1
|
Zheng Q, Li P, Qiang Y, Fan J, Xing Y, Zhang Y, Yang F, Li F, Xiong J. Targeting the transcription factor YY1 is synthetic lethal with loss of the histone demethylase KDM5C. EMBO Rep 2024:10.1038/s44319-024-00290-8. [PMID: 39433896 DOI: 10.1038/s44319-024-00290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
An understanding of the enzymatic and scaffolding functions of epigenetic modifiers is important for the development of epigenetic therapies for cancer. The H3K4me2/3 histone demethylase KDM5C has been shown to regulate transcription. The diverse roles of KDM5C are likely determined by its interacting partners, which are still largely unknown. In this study, we screen for KDM5C-binding proteins and show that YY1 interacts with KDM5C. A synergistic antitumor effect is exerted when both KDM5C and YY1 are depleted, and targeting YY1 appears to be a vulnerability in KDM5C-deficient cancer cells. Mechanistically, KDM5C promotes global YY1 chromatin recruitment, especially at promoters. Moreover, an intact KDM5C JmjC domain but not KDM5C histone demethylase activity is required for KDM5C-mediated YY1 chromatin binding. Transcriptional profiling reveals that dual inhibition of KDM5C and YY1 increases transcriptional repression of cell cycle- and apoptosis-related genes. In summary, our work demonstrates a synthetic lethal interaction between YY1 and KDM5C and suggests combination therapies for cancer treatments.
Collapse
Affiliation(s)
- Qian Zheng
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Pengfei Li
- Inner Mongolia Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, 010059, Huhhot, Inner Mongolia, China
| | - Yulong Qiang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Jiachen Fan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Yuzhu Xing
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Ying Zhang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Fan Yang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China.
| | - Feng Li
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan University, 430071, Wuhan, China.
| | - Jie Xiong
- Department of Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
2
|
Zhu Y, Shang L, Tang Y, Li Q, Ding L, Wang Y, Zhang T, Xie B, Ma J, Li X, Chen S, Yi X, Peng J, Liang Y, He A, Yan H, Zhu H, Zhang B, Zhu Y. Genome-Wide Profiling of H3K27ac Identifies TDO2 as a Pivotal Therapeutic Target in Metabolic Associated Steatohepatitis Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404224. [PMID: 39364706 DOI: 10.1002/advs.202404224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/13/2024] [Indexed: 10/05/2024]
Abstract
H3K27ac has been widely recognized as a representative epigenetic marker of active enhancer, while its regulatory mechanisms in pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remain elusive. Here, a genome-wide comparative study on H3K27ac activities and transcriptome profiling in high fat diet (HFD)-induced MASLD model is performed. A significantly enhanced H3K27ac density with abundant alterations of regulatory transcriptome is observed in MASLD rats. Based on integrative analysis of ChIP-Seq and RNA-Seq, TDO2 is identified as a critical contributor for abnormal lipid accumulation, transcriptionally activated by YY1-promoted H3K27ac. Furthermore, TDO2 depletion effectively protects against hepatic steatosis. In terms of mechanisms, TDO2 activates NF-κB pathway to promote macrophages M1 polarization, representing a crucial event in MASLD progression. A bovine serum albumin nanoparticle is fabricated to provide sustained release of Allopurinol (NPs-Allo) for TDO2 inhibition, possessing excellent biocompatibility and desired targeting capacity. Venous injection of NPs-Allo robustly alleviates HFD-induced metabolic disorders. This study reveals the pivotal role of TDO2 and its underlying mechanisms in pathogenesis of MASLD epigenetically and genetically. Targeting H3K27ac-TDO2-NF-κB axis may provide new insights into the pathogenesis of abnormal lipid accumulation and pave the way for developing novel strategies for MASLD prevention and treatment.
Collapse
Affiliation(s)
- Yaling Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Limeng Shang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yunshu Tang
- Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lin Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yi Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Tiantian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Bin Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jinhu Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xinyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shuwen Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xinrui Yi
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jin Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Youfeng Liang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Anyuan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hong Yan
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Buchun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
3
|
Zhang X, Zhang J, Xu X, Chen S, Gao F. Picroside Ⅱ alleviates renal fibrosis through YY1-dependent transcriptional inhibition of TGFβ1. Metabol Open 2024; 23:100316. [PMID: 39286296 PMCID: PMC11403240 DOI: 10.1016/j.metop.2024.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic Nephropathy (DN) has become the leading cause of end-stage renal disease worldwide. Studies have indicated that Transforming Growth Factor beta1 (TGFβ1) is the most potent factor contributing to renal fibrosis, and understanding the exact pathogenic mechanism of renal fibrosis is crucial for alleviating the condition. Previous research has identified Yin Yang 1 (YY1) as an effective inhibitor of TGF-β1. Our study, through dual-luciferase reporter gene assays and Western blot experiments, screened and obtained the small molecule compound PdⅡ. Subsequently, validation in a high-glucose-induced renal mesangial cell injury model showed that PdⅡ treatment significantly increased the expression of YY1 protein and mRNA, while correspondingly reducing the expression of TGFβ1 protein and mRNA. Dual-luciferase reporter gene assay results revealed that, compared to the control group, the luciferase transcription activity of YY1 molecules increased in the PdⅡ treatment group, and the luciferase transcription activity of TGFβ1 decreased. By further designing mutations in the binding sites between TGFβ1 and YY1 on the promoter, transfecting fluorescent enzyme reporter gene plasmids with TGFβ1 mutant promoter into mesangial cells damaged by high glucose, and then treating the cells with PdⅡ, it was observed that the luciferase transcription activity of TGFβ1 did not decrease. Therefore, these results suggest that PdⅡ may inhibit TGFβ1 transcriptional activity by activating YY1, thereby slowing down the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Xianjing Zhang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiarong Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Xiaojun Xu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Suzhen Chen
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Fei Gao
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Rong L, Xue H, Hao J, Liu J, Xu H. Long non-coding RNA MEG3 silencing weakens high glucose-induced mesangial cell injury by decreasing LIN28B expression by sponging and sequestering miR-23c. Kidney Res Clin Pract 2024; 43:600-613. [PMID: 38148128 PMCID: PMC11467368 DOI: 10.23876/j.krcp.23.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common kidney disease in diabetic patients. Long non-coding RNA maternally expressed gene 3 (MEG3) and microRNA (miR)-23c are reported to be implicated in DN development. Nevertheless, it is unclear that the molecular mechanism between MEG3 and miR-23c in DN remains unclear. METHODS Human mesangial cells (HMCs) were treated with high glucose (HG) to simulate the DN status in vitro. Expression of MEG3 and miR-23c was measured. Effects of MEG3 silencing on HG-stimulated HMC injury were determined. The relationship between MEG3 and miR-23c was verified by the dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS MEG3 was overexpressed in serums from DN patients and HG-stimulated HMCs. MEG3 knockdown weakened HG-stimulated HMC proliferation, extracellular matrix (ECM) accumulation, and inflammation. MEG3 regulated lin-28 homolog B (LIN28B) expression through adsorbing miR-23c. MiR-23c inhibitor reversed MEG3 knockdown-mediated effects on HG-stimulated HMC proliferation, ECM accumulation, and inflammation. LIN28B overexpression overturned miR-23c mimic-mediated effects on HG-stimulated HMC proliferation, ECM accumulation, and inflammation. CONCLUSION MEG3 regulated HMC injury via regulation of the miR-23c/LIN28B axis in DN, which can help us better understand the mechanism of DN mediated by MEG3.
Collapse
Affiliation(s)
- Lu Rong
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huanzhou Xue
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianwei Hao
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianjun Liu
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hao Xu
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Garmaa G, Bunduc S, Kói T, Hegyi P, Csupor D, Ganbat D, Dembrovszky F, Meznerics FA, Nasirzadeh A, Barbagallo C, Kökény G. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Noncoding RNA 2024; 10:30. [PMID: 38804362 PMCID: PMC11130806 DOI: 10.3390/ncrna10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasing health burden. Evidence suggests the importance of miRNA in diagnosing CKD, yet the reports are inconsistent. This study aimed to determine novel miRNA biomarkers and potential therapeutic targets from hypothesis-free miRNA profiling studies in human and murine CKDs. Comprehensive literature searches were conducted on five databases. Subgroup analyses of kidney diseases, sample types, disease stages, and species were conducted. A total of 38 human and 12 murine eligible studies were analyzed using Robust Rank Aggregation (RRA) and vote-counting analyses. Gene set enrichment analyses of miRNA signatures in each kidney disease were conducted using DIANA-miRPath v4.0 and MIENTURNET. As a result, top target genes, Gene Ontology terms, the interaction network between miRNA and target genes, and molecular pathways in each kidney disease were identified. According to vote-counting analysis, 145 miRNAs were dysregulated in human kidney diseases, and 32 were dysregulated in murine CKD models. By RRA, miR-26a-5p was significantly reduced in the kidney tissue of Lupus nephritis (LN), while miR-107 was decreased in LN patients' blood samples. In both species, epithelial-mesenchymal transition, Notch, mTOR signaling, apoptosis, G2/M checkpoint, and hypoxia were the most enriched pathways. These miRNA signatures and their target genes must be validated in large patient cohort studies.
Collapse
Affiliation(s)
- Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
- Fundeni Clinical Institute, Fundeni Street 258, 022328 Bucharest, Romania
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Tamás Kói
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szikra utca 8, 6725 Szeged, Hungary
| | - Dariimaa Ganbat
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
- Department of Public Health, Graduate School of Medicine, International University of Health and Welfare, Tokyo 107-840, Japan
| | - Fanni Dembrovszky
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Fanni Adél Meznerics
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária utca 41, 1085 Budapest, Hungary
| | - Ailar Nasirzadeh
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
| | - Cristina Barbagallo
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
6
|
Fu TL, Li GR, Li DH, He RY, Liu BH, Xiong R, Xu CZ, Lu ZL, Song CK, Qiu HL, Wang WJ, Zou SS, Yi K, Li N, Geng Q. Mangiferin alleviates diabetic pulmonary fibrosis in mice via inhibiting endothelial-mesenchymal transition through AMPK/FoxO3/SIRT3 axis. Acta Pharmacol Sin 2024; 45:1002-1018. [PMID: 38225395 PMCID: PMC11053064 DOI: 10.1038/s41401-023-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024] Open
Abstract
Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 μM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.
Collapse
Affiliation(s)
- Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dong-Hang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ru-Yuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130061, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Cong-Kuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Jie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shi-Shi Zou
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Yang T, Li L, Heng C, Sha P, Wang Y, Shen J, Jiang Z, Qian S, Wei C, Yang H, Zhu X, Wang T, Wu M, Wang J, Lu Q, Yin X. Sodium butyrate ameliorated diabetic nephropathy-associated tubulointerstitial inflammation by modulating the tight junctions of renal tubular epithelial cells. Food Funct 2024; 15:2628-2644. [PMID: 38358014 DOI: 10.1039/d2fo00940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Cai Heng
- Department of Pharmacy, JingJiang People's Hospital, Jingjiang 214500, China
| | - Pian Sha
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yiying Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jiaming Shen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Chujing Wei
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Yang
- Department of Pharmacy, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213000, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Mengying Wu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jianyun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
8
|
Qu H, Liu X, Zhu J, Xiong X, Li L, He Q, Wang Y, Yang G, Zhang L, Yang Q, Luo G, Zheng Y, Zheng H. Dock5 Deficiency Promotes Proteinuric Kidney Diseases via Modulating Podocyte Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306365. [PMID: 38161229 PMCID: PMC10953540 DOI: 10.1002/advs.202306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Podocytes are particularly sensitive to lipid accumulation, which has recently emerged as a crucial pathological process in the progression of proteinuric kidney diseases like diabetic kidney disease and focal segmental glomerulosclerosis. However, the underlying mechanism remains unclear. Here, podocytes predominantly expressed protein dedicator of cytokinesis 5 (Dock5) is screened to be critically related to podocyte lipid lipotoxicity. Its expression is reduced in both proteinuric kidney disease patients and mouse models. Podocyte-specific deficiency of Dock5 exacerbated podocyte injury and glomeruli pathology in proteinuric kidney disease, which is mainly through modulating fatty acid uptake by the liver X receptor α (LXRα)/scavenger receptor class B (CD36) signaling pathway. Specifically, Dock5 deficiency enhanced CD36-mediated fatty acid uptake of podocytes via upregulating LXRα in an m6 A-dependent way. Moreover, the rescue of Dock5 expression ameliorated podocyte injury and proteinuric kidney disease. Thus, the findings suggest that Dock5 deficiency is a critical contributor to podocyte lipotoxicity and may serve as a promising therapeutic target in proteinuric kidney diseases.
Collapse
Affiliation(s)
- Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiufei Liu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Lu Li
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingshan He
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Guojun Yang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingwu Yang
- Department of Neurologythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Gang Luo
- Department of Orthopedicsthe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
9
|
Yang T, Hu Y, Chen S, Li L, Cao X, Yuan J, Shu F, Jiang Z, Qian S, Zhu X, Wei C, Wei R, Yan M, Li C, Yin X, Lu Q. Correction to: YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol Toxicol 2023; 39:2787-2792. [PMID: 37115478 DOI: 10.1007/s10565-023-09802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which has a close relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) plays an important role not only in regulating the fibrosis process but also in maintaining the mitochondrial function of pancreatic β-cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG up-regulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose-cultured HK-2 cells and 8-weeks-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yinlu Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shangxiu Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xinyun Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jiayu Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fanglin Shu
- Department of Pharmacy, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Zhenzhou Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chujing Wei
- Jiangsu Center for Pharmacodynamics Research and Evaluation, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chenlin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Clinical Pharmacology, School of Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Clinical Pharmacology, School of Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
10
|
王 一, 郭 建, 邵 宝, 陈 海, 蓝 辉. [The Role of TGF-β1/SMAD in Diabetic Nephropathy: Mechanisms and Research Development]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1065-1073. [PMID: 38162063 PMCID: PMC10752761 DOI: 10.12182/20231160108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/03/2024]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes and a leading cause of end-stage renal disease. Transforming growth factor-β1 (TGF-β1)/SMAD signaling activation plays an important role in the onset and progression of DN. Reported findings suggest that the activation of TGF-β1 (including the latent form, the active form, and the receptors) and its downstream signaling proteins (SMAD3, SMAD7, etc.) plays a critical role in DN. In addition, TGF-β1/SMAD signaling may mediate the pathogenesis and progression of DN via various microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence shows that TGF-β1, SMAD3, and SMAD7 are the main signaling proteins that contribute to the development of DN, and that they can be potential targets for the treatment of DN. However, recent clinical trials have shown that the anti-TGF-β1 monoclonal antibody treatment fails to effectively alleviate DN, which suggests that upstream inhibition of TGF-β1/SMAD signaling does not alleviate clinical symptoms and that this may be related to the fact that TGF-β1/SMAD has multiple biological effects. Targeted inhibition of the downstream TGF-β1 signaling (e.g., SMAD3 and SMAD7) may be an effective approach to attenuate DN. This article discussed the current understanding of the molecular mechanisms and potential targets for the treatment and prevention of DN by focusing on TGF-β1/SMAD signaling.
Collapse
Affiliation(s)
- 一帆 王
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 建波 郭
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 宝仪 邵
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 海勇 陈
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - 辉耀 蓝
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
11
|
Li X, Guo L, Huang F, Xu W, Peng G. Cornuside inhibits glucose-induced proliferation and inflammatory response of mesangial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:513-520. [PMID: 37884283 PMCID: PMC10613572 DOI: 10.4196/kjpp.2023.27.6.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 10/28/2023]
Abstract
Cornuside is a secoiridoid glucoside compound extracted from the fruits of Cornus officinalis. Cornuside has immunomodulatory and anti-inflammatory properties; however, its potential therapeutic effects on diabetic nephropathy (DN) have not been completely explored. In this study, we established an in vitro model of DN through treating mesangial cells (MMCs) with glucose. MMCs were then treated with different concentrations of cornuside (0, 5, 10, and 30 μM). Cell viability was determined using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Levels of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β were examined using enzyme-linked immunosorbent assay. Reverse transcription quantitative real-time polymerase chain reaction and Western blotting were performed to detect the expression of AKT and nuclear factor-kappa B (NF-κB)-associated genes. We found that cornuside treatment significantly reduced glucose-induced increase in MMC viability and expression of pro-inflammatory cytokines. Moreover, cornuside inhibited glucose-induced phosphorylation of AKT and NF-κB inhibitor alpha, decreased the expression of proliferating cell nuclear antigen and cyclin D1, and increased the expression of p21. Our study indicates that the anti-inflammatory properties of cornuside in DN are due to AKT and NF-κB inactivation in MMCs.
Collapse
Affiliation(s)
- Xiaoxin Li
- Prevention Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
- Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Lizhong Guo
- Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Fei Huang
- Department of Endocrinology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Wei Xu
- Cardiovascular Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Guiqing Peng
- Respiratory Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| |
Collapse
|
12
|
Zhu Z, Luan G, Peng S, Fang Y, Fang Q, Shen S, Wu K, Qian S, Jia W, Ye J, Wei L. Huangkui capsule attenuates diabetic kidney disease through the induction of mitophagy mediated by STING1/PINK1 signaling in tubular cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154975. [PMID: 37517171 DOI: 10.1016/j.phymed.2023.154975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Mitochondria is critic to tubulopathy, especially in diabetic kidney disease (DKD). Huangkui capsule (HKC; a new ethanol extract from the dried corolla of Abelmoschus manihot) has significant clinical effect on DKD. Previous studies have shown that HKC protects kidney by regulating mitochondrial function, but its mechanism is still unclear. The latest research found that the stimulator of interferon genes (STING1) signal pathway is closely related to mitophagy. However, whether HKC induces mitophagy through targeting STING1/PTEN-Induced putative kinase (PINK1) in renal tubular remains elusive. OBJECTIVE This study aims to clarify the therapeutic effect of HKC on renal tubular mitophagy in DKD and its potential mechanism in vivo and in vitro. METHODS Forty male C57BL/6 mice were randomly divided into 5 groups: CON group, DKD group, HKC-L (1.0 g/kg/day, by gavage), HKC-H (2.0 g/kg/day), and LST group. Diabetes model was induced by high-fat diet (HFD) combined with intraperitoneal injection of Streptozotocin (STZ). LST (losartan) is used as a positive control drug. Then, the glomeruli, renal tubular lesions, mitochondrial morphology and function of renal tubular cells and mitophagy levels were detected in mice. In addition, a high glucose injury model was established using HK2 human renal tubular cells. Pretreate HK2 cells with HKC or LST and detect mitochondrial function, mitophagy level, and autophagic flux. In addition, small interfering RNAs (siRNAs) of STING1 and PINK1 and overexpressing pcDNA3.1 plasmids were transfected into HK-2 cells to validate the mitophagy mechanism regulated by STING1/PINK1 signaling. RESULTS The ratio of urinary albumin to creatinine (ACR), fasting blood glucose, body weight in the early DKD mice model was increased, with damage to the glomerulus and renal tubules, mitochondrial structure and dysfunction in the renal tubules, and inhibition of STING1/PINK1 mediated mitophagy. Although the fasting blood glucose, body weight and serum creatinine levels were hardly ameliated, high dose HKC (2.0 g/kg/day) treatment significantly reduced ACR in the DKD mice to some extent, improved renal tubular injury, accurately upregulated STING1/PINK1 signaling mediated mitophagy levels, improved autophagic flux, and restored healthy mitochondrial pools. In vitro, an increase in mitochondrial fragments, fusion to fission, ROS and apoptosis, and a decrease in respiratory function, mtDNA, and membrane potential were observed in HK2 cells exposed to high glucose. HKC treatment significantly protected mitochondrial dynamics and function, which is consistent with in vivo results. Further research has shown that HKC can increase the level of mitophagy mediated by STING1/PINK1 in HK2 cells. CONCLUSIONS Our results suggest that HKC ameliorates renal tubulopathy in DKD and induces mitophagy partly through the up-regulation of the STING1/PINK1 pathway. These findings may provide an innovative therapeutic basis for DKD treatment.
Collapse
Affiliation(s)
- Zhen Zhu
- Department of Endocrine Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Guangxin Luan
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Shiqiao Peng
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Yunyun Fang
- Department of Endocrine Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Qiongqiong Fang
- Department of Endocrine Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Shuang Shen
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Kaiyue Wu
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Shengnan Qian
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China; Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China.
| | - Li Wei
- Department of Endocrine Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China.
| |
Collapse
|
13
|
Hejazian SM, Ardalan M, Hosseiniyan Khatibi SM, Rahbar Saadat Y, Barzegari A, Gueguen V, Meddahi-Pellé A, Anagnostou F, Zununi Vahed S, Pavon-Djavid G. Biofactors regulating mitochondrial function and dynamics in podocytes and podocytopathies. J Cell Physiol 2023; 238:2206-2227. [PMID: 37659096 DOI: 10.1002/jcp.31110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Podocytes are terminally differentiated kidney cells acting as the main gatekeepers of the glomerular filtration barrier; hence, inhibiting proteinuria. Podocytopathies are classified as kidney diseases caused by podocyte damage. Different genetic and environmental risk factors can cause podocyte damage and death. Recent evidence shows that mitochondrial dysfunction also contributes to podocyte damage. Understanding alterations in mitochondrial metabolism and function in podocytopathies and whether altered mitochondrial homeostasis/dynamics is a cause or effect of podocyte damage are issues that need in-depth studies. This review highlights the roles of mitochondria and their bioenergetics in podocytes. Then, factors/signalings that regulate mitochondria in podocytes are discussed. After that, the role of mitochondrial dysfunction is reviewed in podocyte injury and the development of different podocytopathies. Finally, the mitochondrial therapeutic targets are considered.
Collapse
Affiliation(s)
| | | | | | | | - Abolfazl Barzegari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Fani Anagnostou
- Université de Paris, CNRS UMR 7052 INSERM U1271, B3OA, Paris, France
| | | | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| |
Collapse
|
14
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Yang C, Xu H, Yang D, Xie Y, Xiong M, Fan Y, Liu X, Zhang Y, Xiao Y, Chen Y, Zhou Y, Song L, Wang C, Peng A, Petersen RB, Chen H, Huang K, Zheng L. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury. Nat Commun 2023; 14:4261. [PMID: 37460623 PMCID: PMC10352345 DOI: 10.1038/s41467-023-40036-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Acute kidney injury (AKI) exhibits high morbidity and mortality. Kidney injury molecule-1 (KIM1) is dramatically upregulated in renal tubules upon injury, and acts as a biomarker for various renal diseases. However, the exact role and underlying mechanism of KIM1 in the progression of AKI remain elusive. Herein, we report that renal tubular specific knockout of Kim1 attenuates cisplatin- or ischemia/reperfusion-induced AKI in male mice. Mechanistically, transcription factor Yin Yang 1 (YY1), which is downregulated upon AKI, binds to the promoter of KIM1 and represses its expression. Injury-induced KIM1 binds to the ECD domain of death receptor 5 (DR5), which activates DR5 and the following caspase cascade by promoting its multimerization, thus induces renal cell apoptosis and exacerbates AKI. Blocking the KIM1-DR5 interaction with rationally designed peptides exhibit reno-protective effects against AKI. Here, we reveal a YY1-KIM1-DR5 axis in the progression of AKI, which warrants future exploration as therapeutic targets.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huidie Xu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunhao Xie
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - XiKai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yushuo Xiao
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yihao Zhou
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liangliang Song
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Wang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, 430070, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, USA
| | - Hong Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
16
|
Zhang X, Duan Y, Zhang X, Jiang M, Man W, Zhang Y, Wu D, Zhang J, Song X, Li C, Lin J, Sun D. Adipsin alleviates cardiac microvascular injury in diabetic cardiomyopathy through Csk-dependent signaling mechanism. BMC Med 2023; 21:197. [PMID: 37237266 DOI: 10.1186/s12916-023-02887-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Microvascular complications are associated with an overtly increased risk of adverse outcomes in patients with diabetes including coronary microvascular injury which manifested as disruption of adherens junctions between cardiac microvascular endothelial cells (CMECs). However, particular mechanism leading to diabetic coronary microvascular hyperpermeability remains elusive. METHODS Experimental diabetes was induced in mice with adipose tissue-specific Adipsin overexpression (AdipsinLSL/LSL-Cre) and their respective control (AdipsinLSL/LSL). In addition, cultured CMECs were subjected to high glucose/palmitic acid (HG + PA) treatment to simulate diabetes for a mechanistic approach. RESULTS The results showed that Adipsin overexpression significantly reduced cardiac microvascular permeability, preserved coronary microvascular integrity, and increased coronary microvascular density. Adipsin overexpression also attenuated cardiac dysfunction in diabetic mice. E/A ratio, an indicator of cardiac diastolic function, was improved by Adipsin. Adipsin overexpression retarded left ventricular adverse remodeling, enhanced LVEF, and improved cardiac systolic function. Adipsin-enriched exosomes were taken up by CMECs, inhibited CMECs apoptosis, and increased CMECs proliferation under HG + PA treatment. Adipsin-enriched exosomes also accelerated wound healing, rescued cell migration defects, and promoted tube formation in response to HG + PA challenge. Furthermore, Adipsin-enriched exosomes maintained adherens junctions at endothelial cell borders and reversed endothelial hyperpermeability disrupted by HG + PA insult. Mechanistically, Adipsin blocked HG + PA-induced Src phosphorylation (Tyr416), VE-cadherin phosphorylation (Tyr685 and Tyr731), and VE-cadherin internalization, thus maintaining CMECs adherens junctions integrity. LC-MS/MS analysis and co-immunoprecipitation analysis (Co-IP) unveiled Csk as a direct downstream regulator of Adipsin. Csk knockdown increased Src phosphorylation (Tyr416) and VE-cadherin phosphorylation (Tyr685 and Tyr731), while abolishing Adipsin-induced inhibition of VE-cadherin internalization. Furthermore, Csk knockdown counteracted Adipsin-induced protective effects on endothelial hyperpermeability in vitro and endothelial barrier integrity of coronary microvessels in vivo. CONCLUSIONS Together, these findings favor the vital role of Adipsin in the regulation of CMECs adherens junctions integrity, revealing its promises as a treatment target against diabetic coronary microvascular dysfunction. Graphical abstract depicting the mechanisms of action behind Adipsin-induced regulation of diabetic coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dexi Wu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xinglong Song
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Liu F, Cao Y, Zhang C, Su H. Decreased DANCR contributes to high glucose-induced extracellular matrix accumulation in human renal mesangial cell via regulating the TGF-β/Smad signaling. FASEB J 2023; 37:e22926. [PMID: 37052733 DOI: 10.1096/fj.202300146r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Glomerulosclerosis is one of the major histopathologic changes in diabetic kidney diseases (DKD), which is characterized by excessive deposition of extracellular matrix (ECM) in the glomerulus mainly produced by mesangial cells in response to transforming growth factor-β (TGF-β) stimuli under diabetic conditions. Despite TGF-β has been implicated as a major pathogenic factor in the development of diabetic glomerulosclerosis, clinical trials of monoclonal antibodies against TGF-β failed to demonstrate therapeutic benefits. Thus, developing alternative therapeutic strategies to effectively block the TGF-β/Smad signaling could be of paramount importance for DKD treatment. Emerging evidence indicates that dysregulation of certain lncRNAs can lead to aberrant activation of TGF-β/Smad signaling. Herein, we identified a novel lncRNA, named DANCR, which could efficiently function as a negative regulator of TGF-β/Smad signaling in mesangial cells. Ectopic expression of DANCR could specifically block the activation of TGF-β/Smad signaling induced by high-glucose or TGF-β in human renal mesangial cells (HRMCs). Mechanistically, DANCR functions to stabilize nemo-like kinase (NLK) mRNA through interaction with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), resulting in enhanced phosphorylating on the linker region of activated Smad2/3 in the nucleus. Taken together, our data have uncovered an lncRNA-based regulatory modality of the TGF-β/Smad signaling and identified DANCR as an endogenous blocker of TGF-β/Smad signaling in HRMCs, which may represent a potential therapeutic target against the diabetic glomerulosclerosis.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Roy D, Purohit P, Khokhar M, Modi A, Shukla RKG, Chaudhary R, Sankanagoudar S, Sharma P. Analyzing the Association of Visceral Adipose Tissue Growth Differentiation Factor-15 and MicroRNA in Type 2 Diabetes Mellitus. J Obes Metab Syndr 2023; 32:64-76. [PMID: 36918405 PMCID: PMC10088550 DOI: 10.7570/jomes22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/07/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Background Growth differentiation factor-15 (GDF-15) is involved in insulin resistance and diabetes. In this study, we determine the associations of GDF-15 with miR-181b-5p, miR-330-3p, mothers against decapentaplegic homolog 7 (SMAD7), and insulin resistance in visceral adipose tissue (VAT) and peripheral blood mononuclear cells (PBMCs) in type 2 diabetes mellitus (T2DM) patients. Methods Sixty patients, equally divided into those with T2DM and non-diabetic controls, were recruited for gene expression analysis. Protein-protein interaction (STRING), target prediction (miRNet), and functional enrichment were conducted accordingly. Results Our study showed that VAT and PBMCs had similar expression profiles, where GDF-15 and miR-181b-5p were upregulated, whereas SMAD7 and miR-330-3p were downregulated. Serum GDF-15 could differentiate between T2DM and non-diabetic patients (P<0.001). Target prediction revealed a microRNA (miRNA)-messenger RNA regulatory network, transcription factors, and functional enrichment for the miRNA that suggested involvement in T2DM pathogenesis. Conclusion VAT GDF-15 is associated with insulin resistance and is possibly regulated by miR-181b-5p, miR-330-3p, and SMAD7 in T2DM.
Collapse
Affiliation(s)
- Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
- Indian Institute of Technology (ITT)-Madras, Chennai, India
- School of Humanities, Indira Gandhi National Open University (IGNOU), New Delhi, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Ramkaran Chaudhary
- Department of General Surgery, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
19
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
20
|
Wu RQ, Lao XM, Chen DP, Qin H, Mu M, Cao WJ, Deng J, Wan CC, Zhan WY, Wang JC, Xu L, Chen MS, Gao Q, Zheng L, Wei Y, Kuang DM. Immune checkpoint therapy-elicited sialylation of IgG antibodies impairs antitumorigenic type I interferon responses in hepatocellular carcinoma. Immunity 2023; 56:180-192.e11. [PMID: 36563676 DOI: 10.1016/j.immuni.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
The reinvigoration of anti-tumor T cells in response to immune checkpoint blockade (ICB) therapy is well established. Whether and how ICB therapy manipulates antibody-mediated immune response in cancer environments, however, remains elusive. Using tandem mass spectrometric analysis of modification of immunoglobulin G (IgG) from hepatoma tissues, we identified a role of ICB therapy in catalyzing IgG sialylation in the Fc region. Effector T cells triggered sialylation of IgG via an interferon (IFN)-γ-ST6Gal-I-dependent pathway. DC-SIGN+ macrophages represented the main target cells of sialylated IgG. Upon interacting with sialylated IgG, DC-SIGN stimulated Raf-1-elicited elevation of ATF3, which inactivated cGAS-STING pathway and eliminated subsequent type-I-IFN-triggered antitumorigenic immunity. Although enhanced IgG sialylation in tumors predicted improved therapeutic outcomes for patients receiving ICB therapy, impeding IgG sialylation augmented antitumorigenic T cell immunity after ICB therapy. Thus, targeting antibody-based negative feedback action of ICB therapy has potential for improving efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Rui-Qi Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xiang-Ming Lao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Dong-Ping Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ming Mu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Wen-Jie Cao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Jia Deng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Chao-Chao Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Wan-Yu Zhan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Jun-Cheng Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Li Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Min-Shan Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yuan Wei
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| |
Collapse
|
21
|
Gao P, Cao M, Jiang X, Wang X, Zhang G, Tang X, Yang C, Komuro I, Ge J, Li L, Zou Y. Cannabinoid Receptor 2-Centric Molecular Feedback Loop Drives Necroptosis in Diabetic Heart Injuries. Circulation 2023; 147:158-174. [PMID: 36448459 DOI: 10.1161/circulationaha.122.059304] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Diabetic heart dysfunction is a common complication of diabetes. Cell death is a core event that leads to diabetic heart dysfunction. However, the time sequence of cell death pathways and the precise time to intervene of particular cell death type remain largely unknown in the diabetic heart. This study aims to identify the particular cell death type that is responsible for diabetic heart dysfunction and to propose a promising therapeutic strategy by intervening in the cell death pathway. METHODS Type 2 diabetes models were established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. The type 1 diabetes model was established in streptozotocin-induced mice. Apoptosis and programmed cell necrosis (necroptosis) were detected in diabetic mouse hearts at different ages. G protein-coupled receptor-targeted drug library was searched to identify potential receptors regulating the key cell death pathway. Pharmacological and genetic approaches that modulate the expression of targets were used. Stable cell lines and a homemade phosphorylation antibody were prepared to conduct mechanistic studies. RESULTS Necroptosis was activated after apoptosis at later stages of diabetes and was functionally responsible for cardiac dysfunction. Cannabinoid receptor 2 (CB2R) was a key regulator of necroptosis. Mechanically, during normal glucose levels, CB2R inhibited S6 kinase-mediated phosphorylation of BACH2 at serine 520, thereby leading to BACH2 translocation to the nucleus, where BACH2 transcriptionally repressed the necroptosis genes Rip1, Rip3, and Mlkl. Under hyperglycemic conditions, high glucose induced CB2R internalization in a β-arrestin 2-dependent manner; thereafter, MLKL (mixed lineage kinase domain-like), but not receptor-interacting protein kinase 1 or 3, phosphorylated CB2R at serine 352 and promoted CB2R degradation by ubiquitin modification. Cardiac re-expression of CB2R rescued diabetes-induced cardiomyocyte necroptosis and heart dysfunction, whereas cardiac knockout of Bach2 diminished CB2R-mediated beneficial effects. In human diabetic hearts, both CB2R and BACH2 were negatively associated with diabetes-induced myocardial injuries. CONCLUSIONS CB2R transcriptionally repressed necroptosis through interaction with BACH2; in turn, MLKL formed a negative feedback to phosphorylate CB2R. Our study provides the integrative view of a novel molecular mechanism loop for regulation of necroptosis centered by CB2R, which represents a promising alternative strategy for controlling diabetic heart dysfunction.
Collapse
Affiliation(s)
- Pan Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Mengying Cao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Xueli Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Xiaolin Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Xinru Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China (X.T., L.L.)
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Japan (I.K.)
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China (X.T., L.L.)
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| |
Collapse
|
22
|
Ahmed I, Ziab M, Da’as S, Hasan W, Jeya SP, Aliyev E, Nisar S, Bhat AA, Fakhro KA, Alshabeeb Akil AS. Network-based identification and prioritization of key transcriptional factors of diabetic kidney disease. Comput Struct Biotechnol J 2023; 21:716-730. [PMID: 36659918 PMCID: PMC9827363 DOI: 10.1016/j.csbj.2022.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most established microvascular complications of diabetes and a key cause of end-stage renal disease. It is well established that gene susceptibility to DN plays a critical role in disease pathophysiology. Therefore, many genetic studies have been performed to categorize candidate genes in prominent diabetic cohorts, aiming to investigate DN pathogenesis and etiology. In this study, we performed a meta-analysis on the expression profiles of GSE1009, GSE30122, GSE96804, GSE99340, GSE104948, GSE104954, and GSE111154 to identify critical transcriptional factors associated with DN progression. The analysis was conducted for all individual datasets for each kidney tissue (glomerulus, tubules, and kidney cortex). We identified distinct clusters of susceptibility genes that were dysregulated in a renal compartment-specific pattern. Further, we recognized a small but a closely connected set of these susceptibility genes enriched for podocyte differentiation, several of which were characterized as genes encoding critical transcriptional factors (TFs) involved in DN development and podocyte function. To validate the role of identified TFs in DN progression, we functionally validated the three main TFs (DACH1, LMX1B, and WT1) identified through differential gene expression and network analysis using the hyperglycemic zebrafish model. We report that hyperglycemia-induced altered gene expression of the key TF genes leads to morphological abnormalities in zebrafish glomeruli, pronephric tubules, proximal and distal ducts. This study demonstrated that altered expression of these TF genes could be associated with hyperglycemia-induced nephropathy and, thus, aids in understanding the molecular drivers, essential genes, and pathways that trigger DN initiation and development.
Collapse
Affiliation(s)
- Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Mubarak Ziab
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Sahar Da’as
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Waseem Hasan
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Sujitha P. Jeya
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Elbay Aliyev
- Human Genetics Department, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Khalid Adnan Fakhro
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
- Human Genetics Department, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Ammira S. Alshabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Human Genetics Department, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| |
Collapse
|
23
|
Ke J, Hu X, Wang C, Zhang Y. Identification of the hub susceptibility genes and related common transcription factors in the skeletal muscle of Type 2 Diabetes Mellitus. BMC Endocr Disord 2022; 22:276. [PMID: 36368953 PMCID: PMC9652898 DOI: 10.1186/s12902-022-01195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and its related complications contribute to the high morbidity and mortality in worldwide. Skeletal muscle insulin resistance plays a critical role in the onset of T2DM due to the decreasing in the insulin-stimulated glucose uptake. T2DM is associated not only with the inherited factors but also with the noninherited factors. However, the susceptibility genes related with the two factors and the transcription factors (TF) regulating the susceptibility genes in skeletal muscle, which aggravate the development of T2DM were still ill-defined. METHODS In the present study, the expression profiles by the array of GSE25462 were retrieved from the GEO database. GEO2R was performed to validate the susceptibility differentially expressed genes (SDEG) in skeletal muscle of T2DM. Gene Ontology (GO) analysis and The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted via The Database for Annotation, Visualization, and Integrated Discovery (DAVID). A Protein-Protein Interaction (PPI) network was performed with the STRING. RESULTS With the performance of GEO2R, 229 SDEGs in skeletal muscle of T2DM were identified. The biological processes (BP) of SDEGs was enriched in the cellular response to UV-B most significantly. KEGG pathway analysis revealed that the SDEGs were most significantly enriched in glycosaminoglycan degradation. 5 hub susceptibility genes (GPR84, CALCB, GCG, PTGDR, GNG8) in the skeletal muscle of T2DM were identified. Eventually, the common transcription factors regulating the hub susceptibility genes were identified by means of the online tool PROMO. CONCLUSIONS Five hub susceptibility genes (GPR84, CALCB, GCG, PTGDR, GNG8) in the skeletal muscle of T2DM and the common transcription factors were identified. The outputs would provide new clues on the novel potential targets and the therapeutic strategies for treating T2DM and its related diseases.
Collapse
Affiliation(s)
- Jianjuan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Xiaohua Hu
- Department of Respiratory Medicine, Renmin Hospital of Lichuan, Lichuan, 445400 China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071 China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071 China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071 China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071 China
- Demonstration Center for Experimental Basic Medicine Education of Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071 China
| |
Collapse
|
24
|
Xie L, Yuan Y, Xu S, Lu S, Gu J, Wang Y, Wang Y, Zhang X, Chen S, Li J, Lu J, Sun H, Hu R, Piao H, Wang W, Wang C, Wang J, Li N, White MF, Han L, Jia W, Miao J, Liu J. Downregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex. Cell Rep 2022; 41:111498. [PMID: 36261001 PMCID: PMC10153649 DOI: 10.1016/j.celrep.2022.111498] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Copper deficiency has emerged to be associated with various lipid metabolism diseases, including non-alcoholic fatty liver disease (NAFLD). However, the mechanisms that dictate the association between copper deficiency and metabolic diseases remain obscure. Here, we reveal that copper restoration caused by hepatic ceruloplasmin (Cp) ablation enhances lipid catabolism by promoting the assembly of copper-load SCO1-LKB1-AMPK complex. Overnutrition-mediated Cp elevation results in hepatic copper loss, whereas Cp ablation restores copper content to the normal level without eliciting detectable hepatotoxicity and ameliorates NAFLD in mice. Mechanistically, SCO1 constitutively interacts with LKB1 even in the absence of copper, and copper-loaded SCO1 directly tethers LKB1 to AMPK, thereby activating AMPK and consequently promoting mitochondrial biogenesis and fatty acid oxidation. Therefore, this study reveals a mechanism by which copper, as a signaling molecule, improves hepatic lipid catabolism, and it indicates that targeting copper-SCO1-AMPK signaling pathway ameliorates NAFLD development by modulating AMPK activity.
Collapse
Affiliation(s)
- Liping Xie
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yanmei Yuan
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Simiao Xu
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02215, USA; Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, Hubei 430030, China
| | - Sijia Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200042, China
| | - Yanping Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sports, Shanghai 200438, China
| | - Xianjing Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Li
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junxi Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Honglin Sun
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ruixiang Hu
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02215, USA; Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Morris F White
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Liu Han
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
25
|
Jujuboside A ameliorates tubulointerstitial fibrosis in diabetic mice through down-regulating the YY1/TGF-β1 signaling pathway. Chin J Nat Med 2022; 20:656-668. [DOI: 10.1016/s1875-5364(22)60200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 11/17/2022]
|
26
|
YY1 alleviates lupus nephritis-induced renal injury by reducing the Th17/Treg cell ratio via the IFN-γ/Fra2 axis. J Transl Med 2022; 102:872-884. [PMID: 35361881 DOI: 10.1038/s41374-022-00777-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lupus nephritis (LN) is associated with extensive injury and nephron loss in the afflicted kidney. Evidence has revealed the involvement of dysregulated Yin Yang 1 (YY1), a reported inflammatory modulator, in LN-induced kidney injury, and our microarray profile identified downregulated YY1 expression. Therefore, this study explored the functional relevance and mechanism of YY1 in LN-induced kidney injury. LN was modeled in mice by intraperitoneal injection of pristane, and Jurkat cells (CD41 human T lymphocytes) were activated with TNF-α to mimic the inflammatory environment found in LN. The expression patterns of YY1 and bioinformatics predictions of the downstream factor IFN-γ were confirmed in renal tissues from the mice with LN using qRT-PCR and Western blot analyses. The contents of proinflammatory cytokines in mouse serum samples and cell supernatants were determined using enzyme-linked immunosorbent assays (ELISAs). Ectopic expression and depletion approaches were subsequently used in vitro and in vivo to examine the effects of the YY1/IFN-γ/Fra2/PARP-1/FOXO1 axis on TNF-α-induced inflammation and LN-induced kidney injury. The results showed downregulated expression of YY1 and FOXO1 in the kidney tissues of the mice with LN. Increased proinflammatory factor production was observed in the mice with LN and TNF-α-treated Jurkat cell supernatant, accompanied by increased cell apoptosis and a high ratio of Th17/Treg cells, and these effects were reversed by YY1 restoration. YY1 was further shown to inhibit IFN-γ expression and thereby downregulate Fra2 expression. Fra2 depletion then inhibited PARP-1 expression and promoted FOXO1 expression to suppress cell apoptosis and the release of inflammatory factors. Collectively, our findings revealed that YY1 may alleviate LN-induced renal injury via the IFN-γ/Fra2/PARP-1/FOXO1 axis.
Collapse
|
27
|
YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol Toxicol 2022:10.1007/s10565-022-09711-7. [PMID: 35445903 DOI: 10.1007/s10565-022-09711-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which had a closely relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) played an important role not only in regulating fibrosis process, but also in maintaining mitochondrial function of pancreatic β cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG upregulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose cultured HK-2 cells and 8-week-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF .
Collapse
|
28
|
The HDAC2/SP1/miR-205 feedback loop contributes to tubular epithelial cell extracellular matrix production in diabetic kidney disease. Clin Sci (Lond) 2022; 136:223-238. [PMID: 35084460 DOI: 10.1042/cs20210470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Extracellular matrix (ECM) accumulation is considered an important pathological feature of diabetic kidney disease (DKD). Histone deacetylase (HDAC) inhibitors protect against kidney injury. However, the potential mechanisms of HDACs in DKD are still largely unknown. Here, we describe a novel feedback loop composed of HDAC2 and miR-205 that regulates ECM production in tubular epithelial cells in individuals with DKD. We found that HDAC2 mRNA expression in peripheral blood was markedly higher in patients with DKD than in patients with diabetes. Nuclear HDAC2 protein expression was increased in TGFβ1-stimulated tubular epithelial cells and db/db mice. We also found that miR-205 was regulated by HDAC2 and downregulated in TGFβ1-treated HK2 cells and db/db mice. In addition, HDAC2 reduced histone H3K9 acetylation in the miR-205 promoter region to inhibit its promoter activity and subsequently suppressed miR-205 expression through an SP1-mediated pathway. Furthermore, miR-205 directly targeted HDAC2 and inhibited HDAC2 expression. Intriguingly, miR-205 also regulated its own transcription by inhibiting HDAC2 and increasing histone H3K9 acetylation in its promoter, forming a feedback regulatory loop. Additionally, the miR-205 agonist attenuated ECM production in HK2 cells and renal interstitial fibrosis in db/db mice. In conclusion, the HDAC2/SP1/miR-205 feedback loop may be crucial for the pathogenesis of DKD.
Collapse
|
29
|
Hu M, Gao T, Du Y. MiR-98-3p regulates ovarian granulosa cell proliferation and apoptosis in polycystic ovary syndrome by targeting YY1. Med Mol Morphol 2021; 55:47-59. [PMID: 34796378 DOI: 10.1007/s00795-021-00307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy related to female infertility. We investigated the function of the microRNA-98-3p (miR-98-3p)/Yin-Yang-1 (YY1) axis to the pathophysiological processes in PCOS mice. A mouse model of PCOS was established using dehydroepiandrosterone (DHEA). Hematoxylin and eosin (HE) staining was used to assess morphologic changes of the ovaries. Hormonal serum levels were measured by ELISA. Estrogen synthesis in OGCs was measured using chemiluminescence immunoassay. The viability, cell cycle, and apoptosis of ovarian granulosa cells (OGCs) were assessed by CCK-8, flow cytometry, and western blot. Luciferase reporter assays were conducted to examine the binding of miR-98-3p to YY1. YY1 was upregulated, while miR-98-3p was downregulated both in the ovarian tissues of PCOS mice and OGCs separated from PCOS mice and patients. YY1 Knockdown promoted OGC proliferation and inhibited apoptosis as well as increased estrogen production in OGCs. YY1 was verified to be targeted by miR-98-3p. Additionally, YY1 overexpression prevented the effects of miR-98-3p overexpression on the proliferation and apoptosis of OGCs. Importantly, miR-98-3p attenuated ovarian injury in PCOS mice. MiR-98-3p targets and downregulates YY1 expression, thereby affecting the proliferation and apoptosis of OGCs in PCOS.
Collapse
Affiliation(s)
- Min Hu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tian Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Ying Du
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
30
|
Chen S, Liu X, Peng C, Tan C, Sun H, Liu H, Zhang Y, Wu P, Cui C, Liu C, Yang D, Li Z, Lu J, Guan J, Ke X, Wang R, Bo X, Xu X, Han J, Liu J. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metab 2021; 33:565-580.e7. [PMID: 33657393 DOI: 10.1016/j.cmet.2021.02.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/22/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.
Collapse
Affiliation(s)
- Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China; Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| | - Xiaoxiao Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Chang Tan
- Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Honglin Sun
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - He Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Yao Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Can Cui
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuchu Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Di Yang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Zhiqiang Li
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao, China
| | - Junxi Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaohai Bo
- Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Junfeng Han
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| |
Collapse
|
31
|
Li KX, Ji MJ, Sun HJ. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene 2021; 780:145532. [PMID: 33631244 DOI: 10.1016/j.gene.2021.145532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
As one of the most common complications of diabetes, nephropathy develops in approximately 40% of diabetic individuals. Although end stage kidney disease is known as one of the most consequences of diabetic nephropathy, the majority of diabetic individuals might die from cardiovascular diseases and infections before renal replacement treatment. Moreover, the routine medical treatments for diabetes hold undesirable side effects. The explosive prevalence of diabetes urges clinicians and scientists to investigate the complementary or alternative therapies. Phytochemicals are emerging as alternatives with a wide range of therapeutic effects on various pathologies, including diabetic kidney disease. Of those phytochemicals, resveratrol, a natural polyphenolic stilbene, has been found to exert a broad spectrum of health benefits via various signaling molecules. In particular, resveratrol has gained a great deal of attention because of its anti-oxidative, anti-inflammatory, anti-diabetic, anti-obesity, cardiovascular-protective, and anti-tumor properties. In the renal system, emerging evidence shows that resveratrol has already been used to ameliorate chronic or acute kidney injury. This review critically summarizes the current findings and molecular mechanisms of resveratrol in diabetic renal damage. In addition, we will discuss the adverse and inconsistent effects of resveratrol in diabetic nephropathy. Although there is increasing evidence that resveratrol affords great potential in diabetic nephropathy therapy, these results should be treated with caution before its clinical translation. In addition, the unfavorable pharmacokinetics and/or pharmacodynamics profiles, such as poor bioavailability, may limit its extensive clinical applications. It is clear that further research is needed to unravel these limitations and improve its efficacy against diabetic nephropathy. Increasing investigation of resveratrol in diabetic kidney disease will not only help us better understand its pharmacological actions, but also provide novel potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
32
|
Li L, Li Y, Timothy Sembiring Meliala I, Kasim V, Wu S. Biological roles of Yin Yang 2: Its implications in physiological and pathological events. J Cell Mol Med 2020; 24:12886-12899. [PMID: 32969187 PMCID: PMC7754051 DOI: 10.1111/jcmm.15919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Yin yang 2 (YY2) is a multifunctional zinc finger protein that belongs to the yin yang (YY) family. YY2 has dual function in regulating gene expression, as it could act either as a transcriptional activator or as a repressor of its target genes. YY2 could regulate genes that have been previously identified as targets of yin yang 1 (YY1), another member of the YY family, by binding to their common binding sequences. However, recent studies revealed that YY2 also has its own specific binding sequences, leading to its particular biological functions distinct from those of YY1. Furthermore, they have different levels or even opposite regulatory effects on common target genes, suggesting the importance of balanced YY1 and YY2 regulations in maintaining proper cellular homeostasis and biological functions. Recent studies revealed that YY2 plays crucial roles in maintaining stemness and regulating differentiation potential of embryonic stem cells, as well as in the development of the brain, nervous and cardiovascular systems. YY2 expression is also closely related to diseases, as it could act as a tumour suppressor gene that regulates tumour cell proliferation and metastasis. Moreover, YY2 is also involved in immune regulation and immune surveillance. Herein, we summarize recent perspectives regarding the regulatory functions of YY2, as well as its biological functions and relation with diseases.
Collapse
Affiliation(s)
- Lang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yanjun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ian Timothy Sembiring Meliala
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| |
Collapse
|
33
|
Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury. Mol Biol Rep 2020; 47:8023-8035. [PMID: 32918716 DOI: 10.1007/s11033-020-05749-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Diabetic kidney disease (DKD) is an important diabetic microvascular complication, which has become the main cause of end-stage renal disease (ESRD) all over the world. It is of great significance to find effective therapeutic targets and improve the prognosis of the disease. Traditionally, it is believed that the activation of the renin-angiotensin-aldosterone system (RAAS) is the main reason for the progression of DKD, but with the progress of research, it is known that the production of proteinuria in patients with DKD is also related to podocyte injury and loss. Many studies have shown that mitochondrial dysfunction in podocytes plays an important role in the occurrence and development of DKD, and oxidative stress is also the main pathway and common hub of diabetes to the occurrence and development of microvascular and macrovascular complications. Thus, the occurrence and progression of DKD is correlated with not only the activation of the RAAS, but also the damage of mitochondria, oxidative stress, and inflammatory mediators. Besides, diabetes-related metabolic disorders can also cause abnormalities in mitochondrial dynamics, autophagy and cellular signal transduction, which are intertwined in a complex way. Therefore, in this review, we mainly explore the mechanism and the latest research progress of podocyte mitochondria in DKD and summarize the main signal pathways involved in them. Thus, it provides feasible clinical application and future research suggestions for the prevention and treatment of DKD, which has important practical significance for the later treatment of patients with DKD.
Collapse
|
34
|
Mu Q, Wang H, Tong L, Fang Q, Xiang M, Han L, Jin L, Yang J, Qian Z, Ning G, Zhang Y, Zhang Z. Betulinic acid improves nonalcoholic fatty liver disease through YY1/FAS signaling pathway. FASEB J 2020; 34:13033-13048. [PMID: 32777136 DOI: 10.1096/fj.202000546r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide indicates the urgent need to develop novel and effective treatment strategies. Betulinic acid (BA), a naturally occurring plant-derived pentacyclic triterpenoid, has an outstanding effect in improving metabolism. However, the pharmacological action and mechanism of BA in NAFLD remain unclear. Here, we show that BA-treated high-fat diet mice and methionine-choline deficient diet-fed mice are resistant to hepatic steatosis when compared with vehicle-treated mice. BA alleviates fatty acid synthesis, fibrosis, and inflammation and promotes fatty acid oxidation. Meanwhile, fatty acid synthase (FAS) expression and activity are markedly inhibited with BA treatment both in vitro and in vivo. Moreover, BA inhibits FAS expression through transcriptional suppression of Yin Yang 1 (YY1), leading to retard hepatocytes triglyceride accumulation. Collectively, BA protects hepatocytes from abnormal lipid deposition in NAFLD through YY1/FAS pathway. Our findings establish a novel role of BA in representing a possible therapeutic strategy to reverse NAFLD.
Collapse
Affiliation(s)
- Qian Mu
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Tong
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianhua Fang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minqi Xiang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lina Jin
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Qian
- Department of Pharmacology, School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Guang Ning
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Zhang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Qian S, Wang W, Li M. Transcriptional factor Yin Yang 1 facilitates the stemness of ovarian cancer via suppressing miR-99a activity through enhancing its deacetylation level. Biomed Pharmacother 2020; 126:110085. [PMID: 32199224 DOI: 10.1016/j.biopha.2020.110085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
The promoting effects of transcriptional factor Yin Yang 1 (YY1) have been confirmed in various tumors, however, its roles in ovarian cancer (OC) progression are still unclear. Here, Kaplan-Meier Plotter analysis was used to determine the correlation between YY1 expression and the survival of OC patients. It was found that YY1 expression was negatively correlated with the overall survival, progression-free survival and post-progression survival of OC patients. Functional experiments indicated that overexpression of YY1 facilitated the stemness of OC cells, while YY1 knockdown reduced it. MiRNAs-based RNA-sequencing analysis showed that miR-99a was the mostly upregulated miRNA in RNA extracted from OC cells with YY1 knockdown. Mechanistic studies revealed that YY1 recruited (Histone deacetylase) HDAC5 to the promoter of miR-99a, and subsequently enhanced miR-99a deacetylation level and decreased miR-99a level. Additionally, overexpression of miR-99a or knockdown of HDAC5 attenuated the promoting effects of YY1 on the stemness of OC cells. This work firstly indicated a novel YY1/miR-99a axis, which promotes the stemness of OC cells.
Collapse
Affiliation(s)
- Sumin Qian
- The Second Department of Gynecology, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, China.
| | - Wei Wang
- The Second Department of Gynecology, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, China
| | - Meng Li
- The Fifth Department of Neurology, The Brain Hospital of Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, China
| |
Collapse
|
36
|
Zhang P, Fang J, Zhang J, Ding S, Gan D. Curcumin Inhibited Podocyte Cell Apoptosis and Accelerated Cell Autophagy in Diabetic Nephropathy via Regulating Beclin1/UVRAG/Bcl2. Diabetes Metab Syndr Obes 2020; 13:641-652. [PMID: 32184643 PMCID: PMC7060797 DOI: 10.2147/dmso.s237451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Curcumin has various biological properties including being anti-inflammatory and antidiabetic. Podocyte apoptosis and autophagy dysfunction have been found to be responsible for the development of diabetic nephropathy (DN). Thus, the aim of the study was to investigate the effects of curcumin on the podocyte apoptosis and autophagy in DN and clarify its potential mechanisms. METHODS The mice with DN induced by injection of streptozotocin were treated with curcumin by gavage at a dose of 200 mg/kg/day for 8 weeks. The serum lipid levels were detected by total cholesterol (TC) and triglyceride (TG) kits at different time points. Renal damage was assessed by detecting urine albumin, serum creatinine (Scr), HE staining and PAS staining. The renal impairment was detected by immunohistochemical staining and TUNEL staining. Western blot assay tested the expression of autophagy-related and apoptotic-related proteins in vivo and vitro. The viabilities and apoptosis of MPC5 cells exposed to high glucose (HG) or curcumin were respectively detected by CCK-8 assay and flow cytometry. RESULTS The results showed that curcumin significantly decreased the progress of DN possibly via increasing autophagy and inhibiting apoptosis of renal cell in DN mice. Besides, podocyte marker proteins (podocalyxin and nephrin) were markedly increased in DN mice by curcumin treatment. The autophagy-related proteins LC3, p62, Beclin1, UVRAG and ATG5 were significantly affected in DN mice by curcumin, along with reducing expression of pro-apoptotic protein Bax and caspase-3 and increasing anti-apoptotic protein Bcl-2. In vitro, curcumin increased the viabilities and inhibited apoptosis of MPC5 cells exposed to high glucose (HG). In addition, the podocyte autophagy was enhanced partly via regulating beclin1/UVRAG. DISCUSSION Together, the results showed that curcumin inhibited podocyte apoptosis and accelerated cell autophagy via regulating Beclin1/UVRAG/Bcl2. Thus, the study showed that curcumin exerted significantly protective effects in DN.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Jie Fang
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Jianping Zhang
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Shuxia Ding
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Dongmei Gan
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| |
Collapse
|
37
|
Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, Yang Q, Jia L, Liang Z, Kang L. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res 2020; 153:104678. [PMID: 32014572 DOI: 10.1016/j.phrs.2020.104678] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023]
Abstract
Diabetic nephropathy (DN), a kind of microvascular complication, is a primary cause of end-stage renal disease worldwide. However, therapeutic drugs for DN treatment are still in lack. The glomerular endothelium is essential to maintain selective permeability of glomerular filtration barrier and glomerular vasculature function. Growing evidences show that endothelial dysfunction or injury is the initial stage of vascular damage in DN, which can be induced by hyperglycemia, lipotoxicity, and inflammation. Therefore, to improve the function of vascular endothelium in kidney is a key point for treatment of DN. As a plant isoflavone, tectorigenin (TEC) has attracted considerable attention due to its anti-proliferative and anti-inflammatory functions. However, whether TEC could inhibit the DN development remains unknown. In this study, we examined the effects of TEC on DN development in db/db mice, a type of genetic defect diabetic mice that can spontaneously develop into severe renal dysfunction. Intriguingly, TEC treatment restored diabetes-induced glucose and lipid metabolic disorder; and improved the deterioration of renal function, particularly the renal endothelium function in db/db mice. Additionally, TEC inhibited the renal inflammation via reducing macrophages infiltration and M1 polarization. Moreover, TEC inhibited lipopolysaccharide (LPS)-induced endothelial injury and M1 polarization in vitro. Mechanistically, TEC partially restored the reduction in expression of adiponectin receptor 1/2 (AdipoR1/2), pi-LKB1, pi-AMPKα, and PPARα in vitro and in vivo. Noteworthy, these beneficial pharmacological activities mediated by TEC were significantly attenuated after AdipoR1/2 knockdown by siRNA, indicating that AdipoR1/2 plays a critical role in protection against DN. Collectively, these results suggested that TEC have a potently effect for retarding type 2 diabetes-associated DN.
Collapse
Affiliation(s)
- Shu Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Han Wu
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Fengyi Yuan
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Guangyan Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Qi Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Lijing Jia
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Zhen Liang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Lin Kang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
38
|
Carney E. A novel approach to targeting TGFβ1. Nat Rev Nephrol 2019; 15:730. [PMID: 31586164 DOI: 10.1038/s41581-019-0219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|