and eventually the stage of bone remodeling. Deficient healing can result in a persistent bone defect with instability, discomfort, and loss of function. In the treatment of nonunions, mesenchymal stem cells (MSCs) prove to be a promising and safe alternative to the standard therapeutic strategies. Moreover, novel scaffolds are being created in order to use a synergistic biomimetic technique to rapidly generate bone tissue. MSCs respond to acellular biomimetic matrices by regenerating bone. Extracellular vesicles (EVs) derived from MSCs have recently gained interest in the field of musculoskeletal regeneration. Although many of these techniques and technologies are still in the preclinical stage and have not yet been approved for use in humans, novel approaches to accelerate bone healing via MSCs and/or MSC derivatives have the potential to reduce the physical, economic, and social burdens associated with nonhealing fractures and bone defects. In this review, we focus on providing an up-to-date summary of recent scientific studies dealing with the treatment of nonunion fractures in clinical and preclinical settings employing MSC-based therapeutic techniques.
Collapse
Affiliation(s)
- Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Piestany, Slovakia
| | - Maria Csobonyeiova
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Radoslav Zamborsky
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Department of Orthopaedics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
- National Institute of Children's Diseases, Bratislava, Slovakia
- Centre for Tissue Engineering and Regenerative Medicine-Translational Research Unit, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Centre for Tissue Engineering and Regenerative Medicine-Translational Research Unit, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
29
|
Barik A, Kirtania MD. In-Vitro and In-Vivo Tracking of Cell-Biomaterial Interaction to Monitor the Process of Bone Regeneration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
30
|
Liu R, Xu Y, Qu S, Dai Z. Major Strategies for Spatial Control of Ultrasound-Driven Gene Expression to Enhance Therapeutic Specificity. Crit Rev Biomed Eng 2023; 51:29-40. [PMID: 37522539 DOI: 10.1615/critrevbiomedeng.2023047680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A major challenge of gene therapy is to achieve highly specific transgene expression in tissues of interest with minimized off-target expression. Ultrasound in combination with microbubbles can transiently increase permeability of desired cells or tissues and thereby facilitate gene transfer. This kind of ultrasound-driven transgene expression has gained increasing attention due to its deep tissue penetration and high spatiotemporal resolution. However, successful genetic manipulation in vivo with ultrasound need to well optimize various aspects involved in this process. Ultrasound parameters, microbubble dose, and gene vectors need to be optimized for highly increased transgene expression in the cells of interest. Conversely, the potential off-target transgene expression and toxicities need to be reduced by modification of gene vectors and/or promoter sequence. This review will discuss some major strategies for enhanced specificity of the ultrasound-mediated gene transfer in vivo. Five major strategies will be discussed, including the integration of real-time imaging methods, local injection, targeted microbubbles loaded with nucleic acids, stealth nanocarriers, and cell-specific promoter. The advantages and limitations of each strategy were outlined, hoping to provide a guideline for researchers in achieving high specific ultrasound-driven gene expression.
Collapse
Affiliation(s)
- Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Shuai Qu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| |
Collapse
|
31
|
Feng H, Jiang B, Xing W, Sun J, Greenblatt MB, Zou W. Skeletal stem cells: origins, definitions, and functions in bone development and disease. LIFE MEDICINE 2022; 1:276-293. [PMID: 36811112 PMCID: PMC9938638 DOI: 10.1093/lifemedi/lnac048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Skeletal stem cells (SSCs) are tissue-specific stem cells that can self-renew and sit at the apex of their differentiation hierarchy, giving rise to mature skeletal cell types required for bone growth, maintenance, and repair. Dysfunction in SSCs is caused by stress conditions like ageing and inflammation and is emerging as a contributor to skeletal pathology, such as the pathogenesis of fracture nonunion. Recent lineage tracing experiments have shown that SSCs exist in the bone marrow, periosteum, and resting zone of the growth plate. Unraveling their regulatory networks is crucial for understanding skeletal diseases and developing therapeutic strategies. In this review, we systematically introduce the definition, location, stem cell niches, regulatory signaling pathways, and clinical applications of SSCs.
Collapse
Affiliation(s)
- Heng Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Research Division, Hospital for Special Surgery, New York, NY 10065, USA
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
32
|
Sun Y, Chen LG, Fan XM, Pang JL. Ultrasound Responsive Smart Implantable Hydrogels for Targeted Delivery of Drugs: Reviewing Current Practices. Int J Nanomedicine 2022; 17:5001-5026. [PMID: 36275483 PMCID: PMC9586127 DOI: 10.2147/ijn.s374247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last two decades, the process of delivering therapeutic drugs to a patient with a controlled release profile has been a significant focus of drug delivery research. Scientists have given tremendous attention to ultrasound-responsive hydrogels for several decades. These smart nanosystems are more applicable than other stimuli-responsive drug delivery vehicles (ie UV-, pH- and thermal-, responsive materials) because they enable more efficient targeted treatment via relatively non-invasive means. Ultrasound (US) is capable of safely transporting energy through opaque and complex media with minimal loss of energy. It is capable of being localized to smaller regions and coupled to systems operating at various time scales. However, the properties enabling the US to propagate effectively in materials also make it very difficult to transform acoustic energy into other forms that may be used. Recent research from a variety of domains has attempted to deal with this issue, proving that ultrasonic effects can be used to control chemical and physical systems with remarkable specificity. By obviating the need for multiple intravenous injections, implantable US responsive hydrogel systems can enhance the quality of life for patients who undergo treatment with a varied dosage regimen. Ideally, the ease of self-dosing in these systems would lead to increased patient compliance with a particular therapy as well. However, excessive literature has been reported based on implanted US responsive hydrogel in various fields, but there is no comprehensive review article showing the strategies to control drug delivery profile. So, this review was aimed at discussing the current strategies for controlling and targeting drug delivery profiles using implantable hydrogel systems.
Collapse
Affiliation(s)
- Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014, People’s Republic of China
| | - Le-Gao Chen
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014, People’s Republic of China
| | - Xiao-Ming Fan
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014, People’s Republic of China,Correspondence: Xiao-Ming Fan, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, People’s Republic of China, Tel/Fax +86-571-85893290, Email
| | - Jian-Liang Pang
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, 317200, People’s Republic of China,Jian-Liang Pang, Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Kangning Middle Road, Shifeng Street, Tiantai County, Taizhou, Zhejiang, 317200, People’s Republic of China, Tel/Fax +86-576- 81302085, Email
| |
Collapse
|
33
|
Bone tissue engineering via application of a PCL/Gelatin/Nanoclay/Hesperetin 3D nanocomposite scaffold. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Advances in Biomaterial-Mediated Gene Therapy for Articular Cartilage Repair. Bioengineering (Basel) 2022; 9:bioengineering9100502. [PMID: 36290470 PMCID: PMC9598732 DOI: 10.3390/bioengineering9100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage defects caused by various reasons are relatively common in clinical practice, but the lack of efficient therapeutic methods remains a substantial challenge due to limitations in the chondrocytes’ repair abilities. In the search for scientific cartilage repair methods, gene therapy appears to be more effective and promising, especially with acellular biomaterial-assisted procedures. Biomaterial-mediated gene therapy has mainly been divided into non-viral vector and viral vector strategies, where the controlled delivery of gene vectors is contained using biocompatible materials. This review will introduce the common clinical methods of cartilage repair used, the strategies of gene therapy for cartilage injuries, and the latest progress.
Collapse
|
35
|
Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022; 8:554. [PMID: 36135267 PMCID: PMC9498906 DOI: 10.3390/gels8090554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogel drug delivery systems are designed to release a payload when prompted by an external stimulus. These platforms have become prominent in the field of drug delivery due to their ability to provide spatial and temporal control for drug release. Among the different external triggers that have been used, ultrasound possesses several advantages: it is non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area. This review summarizes the current state of understanding about ultrasound-responsive hydrogels used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound are examined, along with the latest innovative formulations and hydrogel design strategies. We also report on the most recent applications leveraging ultrasound activation for both cancer treatment and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels are discussed.
Collapse
Affiliation(s)
- Tyus J. Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Julien H. Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Daniel J. Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| |
Collapse
|
36
|
Gao X, Hwang MP, Wright N, Lu A, Ruzbarsky JJ, Huard M, Cheng H, Mullen M, Ravuri S, Wang B, Wang Y, Huard J. The use of heparin/polycation coacervate sustain release system to compare the bone regenerative potentials of 5 BMPs using a critical sized calvarial bone defect model. Biomaterials 2022; 288:121708. [PMID: 36031459 PMCID: PMC10129760 DOI: 10.1016/j.biomaterials.2022.121708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Nonunion following bone fracture and segmental bone defects are challenging clinical conditions. To combat this clinical dilemma, development of new bone tissue engineering therapies using biocompatible materials to deliver bone growth factors is desirable. This aim of this study is to use a heparin/polycation coacervate sustained-release platform to compare 5 bone morphogenetic proteins (BMPs) for promoting bone defect healing in a critical sized calvarial defect model. The in vitro 3D osteogenic pellet cultures assays demonstrated that BMPs 2, 4, 6, 7 and 9 all enhanced mineralization in vitro compared to the control group. BMP2 resulted in higher mineralized volume than BMP4 and BMP6. All BMPs and the control group activated the pSMAD5 signaling pathway and expressed osterix (OSX). The binding of BMP2 with coacervate significantly increased the coacervate average particle size. BMP2, 4, 6, & 7 bound to coacervate significantly increased the Zeta potential of the coacervate while BMP9 binding showed insignificant increase. Furthermore, using a monolayer culture osteogenic assay, it was found that hMDSCs cultured in the coacervate BMP2 osteogenic medium expressed higher levels of RUNX2, OSX, ALP and COX-2 compared to the control and BMPs 4, 6, 7 & 9. Additionally, the coacervate complex can be loaded with up to 2 μg of BMP proteins for sustained release. In vivo, when BMPs were delivered using the coacervate sustained release system, BMP2 was identified to be the most potent BMP promoting bone regeneration and regenerated 10 times of new bone than BMPs 4, 6 & 9. BMP7 also stimulated robust bone regeneration when compared to BMPs 4, 6 & 9. The quality of the newly regenerated bone by all BMPs delivered by coacervate is equivalent to the host bone consisting of bone matrix and bone marrow with normal bone architecture. Although the defect was not completely healed at 6 weeks, coacervate sustain release BMPs, particularly BMP2 and BMP7, could represent a new strategy for treatment of bone defects and non-unions.
Collapse
Affiliation(s)
- Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Mintai P Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nathaniel Wright
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Aiping Lu
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Joseph J Ruzbarsky
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Matthieu Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Michael Mullen
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Sudheer Ravuri
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA.
| |
Collapse
|
37
|
Li Y, Zha Y, Hu W, Chen J, Liu S, Zhang S, Wang J. Monoporous Microsphere as a Dynamically Movable Drug Carrier for Osteoporotic Bone Remodeling. Adv Healthc Mater 2022:e2201242. [PMID: 35948299 DOI: 10.1002/adhm.202201242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Indexed: 11/06/2022]
Abstract
To repair systematically osteoporotic bone defects, it is significant to take effort on both the diminishment of osteoporosis and the enhancement of bone regeneration. Herein, a specifically monoporous microsphere carrier encapsulating dosage-sensitive and short half-time parathyroid hormone (PTH) has been constructed to tackle the issue. Compared with conventional microsphere carriers involving compact, porous, and mesoporous microspheres, the monoporous microsphere is desirable to achieve precisely in-situ delivery and to minimize topical accumulation. Our findings show that the PTH loaded inside MPMs can be gradually released from the single hole of MPMs to improve the initial drug concentration. Also, the MPMs can self-shift with the daily movement of experimental animals to effectively reduce the topical aggregation of released drugs in vitro. In vivo evaluation further confirms that the implant of MPMs-PTH plays a dual role in stimulating the regenerative repair of the cranial defect and relieving osteoporosis in the whole body. Consequently, our current work develops a dynamically movable drug delivery system to achieve precisely in-situ delivery, minimize topical accumulation, and systematically repair osteoporotic bone defects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yawu Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Yao Zha
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Weikang Hu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jia Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Shuaibing Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jianglin Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
38
|
Bendjador H, Foiret J, Wodnicki R, Stephens DN, Krut Z, Park EY, Gazit Z, Gazit D, Pelled G, Ferrara KW. A theranostic 3D ultrasound imaging system for high resolution image-guided therapy. Theranostics 2022; 12:4949-4964. [PMID: 35836805 PMCID: PMC9274734 DOI: 10.7150/thno.71221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Microbubble contrast agents are a diagnostic tool with broad clinical impact and an increasing number of indications. Many therapeutic applications have also been identified. Yet, technologies for ultrasound guidance of microbubble-mediated therapy are limited. In particular, arrays that are capable of implementing and imaging microbubble-based therapy in three dimensions in real-time are lacking. We propose a system to perform and monitor microbubble-based therapy, capable of volumetric imaging over a large field-of-view. To propel the promise of the theranostic treatment strategies forward, we have designed and tested a unique array and system for 3D ultrasound guidance of microbubble-based therapeutic protocols based on the frequency, temporal and spatial requirements. Methods: Four 256-channel plane wave scanners (Verasonics, Inc, WA, USA) were combined to control a 1024-element planar array with 1.3 and 2.5 MHz therapeutic and imaging transmissions, respectively. A transducer aperture of ~40×15 mm was selected and Field II was applied to evaluate the point spread function. In vitro experiments were performed on commercial and custom phantoms to assess the spatial resolution, image contrast and microbubble-enhanced imaging capabilities. Results: We found that a 2D array configuration with 64 elements separated by λ-pitch in azimuth and 16 elements separated by 1.5λ-pitch in elevation ensured the required flexibility. This design, of 41.6 mm × 16 mm, thus provided both an extended field-of-view, up to 11 cm x 6 cm at 10 cm depth and steering of ±18° in azimuth and ±12° in elevation. At a depth of 16 cm, we achieved a volume imaging rate of 60 Hz, with a contrast ratio and resolution, respectively, of 19 dB, 0.8 mm at 3 cm and 20 dB and 2.1 mm at 12.5 cm. Conclusion: A single 2D array for both imaging and therapeutics, integrated with a 1024 channel scanner can guide microbubble-based therapy in volumetric regions of interest.
Collapse
Affiliation(s)
| | | | | | | | - Zoe Krut
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Zulma Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
39
|
Lin SJ, Huang CC. Strontium Peroxide-Loaded Composite Scaffolds Capable of Generating Oxygen and Modulating Behaviors of Osteoblasts and Osteoclasts. Int J Mol Sci 2022; 23:ijms23116322. [PMID: 35683001 PMCID: PMC9181728 DOI: 10.3390/ijms23116322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
The reconstruction of bone defects remains challenging. The utilization of bone autografts, although quite promising, is limited by several drawbacks, especially substantial donor site complications. Recently, strontium (Sr), a bioactive trace element with excellent osteoinductive, osteoconductive, and pro-angiogenic properties, has emerged as a potential therapeutic agent for bone repair. Herein, a strontium peroxide (SrO2)-loaded poly(lactic-co-glycolic acid) (PLGA)-gelatin scaffold system was developed as an implantable bone substitute. Gelatin sponges serve as porous osteoconductive scaffolds, while PLGA not only reinforces the mechanical strength of the gelatin but also controls the rate of water infiltration. The encapsulated SrO2 can release Sr2+ in a sustained manner upon exposure to water, thus effectively stimulating the proliferation of osteoblasts and suppressing the formation of osteoclasts. Moreover, SrO2 can generate hydrogen peroxide and subsequent oxygen molecules to increase local oxygen tension, an essential niche factor for osteogenesis. Collectively, the developed SrO2-loaded composite scaffold shows promise as a multifunctional bioactive bone graft for bone tissue engineering.
Collapse
|
40
|
Ehterami A, Khastar H, Soleimannejad M, Salehi M, Nazarnezhad S, Majidi Ghatar J, Bit A, JafariSani M, Abbaszadeh-Goudarzi G, Shariatifar N. Bone Regeneration in Rat using Polycaprolactone/Gelatin/Epinephrine Scaffold. Drug Dev Ind Pharm 2022; 47:1915-1923. [PMID: 35484948 DOI: 10.1080/03639045.2022.2070640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Solid supports like the extracellular matrix network are necessary for bone cell attachment and start healing in the damaged bone. Scaffolds which are made of different materials are widely used as a supportive structure in bone tissue engineering. In the current study, a 3-D Polycaprolactone/Gelatin bone scaffold was developed by blending electrospinning and freeze-drying techniques for bone tissue engineering. To improve the efficiency of the scaffold, different concentrations of epinephrine due to its effect on bone healing were loaded. Fabricated scaffolds were characterized by different tests such as surface morphology, FTIR, porosity, compressive strength, water contact angle, degradation rate. The interaction between prepared scaffolds and blood and cells was evaluated by hemolysis, and MTT test, respectively, and bone healing was evaluated by a rat calvaria defect model. Based on the results, the porosity of scaffolds was about 75% and by adding epinephrine, mechanical strength decreased while due to the hydrophilic properties of it, degradation rate increased. In vivo and in vitro studies showed the best cell proliferation and bone healing were in PCL/Gelatin/Epinephrine1%-treated group. These results showed the positive effect of fabricated scaffold on osteogenesis and bone healing and the possibility of using it in clinical trials.
Collapse
Affiliation(s)
- Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khastar
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.,School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mostafa Soleimannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Salehi
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jila Majidi Ghatar
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arindam Bit
- Department of Biomedical Engineering, National Institute of Technology Raipur, India
| | - Moslem JafariSani
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nabi Shariatifar
- Department of Environmental of health engineering, school of public health, Tehran university of medical science, Tehran, Iran
| |
Collapse
|
41
|
Applications of Ultrasound-Mediated Gene Delivery in Regenerative Medicine. Bioengineering (Basel) 2022; 9:bioengineering9050190. [PMID: 35621468 PMCID: PMC9137703 DOI: 10.3390/bioengineering9050190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022] Open
Abstract
Research on the capability of non-viral gene delivery systems to induce tissue regeneration is a continued effort as the current use of viral vectors can present with significant limitations. Despite initially showing lower gene transfection and gene expression efficiencies, non-viral delivery methods continue to be optimized to match that of their viral counterparts. Ultrasound-mediated gene transfer, referred to as sonoporation, occurs by the induction of transient membrane permeabilization and has been found to significantly increase the uptake and expression of DNA in cells across many organ systems. In addition, it offers a more favorable safety profile compared to other non-viral delivery methods. Studies have shown that microbubble-enhanced sonoporation can elicit significant tissue regeneration in both ectopic and disease models, including bone and vascular tissue regeneration. Despite this, no clinical trials on the use of sonoporation for tissue regeneration have been conducted, although current clinical trials using sonoporation for other indications suggest that the method is safe for use in the clinical setting. In this review, we describe the pre-clinical studies conducted thus far on the use of sonoporation for tissue regeneration. Further, the various techniques used to increase the effectiveness and duration of sonoporation-induced gene transfer, as well as the obstacles that may be currently hindering clinical translation, are explored.
Collapse
|
42
|
Rindone AN, Grayson WL. Illuminating the Regenerative Microenvironment: Emerging Quantitative Imaging Technologies for Craniofacial Bone Tissue Engineering. ACS Biomater Sci Eng 2022; 8:4610-4612. [PMID: 35157425 DOI: 10.1021/acsbiomaterials.1c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tissue engineering has the potential to revolutionize treatments for patients suffering from critical-sized craniofacial bone defects, but it has yet to make a substantial impact in clinical practice. One of the barriers to improving the design of tissue-engineered bone grafts (TEBGs) is the lack of adequate techniques to study how transplanted cells, host cells, and biomaterials interact to facilitate the dynamic healing process. In this perspective, we discuss recent advances in quantitative imaging that may be adapted to provide high spatiotemporal resolution of the 3D tissue microenvironment during cranial bone regeneration. The adoption and application of these imaging technologies will provide a more rigorous framework for evaluating TEBG performance and enable the development of next-generation TEBGs for craniofacial repair.
Collapse
Affiliation(s)
- Alexandra N Rindone
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21205 United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
43
|
Xu Y, Zhang F, Zhai W, Cheng S, Li J, Wang Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers (Basel) 2022; 14:566. [PMID: 35160556 PMCID: PMC8840342 DOI: 10.3390/polym14030566] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The repair of large-area irregular bone defects is one of the complex problems in orthopedic clinical treatment. The bone repair scaffolds currently studied include electrospun membrane, hydrogel, bone cement, 3D printed bone tissue scaffolds, etc., among which 3D printed polymer-based scaffolds Bone scaffolds are the most promising for clinical applications. This is because 3D printing is modeled based on the im-aging results of actual bone defects so that the printed scaffolds can perfectly fit the bone defect, and the printed components can be adjusted to promote Osteogenesis. This review introduces a variety of 3D printing technologies and bone healing processes, reviews previous studies on the characteristics of commonly used natural or synthetic polymers, and clinical applications of 3D printed bone tissue scaffolds, analyzes and elaborates the characteristics of ideal bone tissue scaffolds, from t he progress of 3D printing bone tissue scaffolds were summarized in many aspects. The challenges and potential prospects in this direction were discussed.
Collapse
Affiliation(s)
- Yuanhang Xu
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Feiyang Zhang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Weijie Zhai
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Shujie Cheng
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Jinghua Li
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Yi Wang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
- National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471000, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Shao R, Dong Y, Zhang S, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions. Biotechnol J 2022; 17:e2100074. [PMID: 35073451 DOI: 10.1002/biot.202100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics Xinchang People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing Zhejiang Province 312000 P. R. China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| |
Collapse
|
45
|
Mi J, Xu J, Yao Z, Yao H, Li Y, He X, Dai B, Zou L, Tong W, Zhang X, Hu P, Ruan YC, Tang N, Guo X, Zhao J, He J, Qin L. Implantable Electrical Stimulation at Dorsal Root Ganglions Accelerates Osteoporotic Fracture Healing via Calcitonin Gene-Related Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103005. [PMID: 34708571 PMCID: PMC8728818 DOI: 10.1002/advs.202103005] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/11/2021] [Indexed: 05/18/2023]
Abstract
The neuronal engagement of the peripheral nerve system plays a crucial role in regulating fracture healing, but how to modulate the neuronal activity to enhance fracture healing remains unexploited. Here it is shown that electrical stimulation (ES) directly promotes the biosynthesis and release of calcitonin gene-related peptide (CGRP) by activating Ca2+ /CaMKII/CREB signaling pathway and action potential, respectively. To accelerate rat femoral osteoporotic fracture healing which presents with decline of CGRP, soft electrodes are engineered and they are implanted at L3 and L4 dorsal root ganglions (DRGs). ES delivered at DRGs for the first two weeks after fracture increases CGRP expression in both DRGs and fracture callus. It is also identified that CGRP is indispensable for type-H vessel formation, a biological event coupling angiogenesis and osteogenesis, contributing to ES-enhanced osteoporotic fracture healing. This proof-of-concept study shows for the first time that ES at lumbar DRGs can effectively promote femoral fracture healing, offering an innovative strategy using bioelectronic device to enhance bone regeneration.
Collapse
Affiliation(s)
- Jie Mi
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhizaoju RoadShanghai200011People's Republic of China
| | - Jian‐Kun Xu
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Zhi Yao
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Hao Yao
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Ye Li
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Xuan He
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Bing‐Yang Dai
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Li Zou
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Wen‐Xue Tong
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Xiao‐Tian Zhang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung Hom999077Hong Kong
| | - Pei‐Jie Hu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung Hom999077Hong Kong
| | - Ye Chun Ruan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung Hom999077Hong Kong
| | - Ning Tang
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Xia Guo
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung Hom999077Hong Kong
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhizaoju RoadShanghai200011People's Republic of China
| | - Ju‐Fang He
- Departments of Neuroscience and Biomedical SciencesCity University of Hong KongKowloon Tong999077Hong Kong
| | - Ling Qin
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| |
Collapse
|
46
|
Li J, Wang W, Li M, Song P, Lei H, Gui X, Zhou C, Liu L. Biomimetic Methacrylated Gelatin Hydrogel Loaded With Bone Marrow Mesenchymal Stem Cells for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:770049. [PMID: 34926420 PMCID: PMC8675867 DOI: 10.3389/fbioe.2021.770049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Large-segment bone defect caused by trauma or tumor is one of the most challenging problems in orthopedic clinics. Biomimetic materials for bone tissue engineering have developed dramatically in the past few decades. The organic combination of biomimetic materials and stem cells offers new strategies for tissue repair, and the fate of stem cells is closely related to their extracellular matrix (ECM) properties. In this study, a photocrosslinked biomimetic methacrylated gelatin (Bio-GelMA) hydrogel scaffold was prepared to simulate the physical structure and chemical composition of the natural bone extracellular matrix, providing a three-dimensional (3D) template and extracellular matrix microenvironment. Bone marrow mesenchymal stem cells (BMSCS) were encapsulated in Bio-GelMA scaffolds to examine the therapeutic effects of ECM-loaded cells in a 3D environment simulated for segmental bone defects. In vitro results showed that Bio-GelMA had good biocompatibility and sufficient mechanical properties (14.22kPa). A rat segmental bone defect model was constructed in vivo. The GelMA-BMSC suspension was added into the PDMS mold with the size of the bone defect and photocured as a scaffold. BMSC-loaded Bio-GelMA resulted in maximum and robust new bone formation compared with hydrogels alone and stem cell group. In conclusion, the bio-GelMA scaffold can be used as a cell carrier of BMSC to promote the repair of segmental bone defects and has great potential in future clinical applications.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenzhao Wang
- Department of Orthopedics, Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Mingxin Li
- Department of Orthopedics, Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Orthopedics, Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Zhang N, Wang J, Foiret J, Dai Z, Ferrara KW. Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Adv Drug Deliv Rev 2021; 178:113906. [PMID: 34333075 PMCID: PMC8556319 DOI: 10.1016/j.addr.2021.113906] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022]
Abstract
Due to the ease of use and excellent safety profile, ultrasound is a promising technique for both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, transfection with exogenous nucleic acids has the potential to stimulate an immune response in the tumor microenvironment. Ultrasound-mediated gene transfection is a growing field, and recent work has incorporated this technique into cancer immunotherapy. Compared with other gene transfection methods, ultrasound-mediated gene transfection has a unique opportunity to augment the intracellular uptake of nucleic acids while safely and stably modulating the expression of immunostimulatory cytokines. The development and commercialization of therapeutic ultrasound systems further enhance the potential translation. In this Review, we introduce the underlying mechanisms and ongoing preclinical studies of ultrasound-based techniques in gene transfection for cancer immunotherapy. Furthermore, we expand on aspects of therapeutic ultrasound that impact gene therapy and immunotherapy, including tumor debulking, enhancing cytokines and chemokines and altering nanoparticle pharmacokinetics as these effects of ultrasound cannot be fully dissected from targeted gene therapy. We finally explore the outlook for this rapidly developing field.
Collapse
Affiliation(s)
- Nisi Zhang
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| | | |
Collapse
|
48
|
Lin B, Du H, Fan J, Huang D, Gao F, Li J, Zhang Y, Feng G, Dai T, Du X. Radioimmunotherapy Combined With Low-Intensity Ultrasound and Microbubbles: A Potential Novel Strategy for Treatment of Solid Tumors. Front Oncol 2021; 11:750741. [PMID: 34745976 PMCID: PMC8570127 DOI: 10.3389/fonc.2021.750741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The prognosis of advanced malignant tumors is very poor, and effective treatment is limited. Radioimmunotherapy (RIT) is a novel treatment method. However, its anti-tumor effect is relatively low in solid tumors, which is mainly due to the blood-tumor barrier preventing RIT from penetrating the tumor, resulting in an insufficient dose. Low-intensity ultrasound with microbubbles (USMB) has proven capable of opening the blood-tumor barrier. The combination of the two technologies may overcome the poor anti-tumor effect of RIT and promote the clinical application of RIT in solid tumors. In this article, we reviewed the current research status of RIT in the treatment of solid tumors and the opportunities and challenges of USMB combined with RIT.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Huan Du
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jinjia Fan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dan Huang
- Radiology Department, Mianyang Central Hospital, Mianyang, China
| | - Feng Gao
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Jie Li
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Yu Zhang
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Gang Feng
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Tangzhi Dai
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Xiaobo Du
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
49
|
De la Vega RE, Atasoy-Zeybek A, Panos JA, VAN Griensven M, Evans CH, Balmayor ER. Gene therapy for bone healing: lessons learned and new approaches. Transl Res 2021; 236:1-16. [PMID: 33964474 PMCID: PMC8976879 DOI: 10.1016/j.trsl.2021.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Although gene therapy has its conceptual origins in the treatment of Mendelian disorders, it has potential applications in regenerative medicine, including bone healing. Research into the use of gene therapy for bone healing began in the 1990s. Prior to this period, the highly osteogenic proteins bone morphogenetic protein (BMP)-2 and -7 were cloned, produced in their recombinant forms and approved for clinical use. Despite their promising osteogenic properties, the clinical usefulness of recombinant BMPs is hindered by delivery problems that necessitate their application in vastly supraphysiological amounts. This generates adverse side effects, some of them severe, and raises costs; moreover, the clinical efficacy of the recombinant proteins is modest. Gene delivery offers a potential strategy for overcoming these limitations. Our research has focused on delivering a cDNA encoding human BMP-2, because the recombinant protein is Food and Drug Administration approved and there is a large body of data on its effects in people with broken bones. However, there is also a sizeable literature describing experimental results obtained with other transgenes that may directly or indirectly promote bone formation. Data from experiments in small animal models confirm that intralesional delivery of BMP-2 cDNA is able to heal defects efficiently and safely while generating transient, local BMP-2 concentrations 2-3 log orders less than those needed by recombinant BMP-2. The next challenge is to translate this information into a clinically expedient technology for bone healing. Our present research focuses on the use of genetically modified, allografted cells and chemically modified messenger RNA.
Collapse
Affiliation(s)
- Rodolfo E De la Vega
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota; cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Aysegul Atasoy-Zeybek
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Joseph A Panos
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Martijn VAN Griensven
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota; cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota.
| | - Elizabeth R Balmayor
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota; IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
50
|
Abstract
» Orthopaedics pioneered the expansion of gene therapy beyond its traditional scope of diseases that are caused by rare single-gene defects. Orthopaedic applications of gene therapy are most developed in the areas of arthritis and regenerative medicine, but several additional possibilities exist. » Invossa, an ex vivo gene therapeutic for osteoarthritis, was approved in South Korea in 2017, but its approval was retracted in 2019 and remains under appeal; a Phase-III clinical trial of Invossa has restarted in the U.S. » There are several additional clinical trials for osteoarthritis and rheumatoid arthritis that could lead to approved gene therapeutics for arthritis. » Bone-healing and cartilage repair are additional areas that are attracting considerable research; intervertebral disc degeneration and the healing of ligaments, tendons, and menisci are other applications of interest. Orthopaedic tumors, genetic diseases, and aseptic loosening are additional potential targets. » If successful, these endeavors will expand the scope of gene therapy from providing expensive medicines for a few patients to providing affordable medicines for many.
Collapse
|