1
|
Bai J, Li X, Zhao J, Zong H, Yuan Y, Wang L, Zhang X, Ke Y, Han L, Xu J, Ma B, Zhang B, Zhu J. Re-Engineering Therapeutic Anti-Aβ Monoclonal Antibody to Target Amyloid Light Chain. Int J Mol Sci 2024; 25:1593. [PMID: 38338870 PMCID: PMC10855199 DOI: 10.3390/ijms25031593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and β-amyloid peptide (Aβ) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aβ antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aβ42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aβ42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.
Collapse
Affiliation(s)
- Jingyi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xi Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Yuan Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Han
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Jianrong Xu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
- Jecho Laboratories, Inc., Frederick, MD 21704, USA
| |
Collapse
|
2
|
Tsai FJ, Jaeger M, Coelho T, Powers ET, Kelly JW. Tafamidis concentration required for transthyretin stabilisation in cerebrospinal fluid. Amyloid 2023; 30:279-289. [PMID: 36691999 PMCID: PMC10363573 DOI: 10.1080/13506129.2023.2167595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Hereditary transthyretin (TTR) amyloidosis (ATTRv) initially presents as a polyneuropathy and/or a cardiomyopathy. Central nervous system (CNS) pathology in ATTRv amyloidosis, including focal neurological episodes, dementia, cerebrovascular bleeding, and seizures, appears around a decade later. Wild-type (WT) TTR amyloidosis (ATTRwt) causes a cardiomyopathy. CNS pathology risk likely also increases in these patients as cardiomyopathy progresses. Herein, we study tafamidis-mediated TTR kinetic stabilisation in cerebrospinal fluid (CSF). METHODS Varying tafamidis concentrations (50-1000 nM) were added to CSF from healthy donors or ATTRv patients, and TTR stabilisation was measured via the decrease in dissociation rate. RESULTS Tafamidis meglumine (Vyndaqel) can be dosed at 20 or 80 mg QD. The latter dose is bioequivalent to a 61 mg QD dose of tafamidis free acid (Vyndamax). The tafamidis CSF concentration in ATTRv patients on 20 mg Vyndaqel is ∼125 nM. By linear extrapolation, we expect a CSF concentration of ∼500 nM at the higher dose. When tafamidis is added to healthy donor CSF at 125 or 500 nM, the WT TTR dissociation rate decreases by 42% or 87%, respectively. CONCLUSIONS Tafamidis stabilises TTR in CSF to what is likely a clinically meaningful extent at CSF concentrations achieved by the normal tafamidis dosing regimen.
Collapse
Affiliation(s)
- Felix J. Tsai
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Marcus Jaeger
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Teresa Coelho
- Unidade Corino de Andrade, Centro Hospitalar do Porto, Porto, Portugal
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, CA, USA
| |
Collapse
|
3
|
Yan NL, Morgan GJ, Petrassi HM, Wilson IA, Kelly JW. Pharmacological stabilization of the native state of full-length immunoglobulin light chains to treat light chain amyloidosis. Curr Opin Chem Biol 2023; 75:102319. [PMID: 37279624 PMCID: PMC10523890 DOI: 10.1016/j.cbpa.2023.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023]
Abstract
Immunoglobulin light chain amyloidosis (AL) is a cancer of plasma cells that secrete unstable full-length immunoglobulin light chains. These light chains misfold and aggregate, often with aberrant endoproteolysis, leading to organ toxicity. AL is currently treated by pharmacological elimination of the clonal plasma cells. Since it remains difficult to completely kill these cells in the majority of patients, we seek a complementary drug that inhibits light chain aggregation, which should diminish organ toxicity. We discovered a small-molecule binding site on full-length immunoglobulin light chains by structurally characterizing hit stabilizers emerging from a high-throughput screen seeking small molecules that protect full-length light chains from conformational excursion-linked endoproteolysis. The x-ray crystallographic characterization of 7 structurally distinct hit native-state stabilizers provided a structure-based blueprint, reviewed herein, to design more potent stabilizers. This approach enabled us to transform hits with micromolar affinity into stabilizers with nanomolar dissociation constants that potently prevent light chain aggregation.
Collapse
Affiliation(s)
- Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gareth J Morgan
- Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - H Michael Petrassi
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, CA 92130, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Sinnige T. Molecular mechanisms of amyloid formation in living systems. Chem Sci 2022; 13:7080-7097. [PMID: 35799826 PMCID: PMC9214716 DOI: 10.1039/d2sc01278b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 12/28/2022] Open
Abstract
Fibrillar protein aggregation is a hallmark of a variety of human diseases. Examples include the deposition of amyloid-β and tau in Alzheimer's disease, and that of α-synuclein in Parkinson's disease. The molecular mechanisms by which soluble proteins form amyloid fibrils have been extensively studied in the test tube. These investigations have revealed the microscopic steps underlying amyloid formation, and the role of factors such as chaperones that modulate these processes. This perspective explores the question to what extent the mechanisms of amyloid formation elucidated in vitro apply to human disease. The answer is not yet clear, and may differ depending on the protein and the associated disease. Nevertheless, there are striking qualitative similarities between the aggregation behaviour of proteins in vitro and the development of the related diseases. Limited quantitative data obtained in model organisms such as Caenorhabditis elegans support the notion that aggregation mechanisms in vivo can be interpreted using the same biophysical principles established in vitro. These results may however be biased by the high overexpression levels typically used in animal models of protein aggregation diseases. Molecular chaperones have been found to suppress protein aggregation in animal models, but their mechanisms of action have not yet been quantitatively analysed. Several mechanisms are proposed by which the decline of protein quality control with organismal age, but also the intrinsic nature of the aggregation process may contribute to the kinetics of protein aggregation observed in human disease.
Collapse
Affiliation(s)
- Tessa Sinnige
- Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
5
|
Yan NL, Nair R, Chu A, Wilson IA, Johnson KA, Morgan GJ, Kelly JW. Amyloidogenic immunoglobulin light chain kinetic stabilizers comprising a simple urea linker module reveal a novel binding sub-site. Bioorg Med Chem Lett 2022; 60:128571. [PMID: 35065233 PMCID: PMC8857066 DOI: 10.1016/j.bmcl.2022.128571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/29/2021] [Accepted: 01/15/2022] [Indexed: 11/29/2022]
Abstract
In immunoglobulin light chain (LC) amyloidosis, the misfolding, or misfolding and misassembly of LC a protein or fragments thereof resulting from aberrant endoproteolysis, causes organ damage to patients. A small molecule "kinetic stabilizer" drug could slow or stop these processes and improve prognosis. We previously identified coumarin-based kinetic stabilizers of LCs that can be divided into four components, including a "linker module" and "distal substructure". Our prior studies focused on characterizing carbamate, hydantoin, and spirocyclic urea linker modules, which bind in a solvent-exposed site at the VL-VL domain interface of the LC dimer. Here, we report structure-activity relationship data on 7-diethylamino coumarin-based kinetic stabilizers. This substructure occupies the previously characterized "anchor cavity" and the "aromatic slit". The potencies of amide and urea linker modules terminating in a variety of distal substructures attached at the 3-position of this coumarin ring were assessed. Surprisingly, crystallographic data on a 7-diethylamino coumarin-based kinetic stabilizer reveals that the urea linker module and distal substructure attached at the 3-position bind a solvent-exposed region of the full-length LC dimer distinct from previously characterized sites. Our results further elaborate the small-molecule binding surface of LCs that could be occupied by potent and selective LC kinetic stabilizers.
Collapse
Affiliation(s)
- Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reji Nair
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alan Chu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristen A Johnson
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gareth J Morgan
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; The Amyloidosis Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Nedaei H, Rezaei-Ghaleh N, Giller K, Becker S, Karami L, Moosavi-Movahedi AA, Griesinger C, Saboury AA. The Calcium-free form of Atorvastatin inhibits amyloid-β(1-42) aggregation in vitro. J Biol Chem 2022; 298:101662. [PMID: 35104501 PMCID: PMC8898965 DOI: 10.1016/j.jbc.2022.101662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease is characterized by the presence of extraneuronal amyloid plaques composed of amyloid-beta (Aβ) fibrillar aggregates in the brains of patients. In mouse models, it has previously been shown that atorvastatin (Ator), a cholesterol-lowering drug, has some reducing effect on the production of cerebral Aβ. A meta-analysis on humans showed moderate effects in the short term but no improvement in the Alzheimer's Disease Assessment Scale—Cognitive Subscale behavioral test. Here, we explore a potential direct effect of Ator on Aβ42 aggregation. Using NMR-based monomer consumption assays and CD spectroscopy, we observed a promoting effect of Ator in its original form (Ator-calcium) on Aβ42 aggregation, as expected because of the presence of calcium ions. The effect was reversed when applying a CaCO3-based calcium ion scavenging method, which was validated by the aforementioned methods as well as thioflavin-T fluorescence assays and transmission electron microscopy. We found that the aggregation was inhibited significantly when the concentration of calcium-free Ator exceeded that of Aβ by at least a factor of 2. The 1H–15N heteronuclear single quantum correlation and saturation-transfer difference NMR data suggest that calcium-free Ator exerts its effect through interaction with the 16KLVF19 binding site on the Aβ peptide via its aromatic rings as well as hydroxyl and methyl groups. On the other hand, molecular dynamics simulations confirmed that the increasing concentration of Ator is necessary for the inhibition of the conformational transition of Aβ from an α-helix-dominant to a β-sheet-dominant structure.
Collapse
Affiliation(s)
- Hadi Nedaei
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Nasrollah Rezaei-Ghaleh
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Leila Karami
- Department of Cell and Molecular Biology, Kharazmi University, Tehran, Iran
| | - Ali Akbar Moosavi-Movahedi
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Small molecule protein binding to correct cellular folding or stabilize the native state against misfolding and aggregation. Curr Opin Struct Biol 2022; 72:267-278. [PMID: 34999558 DOI: 10.1016/j.sbi.2021.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Protein misfolding diseases are caused by the difficulty of a protein to attain or stably maintain its native three-dimensional structure. In 2011, the first small molecule that specifically binds to the folded state of a protein was approved by a regulatory agency to treat a protein misfolding disease (tafamidis, transthyretin amyloidosis). Subsequently, folded state binders for three additional pathologies were approved. All of these molecules bind specifically to and stabilize the native state of a misfolding-prone protein and either correct cellular folding or stabilize the native state against misfolding and aggregation. We will use these four case studies to explain how protein folding coupled to small molecule binding is a promising approach to treat a variety of human maladies.
Collapse
|
8
|
A circulating, disease-specific, mechanism-linked biomarker for ATTR polyneuropathy diagnosis and response to therapy prediction. Proc Natl Acad Sci U S A 2021; 118:2016072118. [PMID: 33597308 DOI: 10.1073/pnas.2016072118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transthyretin (TTR) amyloidoses (ATTR) are progressive, degenerative diseases resulting from dissociation of the TTR tetramer to monomers, which subsequently misfold and aggregate, forming a spectrum of aggregate structures including oligomers and amyloid fibrils. To determine whether circulating nonnative TTR (NNTTR) levels correlate with the clinical status of patients with V30M TTR familial amyloid polyneuropathy (FAP), we quantified plasma NNTTR using a newly developed sandwich enzyme-linked immunosorbent assay. The assay detected significant plasma levels of NNTTR in most presymptomatic V30M TTR carriers and in all FAP patients. NNTTR was not detected in age-matched control plasmas or in subjects with other peripheral neuropathies, suggesting NNTTR can be useful in diagnosing FAP. NNTTR levels were substantially reduced in patients receiving approved FAP disease-modifying therapies (e.g., the TTR stabilizer tafamidis, 20 mg once daily). This NNTTR decrease was seen in both the responders (average reduction 56.4 ± 4.2%; n = 49) and nonresponders (average reduction of 63.3 ± 4.8%; n = 32) at 12 mo posttreatment. Notably, high pretreatment NNTTR levels were associated with a significantly lower likelihood of clinical response to tafamidis. Our data suggest that NNTTR is a disease driver whose reduction is sufficient to ameliorate FAP so long as pretreatment NNTTR levels are below a critical clinical threshold.
Collapse
|
9
|
Yan NL, Santos-Martins D, Nair R, Chu A, Wilson IA, Johnson KA, Forli S, Morgan GJ, Petrassi HM, Kelly JW. Discovery of Potent Coumarin-Based Kinetic Stabilizers of Amyloidogenic Immunoglobulin Light Chains Using Structure-Based Design. J Med Chem 2021; 64:6273-6299. [PMID: 33939422 DOI: 10.1021/acs.jmedchem.1c00339] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In immunoglobulin light-chain (LC) amyloidosis, transient unfolding or unfolding and proteolysis enable aggregation of LC proteins, causing potentially fatal organ damage. A drug that kinetically stabilizes LCs could suppress aggregation; however, LC sequences are variable and have no natural ligands, hindering drug development efforts. We previously identified high-throughput screening hits that bind to a site at the interface between the two variable domains of the LC homodimer. We hypothesized that extending the stabilizers beyond this initially characterized binding site would improve affinity. Here, using protease sensitivity assays, we identified stabilizers that can be divided into four substructures. Some stabilizers exhibit nanomolar EC50 values, a 3000-fold enhancement over the screening hits. Crystal structures reveal a key π-π stacking interaction with a conserved tyrosine residue that was not utilized by the screening hits. These data provide a foundation for developing LC stabilizers with improved binding selectivity and enhanced physicochemical properties.
Collapse
Affiliation(s)
- Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Reji Nair
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alan Chu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kristen A Johnson
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gareth J Morgan
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States.,The Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - H Michael Petrassi
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Abstract
Neurodegenerative diseases and other protein-misfolding disorders represent a longstanding biomedical challenge, and effective therapies remain largely elusive. This failure is due, in part, to the recalcitrant and diverse nature of misfolded protein conformers. Recent work has uncovered that many aggregation-prone proteins can also undergo liquid-liquid phase separation, a process by which macromolecules self-associate to form dense condensates with liquid properties that are compositionally distinct from the bulk cellular milieu. Efforts to combat diseases caused by toxic protein states focus on exploiting or enhancing the proteostasis machinery to prevent and reverse pathological protein conformations. Here, we discuss recent advances in elucidating and engineering therapeutic agents to combat the diverse aberrant protein states that underlie protein-misfolding disorders.
Collapse
Affiliation(s)
- Charlotte M. Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|