1
|
Park WH, Lee HK. Human γδ T cells in the tumor microenvironment: Key insights for advancing cancer immunotherapy. Mol Cells 2025:100177. [PMID: 39778860 DOI: 10.1016/j.mocell.2025.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
The role of γδ T cells in antitumor responses has gained significant attention due to their unique major histocompatibility complex (MHC)-independent killing mechanisms, which distinguish them from conventional αβ T cells. Notably, γδ tumor-infiltrating lymphocytes (TILs) have been identified as favorable prognostic markers in various cancers. However, γδ TIL subsets, including Vδ1, Vδ2, and Vδ3, exhibit distinct prognostic implications and phenotypes from one another within the tumor microenvironment (TME). Although the underlying mechanisms remain unclear, recent studies suggest that these subset-specific differences may arise from divergent activation pathways. Vδ1 TILs appear to be mainly activated by γδ T-cell receptor (TCR) signaling, whereas Vδ2 TILs seem to rely on alternative pathways, such as natural killer (NK) receptor-mediated activation. In addition to phenotypic studies, γδ T cell-based immunotherapies are being actively developed using innovative approaches including engineered γδ T cells, γδ T cell engager molecules, and γδ TCR-based T cell therapies. Despite these advancements, challenges such as functional heterogeneity and limited in vivo persistence remain unresolved. Overcoming these obstacles could position γδ T cell therapies as a transformative platform for cancer immunotherapy. This review explores recent findings on the role of γδ T cells as prognostic markers, their phenotypic characteristics within the human TME, and recent advancements in γδ T cell-based cancer immunotherapies, offering valuable insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Won Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute of Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Marei HE, Bedair K, Hasan A, Al-Mansoori L, Caratelli S, Sconocchia G, Gaiba A, Cenciarelli C. Current status and innovative developments of CAR-T-cell therapy for the treatment of breast cancer. Cancer Cell Int 2025; 25:3. [PMID: 39755633 DOI: 10.1186/s12935-024-03615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Breast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy. The T cell-based immunotherapy known as chimeric antigen receptor (CAR) T cell treatment, which uses the patient's immune cells to fight cancer, has demonstrated remarkable efficacy in treating hematologic malignancies; nevertheless, the treatment effects in solid tumors, like breast cancer, have not lived up to expectations. We discuss in detail the role of tumor-associated antigens in breast cancer, current clinical trials, barriers to the intended therapeutic effects of CAR-T cell therapy, and potential ways to increase treatment efficacy. Finally, our review aims to stimulate readers' curiosity by summarizing the most recent advancements in CAR-T cell therapy for breast cancer.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Khaled Bedair
- Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | - Alice Gaiba
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | |
Collapse
|
3
|
Chen X, Sun G, Zhu X. γδ T cells in hematological malignancies: mechanisms and therapeutic strategies. BLOOD SCIENCE 2025; 7:e00213. [PMID: 39676818 PMCID: PMC11637750 DOI: 10.1097/bs9.0000000000000213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
γδ T cells are a unique subset of lymphocytes with both innate and adaptive features. They recognize and eradicate various hematological malignancies through different mechanisms, employing factors including γδ TCR, NKR, NKG2D, TRAIL, and perforin/granzyme. They also modulate other immune cells to enhance their antitumor activity. Moreover, γδ T cells have potent antiviral functions after hematopoietic stem cell transplantation (HSCT), which may improve the outcome of patients with hematological malignancies. In this review, we summarize the current knowledge on γδ T cell biology and function in hematological malignancies and HSCT complications. We also discuss the challenges and limitations of the clinical application of γδ T cells, such as their low frequency in peripheral blood and heterogeneity among different subsets. We then highlight some promising strategies for γδ T cell-based therapy, such as using agonist antibodies, cell engagers, or genetic modification technology. Furthermore, we review the recent clinical trials evaluating the safety and efficacy of γδ T-cell therapy in different hematological malignancies. In conclusion, γδ T cells represent a promising immunotherapeutic tool for hematological malignancies that deserves further exploration.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Anhui 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China. Hefei, Anhui 230001, China
| | - Guangyu Sun
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Anhui 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China. Hefei, Anhui 230001, China
| | - Xiaoyu Zhu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Anhui 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China. Hefei, Anhui 230001, China
| |
Collapse
|
4
|
Yohannes M, Massa C, Desalegn Z, Stückrath K, Mueller A, Anberber E, Bekuretsion Y, Assefa M, Santos P, Addissie A, Bauer M, Wickenhauser C, Taylor L, Vetter M, Kantelhardt EJ, Abebe T, Seliger B. Blood immune profiling of Ethiopian patients with breast cancer highlights different forms of immune escape. Oncoimmunology 2024; 13:2436227. [PMID: 39621040 PMCID: PMC11622621 DOI: 10.1080/2162402x.2024.2436227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
Breast cancer (BC) is a leading cause of death worldwide, particularly also among African woman. In order to better stratify patients for the most effective (immuno-) therapy, an in depth characterization of the immune status of BC patients is required. In this study, a cohort of 65 Ethiopian patients with primary BC underwent immune profiling by multicolor flow cytometry on peripheral blood samples collected prior to surgery and to any other therapy. Comparison with peripheral blood samples from healthy donors highlighted a general activation of the immune system, accompanied by the presence of exhausted CD4+ T cells and senescent CD8+ T cells with an inverted CD4/CD8 ratio in approximately 50% of BC cases. Enhanced frequencies of γδ T cells, myeloid-derived suppressor cells and regulatory T cells were also found. Correlation with clinical parameters demonstrated a progressive reduction in T cell frequencies with increasing histopathological grading of the tumor. Differences in CD8+ T cells and B cells were also noted among luminal and non-luminal BC subtypes. In conclusion, Ethiopian BC patients showed several alterations in the composition and activation status of the blood immune cell repertoire, which were phenotypically associated with immune suppression. The role of these immunological changes in the clinical outcome of patients with BC will have to be determined in follow-up studies and confirmed in additional patients' cohorts.
Collapse
Affiliation(s)
- Meron Yohannes
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Translational Immunology, Brandenburg Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
| | - Zelalem Desalegn
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Stückrath
- University Clinic and Polyclinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Endale Anberber
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yonas Bekuretsion
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mathewos Assefa
- Department of Oncology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Pablo Santos
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Adamu Addissie
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Marcus Bauer
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lesley Taylor
- City of Hope National Medical Center, Duarte, CA, USA
| | - Martina Vetter
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- University Clinic and Polyclinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- University Clinic and Polyclinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tamrat Abebe
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Translational Immunology, Brandenburg Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
- Institute of Medical Immunology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Cell and Gene Therapy Development, Fraunhofer Institute, Leipzig, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School “Theodor Fontane”, Institute of Translational Immunology, Brandenburg, Germany
| |
Collapse
|
5
|
Lim W, Iyer N. A GD (Gamma-Delta) type of cancel culture. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100740. [PMID: 39717204 PMCID: PMC11664092 DOI: 10.1016/j.iotech.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
γδ T cells represent an 'unconventional' class of CD3+ lymphocytes with unique phenotypical and functional attributes that distinguishes them from their αβ T-cell receptor-expressing counterparts. Studies investigating the roles of γδ T cells in cancer have shown that these cells are indispensable for effective tumor control and their presence within the tumor may be of prognostic significance. Currently, there is significant interest in harnessing γδ T cells for cancer treatment, and research efforts have focused on the development of γδ T-cell-based strategies that are efficacious against cancer. Several therapeutic approaches using γδ T cells have been described, premised on the expansion of γδ T cells or γδ chimeric antigen receptor T therapy. The potential for broad, unbiased and 'off-the-shelf' applicability in cancer treatment, drives ongoing and future research and methodologies by which γδ T cells can be exploited for therapeutic use. In this review, we will briefly outline the characteristics of γδ T cells and describe how these work within and promote proper functioning of the cancer-immunity cycle. Additionally, we will introduce strategies that are less commonly described and may potentially be more efficacious than other types of therapy. Our discussion will expand upon presently known applications and even highlight the versatility of this immune subset as cancer therapeutics. γδ T-cell-based treatment is an emerging strategy and should be considered for cancelling cancer.
Collapse
Affiliation(s)
- W.K. Lim
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
| | - N.G. Iyer
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
- Department of Head and Neck Surgery, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
6
|
Hang Y, Huang J, Ding M, Shen Y, Zhou Y, Cai W. Extracellular vesicles reshape the tumor microenvironment to improve cancer immunotherapy: Current knowledge and future prospects. Int Immunopharmacol 2024; 140:112820. [PMID: 39096874 DOI: 10.1016/j.intimp.2024.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor immunotherapy has revolutionized cancer treatment, but limitations remain, including low response rates and immune complications. Extracellular vesicles (EVs) are emerging as a new class of therapeutic agents for various diseases. Recent research shows that changes in the amount and composition of EVs can reshape the tumor microenvironment (TME), potentially improving the effectiveness of immunotherapy. This exciting discovery has sparked clinical interest in using EVs to enhance the immune system's response to cancer. In this Review, we delve into the world of EVs, exploring their origins, how they're generated, and their complex interactions within the TME. We also discuss the crucial role EVs play in reshaping the TME during tumor development. Specifically, we examine how their cargo, including molecules like PD-1 and non-coding RNA, influences the behavior of key immune cells within the TME. Additionally, we explore the current applications of EVs in various cancer therapies, the latest advancements in engineering EVs for improved immunotherapy, and the challenges faced in translating this research into clinical practice. By gaining a deeper understanding of how EVs impact the TME, we can potentially uncover new therapeutic vulnerabilities and significantly enhance the effectiveness of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Yu Hang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JingYi Huang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingming Ding
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhua Shen
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YaoZhong Zhou
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China.
| | - Wan Cai
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Wiesheu R, Coffelt SB. From backstage to the spotlight: γδT cells in cancer. Cancer Cell 2024; 42:1637-1642. [PMID: 39270647 DOI: 10.1016/j.ccell.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
γδT cells represent a group of immune cells that are understudied but whose utility has been recognized for cancer immunotherapy purposes. Recent studies have highlighted a critical role for these cells in tumor initiation, growth, and metastasis and revealed an increasingly complex biology of γδT cell subsets that is context and tissue specific. We discuss here how γδT cell subsets are regulated, their interaction with cancer and other immune cells, and the implications from these latest discoveries for people with cancer.
Collapse
Affiliation(s)
| | - Seth B Coffelt
- Cancer Research UK Scotland Institute, Glasgow, UK; School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Hayday A, Dechanet-Merville J, Rossjohn J, Silva-Santos B. Cancer immunotherapy by γδ T cells. Science 2024; 386:eabq7248. [PMID: 39361750 PMCID: PMC7616870 DOI: 10.1126/science.abq7248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
The premise of cancer immunotherapy is that cancers are specifically visible to an immune system tolerized to healthy self. The promise of cancer immunotherapy is that immune effector mechanisms and immunological memory can jointly eradicate cancers and inoperable metastases and de facto vaccinate against recurrence. For some patients with hitherto incurable diseases, including metastatic melanoma, this promise is being realized by game-changing immunotherapies based on αβ T cells. Today's challenges are to bring benefit to greater numbers of patients of diverse ethnicities, target more cancer types, and achieve a cure while incurring fewer adverse events. In meeting those challenges, specific benefits may be offered by γδ T cells, which compose a second T cell lineage with distinct recognition capabilities and functional traits that bridge innate and adaptive immunity. γδ T cell-based clinical trials, including off-the-shelf adoptive cell therapy and agonist antibodies, are yielding promising results, although identifiable problems remain. In addressing those problems, we advocate that immunotherapies be guided by the distinctive biology of γδ T cells, as elucidated by ongoing research.
Collapse
Affiliation(s)
- Adrian Hayday
- Francis Crick Institute, Peter Gorer Dept of Immunobiology, King’s College London, and CRUK City of London Cancer Centre, UK
| | - Julie Dechanet-Merville
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Xu J, Yu Y, Zhang Y, Dai H, Yang Q, Wang B, Ma Q, Chen Y, Xu F, Shi X, Liu Z, Wang C. Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal IFNγ-producing γδ T cells. NATURE NANOTECHNOLOGY 2024; 19:1569-1578. [PMID: 39054386 DOI: 10.1038/s41565-024-01722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Gamma-delta (γδ) T cell-based cancer immunotherapies represent a promising avenue for cancer treatment. However, their development is challenged by the limited expansion and differentiation of the cells ex vivo. Here we induced the endogenous expansion and activation of γδ T cells through oral administration of garlic-derived nanoparticles (GNPs). We found that GNPs could significantly promote the proliferation and activation of endogenous γδ T cells in the intestine, leading to generation of large amount of interferon-γ (IFNγ). Moreover GNP-treated mice showed increased levels of chemokine CXCR3 in intestinal γδ T cells, which can drive their migration from the gut to the tumour environment. The translocation of γδ T cells and IFNγ from the intestine to extraintestinal subcutaneous tumours remodels the tumour immune microenvironment and synergizes with anti-PD-L1, inducing robust antitumour immunity. Our study delineates mechanistic insight into the complex gut-tumour interactome and provides an alternative approach for γδ T cell-based immunotherapy.
Collapse
MESH Headings
- Animals
- Interferon-gamma/metabolism
- Nanoparticles/chemistry
- Garlic/chemistry
- Mice
- Administration, Oral
- Immunotherapy/methods
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Mice, Inbred C57BL
- Receptors, CXCR3/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Cell Line, Tumor
- Female
- B7-H1 Antigen/metabolism
- Intestines/immunology
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Neoplasms/therapy
- Neoplasms/immunology
Collapse
Affiliation(s)
- Jialu Xu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Yue Yu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Yue Zhang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Huaxing Dai
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Qianyu Yang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Beilei Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Qingle Ma
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Yitong Chen
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Fang Xu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Xiaolin Shi
- Medical College of Soochow University, Suzhou, China
| | - Zhuang Liu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Reinstein ZZ, Zhang Y, Ospina OE, Nichols MD, Chu VA, Pulido ADM, Prieto K, Nguyen JV, Yin R, Moran Segura C, Usman A, Sell B, Ng S, de la Iglesia JV, Chandra S, Sosman JA, Cho RJ, Cheng JB, Ivanova E, Koralov SB, Slebos RJC, Chung CH, Khushalani NI, Messina JL, Sarnaik AA, Zager JS, Sondak VK, Vaske C, Kim S, Brohl AS, Mi X, Pierce BG, Wang X, Fridley BL, Tsai KY, Choi J. Preexisting Skin-Resident CD8 and γδ T-cell Circuits Mediate Immune Response in Merkel Cell Carcinoma and Predict Immunotherapy Efficacy. Cancer Discov 2024; 14:1631-1652. [PMID: 39058036 DOI: 10.1158/2159-8290.cd-23-0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 07/28/2024]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with a ∼50% response rate to immune checkpoint blockade (ICB) therapy. To identify predictive biomarkers, we integrated bulk and single-cell RNA sequencing (RNA-seq) with spatial transcriptomics from a cohort of 186 samples from 116 patients, including bulk RNA-seq from 14 matched pairs pre- and post-ICB. In nonresponders, tumors show evidence of increased tumor proliferation, neuronal stem cell markers, and IL1. Responders have increased type I/II interferons and preexisting tissue resident (Trm) CD8 or Vδ1 γδ T cells that functionally converge with overlapping antigen-specific transcriptional programs and clonal expansion of public T-cell receptors. Spatial transcriptomics demonstrated colocalization of T cells with B and dendritic cells, which supply chemokines and costimulation. Lastly, ICB significantly increased clonal expansion or recruitment of Trm and Vδ1 cells in tumors specifically in responders, underscoring their therapeutic importance. These data identify potential clinically actionable biomarkers and therapeutic targets for MCC. Significance: MCC serves as a model of ICB response. We utilized the largest-to-date, multimodal MCC dataset (n = 116 patients) to uncover unique tumor-intrinsic properties and immune circuits that predict response. We identified CD8 Trm and Vδ1 T cells as clinically actionable mediators of ICB response in major histocompatibility complex-high and -low MCCs, respectively.
Collapse
Affiliation(s)
- Zachary Z Reinstein
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oscar E Ospina
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matt D Nichols
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Victoria A Chu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alvaro de Mingo Pulido
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Karol Prieto
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan V Nguyen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Carlos Moran Segura
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ahmed Usman
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brittney Sell
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Spencer Ng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Janis V de la Iglesia
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sunandana Chandra
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jeffrey A Sosman
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, California
- Department of Dermatology, Veterans Affairs Medical Center, San Francisco, California
| | - Ellie Ivanova
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, New York
| | - Robbert J C Slebos
- Department of Head and Neck Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christine H Chung
- Department of Head and Neck Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nikhil I Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jane L Messina
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amod A Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan S Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Vernon K Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Sungjune Kim
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Andrew S Brohl
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xinlei Mi
- Department of Preventive Medicine-Biostatistics Quantitative Data Sciences Core, Northwestern University, Chicago, Illinois
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois
| |
Collapse
|
11
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
12
|
Ng JWK, Cheung AMS. γδ T-cells in human malignancies: insights from single-cell studies and analytical considerations. Front Immunol 2024; 15:1438962. [PMID: 39281674 PMCID: PMC11392790 DOI: 10.3389/fimmu.2024.1438962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
γδ T-cells are a rare population of T-cells with both adaptive and innate-like properties. Despite their low prevalence, they have been found to be implicated various human diseases. γδ T-cell infiltration has been associated with improved clinical outcomes in solid cancers, prompting renewed interest in understanding their biology. To date, their biology remains elusive due to their low prevalence. The introduction of high-resolution single-cell sequencing has allowed various groups to characterize key effector subsets in various contexts, as well as begin to elucidate key regulatory mechanisms directing the differentiation and activity of these cells. In this review, we will review some of insights obtained from single-cell studies of γδ T-cells across various malignancies and highlight some important questions that remain unaddressed.
Collapse
Affiliation(s)
- Jeremy Wee Kiat Ng
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Alice Man Sze Cheung
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
13
|
Zhu D, Ren X, Xie W, Chen J, Liang S, Jiang M, Wang J, Zheng Z. Potential of gamma/delta T cells for solid tumor immunotherapy. Front Immunol 2024; 15:1466266. [PMID: 39253082 PMCID: PMC11381238 DOI: 10.3389/fimmu.2024.1466266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Gamma/delta T (γδ T)cells possess a unique mechanism for killing tumors, making them highly promising and distinguished among various cell therapies for tumor treatment. This review focuses on the major histocompatibility complex (MHC)-independent recognition of antigens and the interaction between γδ T cells and solid tumor cells. A comprehensive review is provided regarding the classification of human gamma-delta T cell subtypes, the characteristics and mechanisms underlying their functions, as well as their r545egulatory effects on tumor cells. The involvement of γδ T cells in tumorigenesis and migration was also investigated, encompassing potential therapeutic targets such as apoptosis-related molecules, the TNF receptor superfamily member 6(FAS)/FAS Ligand (FASL) pathways, butyrophilin 3A-butyrophilin 2A1 (BTN3A-BTN2A1) complexes, and interactions with CD4, CD8, and natural killer (NK) cells. Additionally, immune checkpoint inhibitors such as programmed cell death protein 1/Programmed cell death 1 ligand 1 (PD-1/PD-L1) have the potential to augment the cytotoxicity of γδ T cells. Moreover, a review on gamma-delta T cell therapy products and their corresponding clinical trials reveals that chimeric antigen receptor (CAR) gamma-delta T therapy holds promise as an approach with encouraging preclinical outcomes. However, practical issues pertaining to manufacturing and clinical aspects need resolution, and further research is required to investigate the long-term clinical side effects of CAR T cells. In conclusion, more comprehensive studies are necessary to establish standardized treatment protocols aimed at enhancing the quality of life and survival rates among tumor patients utilizing γδ T cell immunotherapy.
Collapse
Affiliation(s)
- Dantong Zhu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xijing Ren
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Wanting Xie
- Nursing Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jianjun Chen
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Shiying Liang
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Mingzhe Jiang
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Junyi Wang
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Zhendong Zheng
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Stary V, Pandey RV, List J, Kleissl L, Deckert F, Kabiljo J, Laengle J, Gerakopoulos V, Oehler R, Watzke L, Farlik M, Lukowski SW, Vogt AB, Stary G, Stockinger H, Bergmann M, Pilat N. Dysfunctional tumor-infiltrating Vδ1 + T lymphocytes in microsatellite-stable colorectal cancer. Nat Commun 2024; 15:6949. [PMID: 39138181 PMCID: PMC11322529 DOI: 10.1038/s41467-024-51025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Although γδ T cells are known to participate in immune dysregulation in solid tumors, their relevance to human microsatellite-stable (MSS) colorectal cancer (CRC) is still undefined. Here, using integrated gene expression analysis and T cell receptor sequencing, we characterized γδ T cells in MSS CRC, with a focus on Vδ1 + T cells. We identified Vδ1+ T cells with shared motifs in the third complementarity-determining region of the δ-chain, reflective of antigen recognition. Changes in gene and protein expression levels suggested a dysfunctional effector state of Vδ1+ T cells in MSS CRC, distinct from Vδ1+ T cells in microsatellite-instable (MSI). Interaction analysis highlighted an immunosuppressive role of fibroblasts in the dysregulation of Vδ1+ T cells in MSS CRC via the TIGIT-NECTIN2 axis. Blocking this pathway with a TIGIT antibody partially restored cytotoxicity of the dysfunctional Vδ1 phenotype. These results define an operative pathway in γδ T cells in MSS CRC.
Collapse
MESH Headings
- Humans
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/immunology
- Microsatellite Instability
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Microsatellite Repeats/genetics
- Gene Expression Regulation, Neoplastic
- Female
- Male
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
Collapse
Affiliation(s)
- Victoria Stary
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria.
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria.
| | - Ram V Pandey
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Julia List
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Lisa Kleissl
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Florian Deckert
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Julijan Kabiljo
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Johannes Laengle
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Vasileios Gerakopoulos
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Rudolf Oehler
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Lukas Watzke
- Medical University of Vienna, Department of Pathology, Vienna, Austria
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Samuel W Lukowski
- Department of Human Cancer Immunology, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Anne B Vogt
- Department of Human Cancer Immunology, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Georg Stary
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Michael Bergmann
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Nina Pilat
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
- Medical University of Vienna, Department of Cardiac Surgery, Vienna, Austria
- Medical University of Vienna, Center for Biomedical Research and Translational Surgery, Vienna, Austria
| |
Collapse
|
15
|
You H, Wang Y, Wang X, Zhu H, Zhao Y, Qin P, Liu X, Zhang M, Fu X, Xu B, Zhang Y, Wang Z, Gao Q. CD69 + Vδ1γδ T cells are anti-tumor subpopulations in hepatocellular carcinoma. Mol Immunol 2024; 172:76-84. [PMID: 38917598 DOI: 10.1016/j.molimm.2024.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC), one of the malignancies with a wide expression of stress ligands recognized by Vδ1γδ T cells, has received much attention in adoptive immunotherapy of γδ T cells. In this study, we aimed to identify the potential anti-tumor Vδ1γδ T subpopulations in HCC. METHODS Healthy donors (HDs) and HCC patients were recruited from the Affiliated Cancer Hospital of Zhengzhou University. Blood and tumor tissue samples were obtained respectively. Bioinformatics methods were used to analyze total γδ T cells and subsets infiltration, overall survival of HCC patients with high and low infiltration level of Vδ1γδ T cells, and IFNG, granzyme A, granzyme B and perforin expression in TRDV1high/lowCD69high/low groups. CD69 expression and Vδ1γδT cells infiltration in HCC were detected by immunofluorescence. Phenotypic analysis of Vδ1γδ T cells in blood and tumor tissue samples were performed by flow cytometry. RESULTS Vδ1γδ T cells infiltrating in HCC were associated with better clinical outcome. Study in tumor micro-environment (TME) of HCC demonstrated that not total Vδ1γδ T but CD69+ Vδ1γδ subset infiltration was associated with smaller tumor volume. Moreover, HCC patients simultaneously with high TRDV1 and CD69 expression produced more effector molecules and had longer survival time. Since Vδ1γδ T cells in the tumor microenvironment were often difficult to access, we demonstrated that CD69+ Vδ1γδ T cells also existed in peripheral blood mononuclear cells (PBMC) of HCC and displayed enhanced cytotoxic potentials than HDs. Finally, we investigated the functions and found that CD69+ Vδ1γδ T cells exhibited stronger tumor reactivities when challenged by tumor cells. CONCLUSIONS CD69+ Vδ1γδ T cells are functional Vδ1γδ T cell subsets in patients with HCC. Circulating CD69+ Vδ1γδ T cell is a promising candidate in immunotherapy of HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Male
- Female
- Middle Aged
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Tumor Microenvironment/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Adult
Collapse
Affiliation(s)
- Hongqin You
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yixin Wang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaokun Wang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Huifang Zhu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yajie Zhao
- Department of Breast, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Peng Qin
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xue Liu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Mengyu Zhang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaomin Fu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Benling Xu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yong Zhang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zibing Wang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Quanli Gao
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
16
|
Arias-Badia M, Chang R, Fong L. γδ T cells as critical anti-tumor immune effectors. NATURE CANCER 2024; 5:1145-1157. [PMID: 39060435 DOI: 10.1038/s43018-024-00798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 07/28/2024]
Abstract
While the effector cells that mediate anti-tumor immunity have historically been attributed to αβ T cells and natural killer cells, γδ T cells are now being recognized as a complementary mechanism mediating tumor rejection. γδ T cells possess a host of functions ranging from antigen presentation to regulatory function and, importantly, have critical roles in eliciting anti-tumor responses where other immune effectors may be rendered ineffective. Recent discoveries have elucidated how these differing functions are mediated by γδ T cells with specific T cell receptors and spatial distribution. Their relative resistance to mechanisms of dysfunction like T cell exhaustion has spurred the development of therapeutic approaches exploiting γδ T cells, and an improved understanding of these cells should enable more effective immunotherapies.
Collapse
Affiliation(s)
- Marcel Arias-Badia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ryan Chang
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
17
|
Wu J. Emerging Innate Immune Cells in Cancer Immunotherapy: Promises and Challenges. BioDrugs 2024; 38:499-509. [PMID: 38700835 PMCID: PMC11246812 DOI: 10.1007/s40259-024-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Immune checkpoint inhibitor (ICI)-based therapy has made an unprecedented impact on survival benefit for a subset of cancer patients; however, only a subset of cancer patients is benefiting from ICI therapy if all cancer types are considered. With the advanced understanding of interactions of immune effector cell types and tumors, cell-based therapies are emerging as alternatives to patients who could not benefit from ICI therapy. Pioneering work of chimeric antigen receptor T (CAR-T) therapy for hematological malignancies has brought encouragement to a broad range of development for cellular-based cancer immunotherapy, both innate immune cell-based therapies and T-cell-based therapies. Innate immune cells are important cell types due to their rapid response, versatile function, superior safety profiles being demonstrated in early clinical development, and being able to utilize multiple allogeneic cell sources. Efforts on engineering innate immune cells and exploring their therapeutic potential are rapidly emerging. Some of the therapies, such as CD19 CAR natural killer (CAR-NK) cell-based therapy, have demonstrated comparable early efficacy with CD19 CAR-T cells. These studies underscore the significance of developing innate immune cells for cancer therapy. In this review, we focus on the current development of emerging NK cells, γδ T cells, and macrophages. We also present our views on potential challenges and perspectives to overcome these challenges.
Collapse
Affiliation(s)
- Jennifer Wu
- Department of Urology, Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Superior St, Chicago, IL, 60611, USA.
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
18
|
Guo L, Ma X, Li H, Yan S, Zhang K, Li J. Single‑cell RNA‑seq necroptosis‑related genes predict the prognosis of breast cancer and affect the differentiation of CD4 + T cells in tumor immune microenvironment. Mol Clin Oncol 2024; 21:49. [PMID: 38872949 PMCID: PMC11170320 DOI: 10.3892/mco.2024.2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Breast cancer (BC) is one of the most prevalent types of malignancy and a major cause of cancer-related death. The purpose of the present study was to identify prognostic models of necroptosis-related genes (NRGs) in BC at the single-cell RNA-sequencing level and reveal the role of NRGs in tumour immune microenvironment (TIME). A risk model was constructed based on Cox regression and LASSO methods. Next, high-scoring cell populations were searched through AUCell scores, and cell subtypes were then analyzed by pseudotime analysis. Finally, the expression level of the model genes was verified by reverse transcription-quantitative (RT-qPCR). A new prognostic model was constructed and validated based on five NRGs (BCL2, BIRC3, AIFM1, IFNG and VDAC1), which could effectively predict the prognosis of patients with BC. NRGs were found to be highly active in CD4+ T cells and differentially expressed in their developmental trajectories. Finally, the RT-qPCR results showed that most of the model genes were significantly overexpressed in MDA-MB-231 and MCF-7 cells (P<0.05). In conclusion, an NRG signature with excellent predictive properties in prognosis and TIME was successfully established. Moreover, NRGs were involved in the differentiation and development of CD4+ T cells in TIME. These findings provide potential therapeutic strategies for BC.
Collapse
Affiliation(s)
- Li Guo
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Xiuzhen Ma
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shuxun Yan
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Kai Zhang
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
19
|
Gerashchenko T, Frolova A, Patysheva M, Fedorov A, Stakheyeva M, Denisov E, Cherdyntseva N. Breast Cancer Immune Landscape: Interplay Between Systemic and Local Immunity. Adv Biol (Weinh) 2024; 8:e2400140. [PMID: 38727796 DOI: 10.1002/adbi.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is one of the most common malignancies in women worldwide. Numerous studies in immuno-oncology and successful trials of immunotherapy have demonstrated the causal role of the immune system in cancer pathogenesis. The interaction between the tumor and the immune system is known to have a dual nature. Despite cytotoxic lymphocyte activity against transformed cells, a tumor can escape immune surveillance and leverage chronic inflammation to maintain its own development. Research on antitumor immunity primarily focuses on the role of the tumor microenvironment, whereas the systemic immune response beyond the tumor site is described less thoroughly. Here, a comprehensive review of the formation of the immune profile in breast cancer patients is offered. The interplay between systemic and local immune reactions as self-sustaining mechanism of tumor progression is described and the functional activity of the main cell populations related to innate and adaptive immunity is discussed. Additionally, the interaction between different functional levels of the immune system and their contribution to the development of the pro- or anti-tumor immune response in BC is highlighted. The presented data can potentially inform the development of new immunotherapy strategies in the treatment of patients with BC.
Collapse
Affiliation(s)
- Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anastasia Frolova
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| | - Marina Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anton Fedorov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Marina Stakheyeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Nadezda Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| |
Collapse
|
20
|
Li W, Zhao X, Ren C, Gao S, Han Q, Lu M, Li X. The therapeutic role of γδT cells in TNBC. Front Immunol 2024; 15:1420107. [PMID: 38933280 PMCID: PMC11199784 DOI: 10.3389/fimmu.2024.1420107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that presents significant therapeutic challenges due to the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. As a result, conventional hormonal and targeted therapies are largely ineffective, underscoring the urgent need for novel treatment strategies. γδT cells, known for their robust anti-tumor properties, show considerable potential in TNBC treatment as they can identify and eliminate tumor cells without reliance on MHC restrictions. These cells demonstrate extensive proliferation both in vitro and in vivo, and can directly target tumors through cytotoxic effects or indirectly by promoting other immune responses. Studies suggest that expansion and adoptive transfer strategies targeting Vδ2 and Vδ1 γδT cell subtypes have shown promise in preclinical TNBC models. This review compiles and discusses the existing literature on the primary subgroups of γδT cells, their roles in cancer therapy, their contributions to tumor cell cytotoxicity and immune modulation, and proposes potential strategies for future γδT cell-based immunotherapies in TNBC.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xian Zhao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Chuanxin Ren
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shang Gao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Qinyu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Min Lu
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xiangqi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
21
|
Liu J, Wu M, Yang Y, Wang Z, He S, Tian X, Wang H. γδ T cells and the PD-1/PD-L1 axis: a love-hate relationship in the tumor microenvironment. J Transl Med 2024; 22:553. [PMID: 38858763 PMCID: PMC11163710 DOI: 10.1186/s12967-024-05327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Gamma delta (γδ) T cells demonstrate strong cytotoxicity against diverse cancer cell types in an MHC-independent manner, rendering them promising contenders for cancer therapy. Although amplification and adoptive transfer of γδ T cells are being evaluated in the clinic, their therapeutic efficacy remains unsatisfactory, primarily due to the influence of the immunosuppressive tumor microenvironment (TME). Currently, the utilization of targeted therapeutic antibodies against inhibitory immune checkpoint (ICP) molecules is a viable approach to counteract the immunosuppressive consequences of the TME. Notably, PD-1/PD-L1 checkpoint inhibitors are considered primary treatment options for diverse malignancies, with the objective of preserving the response of αβ T cells. However, γδ T cells also infiltrate various human cancers and are important participants in cancer immunity, thereby influencing patient prognosis. Hence, it is imperative to comprehend the reciprocal impact of the PD-1/PD-L1 axis on γδ T cells. This understanding can serve as a therapeutic foundation for improving γδ T cells adoptive transfer therapy and may offer a novel avenue for future combined immunotherapeutic approaches.
Collapse
Affiliation(s)
- Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Pihl RMF, Smith-Mahoney EL, Olson A, Yuen RR, Asundi A, Lin N, Belkina AC, Snyder-Cappione JE. Vδ1 Effector and Vδ2 γδ T-Cell Subsets Shift in Frequency and Are Linked to Plasma Inflammatory Markers During Antiretroviral Therapy-Suppressed HIV Infection. J Infect Dis 2024; 229:1317-1327. [PMID: 38390982 PMCID: PMC11095541 DOI: 10.1093/infdis/jiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Chronic inflammation is prevalent with antiretroviral therapy (ART)-suppressed human immunodeficiency virus (HIV) infection and one immune cell subset putatively driving this phenomenon is TIGIT+ γδ T cells. METHODS To elucidate γδ T-cell phenotypic diversity, spectral flow cytometry was performed on blood lymphocytes from individuals of a HIV and aging cohort and data were analyzed using bioinformatic platforms. Plasma inflammatory markers were measured and correlated with γδ T-cell subset frequencies. RESULTS Thirty-nine distinct γδ T-cell subsets were identified (22 Vδ1+, 14 Vδ2+, and 3 Vδ1-Vδ2-Vγ9+) and TIGIT was nearly exclusively found on the Vδ1+CD45RA+CD27- effector populations. People with ART-suppressed HIV infection (PWH) exhibited high frequencies of distinct clusters of Vδ1+ effectors distinguished via CD8, CD16, and CD38 expression. Among Vδ2+ cells, most Vγ9+ (innate-like) clusters were lower in PWH; however, CD27+ subsets were similar in frequency between participants with and without HIV. Comparisons by age revealed lower 'naive' Vδ1+CD45RA+CD27+ cells in older individuals, regardless of HIV status. Plasma inflammatory markers were selectively linked to subsets of Vδ1+ and Vδ2+ cells. CONCLUSIONS These results further elucidate γδ T-cell subset complexity and reveal distinct alterations and connections with inflammatory pathways of Vδ1+ effector and Vδ2+ innate-like subsets during ART-suppressed HIV infection.
Collapse
Affiliation(s)
- Riley M F Pihl
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Erika L Smith-Mahoney
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Alex Olson
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, USA
| | - Rachel R Yuen
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Archana Asundi
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, USA
| | - Nina Lin
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, USA
| | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jennifer E Snyder-Cappione
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
24
|
Li X, Zhu Y, Yi J, Deng Y, Lei B, Ren H. Adoptive cell immunotherapy for breast cancer: harnessing the power of immune cells. J Leukoc Biol 2024; 115:866-881. [PMID: 37949484 DOI: 10.1093/jleuko/qiad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Breast cancer is the most prevalent malignant neoplasm worldwide, necessitating the development of novel therapeutic strategies owing to the limitations posed by conventional treatment modalities. Immunotherapy is an innovative approach that has demonstrated significant efficacy in modulating a patient's innate immune system to combat tumor cells. In the era of precision medicine, adoptive immunotherapy for breast cancer has garnered widespread attention as an emerging treatment strategy, primarily encompassing cellular therapies such as tumor-infiltrating lymphocyte therapy, chimeric antigen receptor T/natural killer/M cell therapy, T cell receptor gene-engineered T cell therapy, lymphokine-activated killer cell therapy, cytokine-induced killer cell therapy, natural killer cell therapy, and γδ T cell therapy, among others. This treatment paradigm is based on the principles of immune memory and antigen specificity, involving the collection, processing, and expansion of the patient's immune cells, followed by their reintroduction into the patient's body to activate the immune system and prevent tumor recurrence and metastasis. Currently, multiple clinical trials are assessing the feasibility, effectiveness, and safety of adoptive immunotherapy in breast cancer. However, this therapeutic approach faces challenges associated with tumor heterogeneity, immune evasion, and treatment safety. This review comprehensively summarizes the latest advancements in adoptive immunotherapy for breast cancer and discusses future research directions and prospects, offering valuable guidance and insights into breast cancer immunotherapy.
Collapse
Affiliation(s)
- Xue Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Yunan Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Jinfeng Yi
- Department of Pathology, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Yuhan Deng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| |
Collapse
|
25
|
Yu X, Wang L, Niu Z, Zhu L. Controversial role of γδ T cells in colorectal cancer. Am J Cancer Res 2024; 14:1482-1500. [PMID: 38726287 PMCID: PMC11076236 DOI: 10.62347/hwmb1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequent type of cancer, and the second leading cause of cancer-related deaths worldwide. Current treatments for patients with CRC do not substantially improve the survival and quality of life of patients with advanced CRC, thus necessitating the development of new treatment strategies. The emergence of immunotherapy has revitalized the field, showing great potential in advanced CRC treatment. Owing to the ability of tumor cells to evade the immune system through major histocompatibility complex shedding and heterogeneous and low antigen spreading, only a few patients respond to immunotherapy. γδ T cells have heterogeneous structures and functions, and their key roles in immune regulation, tumor immunosurveillance, and specific primary immune responses have increasingly been recognized. γδ T cells recognize and kill CRC cells efficiently, thus inhibiting tumor progress through various mechanisms. However, γδ T cells can potentially promote tumor development and metastasis. Thus, given this dual role in prognosis, these cells can act as either a "friend" or "foe" of CRC. In this review, we explore the characteristics of γδ T cells and their functions in CRC, highlighting their application in immunotherapy.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People’s HospitalNo. 10 Qinyun Nan Street, Chengdu, Sichuan, The People’s Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou HospitalGuiyang, Guizhou, The People’s Republic of China
| | - Zhongxi Niu
- Department of Thoracic Surgery, The Third Medical Center of PLA General HospitalBeijing, The People’s Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
| |
Collapse
|
26
|
Yuan M, Wang W, Hawes I, Han J, Yao Z, Bertaina A. Advancements in γδT cell engineering: paving the way for enhanced cancer immunotherapy. Front Immunol 2024; 15:1360237. [PMID: 38576617 PMCID: PMC10991697 DOI: 10.3389/fimmu.2024.1360237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αβT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.
Collapse
Affiliation(s)
| | - Wenjun Wang
- *Correspondence: Wenjun Wang, ; Alice Bertaina,
| | | | | | | | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
27
|
Davies D, Kamdar S, Woolf R, Zlatareva I, Iannitto ML, Morton C, Haque Y, Martin H, Biswas D, Ndagire S, Munonyara M, Gillett C, O'Neill O, Nussbaumer O, Hayday A, Wu Y. PD-1 defines a distinct, functional, tissue-adapted state in Vδ1 + T cells with implications for cancer immunotherapy. NATURE CANCER 2024; 5:420-432. [PMID: 38172341 DOI: 10.1038/s43018-023-00690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Checkpoint inhibition (CPI), particularly that targeting the inhibitory coreceptor programmed cell death protein 1 (PD-1), has transformed oncology. Although CPI can derepress cancer (neo)antigen-specific αβ T cells that ordinarily show PD-1-dependent exhaustion, it can also be efficacious against cancers evading αβ T cell recognition. In such settings, γδ T cells have been implicated, but the functional relevance of PD-1 expression by these cells is unclear. Here we demonstrate that intratumoral TRDV1 transcripts (encoding the TCRδ chain of Vδ1+ γδ T cells) predict anti-PD-1 CPI response in patients with melanoma, particularly those harboring below average neoantigens. Moreover, using a protocol yielding substantial numbers of tissue-derived Vδ1+ cells, we show that PD-1+Vδ1+ cells display a transcriptomic program similar to, but distinct from, the canonical exhaustion program of colocated PD-1+CD8+ αβ T cells. In particular, PD-1+Vδ1+ cells retained effector responses to TCR signaling that were inhibitable by PD-1 engagement and derepressed by CPI.
Collapse
Affiliation(s)
- Daniel Davies
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Richard Woolf
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- St. John's Institute of Dermatology, Guy's Hospital, London, UK
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | | | - Cienne Morton
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Department of Medical Oncology, Guy's Hospital, London, UK
| | - Yasmin Haque
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Hannah Martin
- Immunosurveillance Laboratory, Francis Crick Institute, London, UK
| | - Dhruva Biswas
- Academic Foundation Programme, King's College Hospital, London, UK
| | - Susan Ndagire
- King's Health Partners Cancer Biobank, Guy's Hospital, London, UK
| | | | - Cheryl Gillett
- King's Health Partners Cancer Biobank, Guy's Hospital, London, UK
| | - Olga O'Neill
- Advanced Sequencing Facility, Francis Crick Institute, London, UK
| | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK.
- Immunosurveillance Laboratory, Francis Crick Institute, London, UK.
| | - Yin Wu
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK.
- Department of Medical Oncology, Guy's Hospital, London, UK.
| |
Collapse
|
28
|
Widlund HR, Lynch L. γδ T cells as unconventional targets of checkpoint blockade. NATURE CANCER 2024; 5:373-374. [PMID: 38538909 DOI: 10.1038/s43018-024-00735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Affiliation(s)
- Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Alaluf E, Shalamov MM, Sonnenblick A. Update on current and new potential immunotherapies in breast cancer, from bench to bedside. Front Immunol 2024; 15:1287824. [PMID: 38433837 PMCID: PMC10905744 DOI: 10.3389/fimmu.2024.1287824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Impressive advances have been seen in cancer immunotherapy during the last years. Although breast cancer (BC) has been long considered as non-immunogenic, immunotherapy for the treatment of BC is now emerging as a new promising therapeutic approach with considerable potential. This is supported by a plethora of completed and ongoing preclinical and clinical studies in various types of immunotherapies. However, a significant gap between clinical oncology and basic cancer research impairs the understanding of cancer immunology and immunotherapy, hampering cancer therapy research and development. To exploit the accumulating available data in an optimal way, both fundamental mechanisms at play in BC immunotherapy and its clinical pitfalls must be integrated. Then, clinical trials must be critically designed with appropriate combinations of conventional and immunotherapeutic strategies. While there is room for major improvement, this updated review details the immunotherapeutic tools available to date, from bench to bedside, in the hope that this will lead to rethinking and optimizing standards of care for BC patients.
Collapse
Affiliation(s)
- Emmanuelle Alaluf
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Amir Sonnenblick
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
30
|
Lien SC, Ly D, Yang SYC, Wang BX, Clouthier DL, St Paul M, Gadalla R, Noamani B, Garcia-Batres CR, Boross-Harmer S, Bedard PL, Pugh TJ, Spreafico A, Hirano N, Razak ARA, Ohashi PS. Tumor reactive γδ T cells contribute to a complete response to PD-1 blockade in a Merkel cell carcinoma patient. Nat Commun 2024; 15:1094. [PMID: 38321065 PMCID: PMC10848161 DOI: 10.1038/s41467-024-45449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Immunotherapies targeting PD-1/PD-L1 are now widely used in the clinic to treat a variety of malignancies. While most of the research on T cell exhaustion and PD-1 blockade has been focused on conventional αβ T cells, the contribution of innate-like T cells such as γδ T cells to anti-PD-1/PD-L1 mediated therapy is limited. Here we show that tumor reactive γδ T cells respond to PD-1 blockade in a Merkel cell carcinoma (MCC) patient experiencing a complete response to therapy. We find clonally expanded γδ T cells in the blood and tumor after pembrolizumab treatment, and this Vγ2Vδ1 clonotype recognizes Merkel cancer cells in a TCR-dependent manner. Notably, the intra-tumoral γδ T cells in the MCC patient are characterized by higher expression of PD-1 and TIGIT, relative to conventional CD4 and CD8 T cells. Our results demonstrate that innate-like T cells could also contribute to an anti-tumor response after PD-1 blockade.
Collapse
Affiliation(s)
- Scott C Lien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dalam Ly
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Derek L Clouthier
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramy Gadalla
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Babak Noamani
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Sarah Boross-Harmer
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Albiruni R A Razak
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Wang CQ, Lim PY, Tan AHM. Gamma/delta T cells as cellular vehicles for anti-tumor immunity. Front Immunol 2024; 14:1282758. [PMID: 38274800 PMCID: PMC10808317 DOI: 10.3389/fimmu.2023.1282758] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Adoptive cellular immunotherapy as a new paradigm to treat cancers is exemplified by the FDA approval of six chimeric antigen receptor-T cell therapies targeting hematological malignancies in recent years. Conventional αβ T cells applied in these therapies have proven efficacy but are confined almost exclusively to autologous use. When infused into patients with mismatched human leukocyte antigen, αβ T cells recognize tissues of such patients as foreign and elicit devastating graft-versus-host disease. Therefore, one way to overcome this challenge is to use naturally allogeneic immune cell types, such as γδ T cells. γδ T cells occupy the interface between innate and adaptive immunity and possess the capacity to detect a wide variety of ligands on transformed host cells. In this article, we review the fundamental biology of γδ T cells, including their subtypes, expression of ligands, contrasting roles in and association with cancer prognosis or survival, as well as discuss the gaps in knowledge pertaining to this cell type which we currently endeavor to elucidate. In addition, we propose how to harness the unique properties of γδ T cells for cellular immunotherapy based on lessons gleaned from past clinical trials and provide an update on ongoing trials involving these cells. Lastly, we elaborate strategies that have been tested or can be explored to improve the anti-tumor activity and durability of γδ T cells in vivo.
Collapse
Affiliation(s)
- Chelsia Qiuxia Wang
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yu Lim
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Andy Hee-Meng Tan
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology (SIT), Singapore, Singapore
| |
Collapse
|
32
|
Etherington MS, Hanna AN, Medina BD, Liu M, Tieniber AD, Kwak HV, Tardy KJ, Levin L, Do KJ, Rossi F, Zeng S, DeMatteo RP. Tyrosine Kinase Inhibition Activates Intratumoral γδ T Cells in Gastrointestinal Stromal Tumor. Cancer Immunol Res 2024; 12:107-119. [PMID: 37922405 PMCID: PMC10842124 DOI: 10.1158/2326-6066.cir-23-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/09/2023] [Accepted: 10/31/2023] [Indexed: 11/05/2023]
Abstract
γδ T cells are a rare but potent subset of T cells with pleiotropic functions. They commonly reside within tumors but the response of γδ T cells to tyrosine kinase inhibition is unknown. To address this, we studied a genetically engineered mouse model of gastrointestinal stromal tumor (GIST) driven by oncogenic Kit signaling that responds to the Kit inhibitor imatinib. At baseline, γδ T cells were antitumoral, as blockade of either γδ T-cell receptor or IL17A increased tumor weight and decreased antitumor immunity. However, imatinib therapy further stimulated intratumoral γδ T cells, as determined by flow cytometry and single-cell RNA sequencing (scRNA-seq). Imatinib expanded a highly activated γδ T-cell subset with increased IL17A production and higher expression of immune checkpoints and cytolytic effector molecules. Consistent with the mouse model, γδ T cells produced IL17A in fresh human GIST specimens, and imatinib treatment increased γδ T-cell gene signatures, as measured by bulk tumor RNA-seq. Furthermore, tumor γδ T cells correlated with survival in patients with GIST. Our findings highlight the interplay between tumor cell oncogene signaling and antitumor immune responses and identify γδ T cells as targets for immunotherapy in GIST.
Collapse
Affiliation(s)
- Mark S Etherington
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew N Hanna
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin D Medina
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mengyuan Liu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew D Tieniber
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyunjee V Kwak
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine J Tardy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lillian Levin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin J Do
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ferdinando Rossi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shan Zeng
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald P DeMatteo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Li Y, Mo XP, Yao H, Xiong QX. Research Progress of γδT Cells in Tumor Immunotherapy. Cancer Control 2024; 31:10732748241284863. [PMID: 39348473 PMCID: PMC11459529 DOI: 10.1177/10732748241284863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 10/02/2024] Open
Abstract
Background: γδT cells are special innate lymphoid cells, which are not restricted by major histocompatibility complex (MHC). γδT cells mainly exist in human epidermis and mucosal epithelium. They can secrete a variety of cytokines and chemokines involved in immune regulation, and produce effective cytotoxic responses to cancer cells. Purpose: To investigate the role of γδT cells in tumor immunotherapy, to understand its anti-tumor mechanism, and to explore the synergistic effect with other treatment modalities. This therapy is expected to become an important means of cancer treatment. Research Design: In this review presents a comprehensive analysis of the existing literature, focusing on the efficacy of γδT cells in a variety of tumor types. Results: The mechanism of γδT cells recognizing tumor antigens and killing tumor was clarified. The tumor immunotherapy based on γδT cells and its application in clinical practice were summarized. Conclusions: γδT cells have shown promising potential in tumor immunotherapy, but the therapeutic effect varies according to the type of tumor, and some patients have poor response. There are still some challenges in the treatment of this disease, such as non-standard expansion regimens and different responses of patients, indicating that the existing treatment methods are not complete. Future research should focus on perfecting γδT cell expansion protocols, gaining a deeper understanding of its anti-tumor mechanisms, and exploring synergies with other treatment modalities. This multifaceted study will promote the development of γδT cells in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Xin-pei Mo
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Hong Yao
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Qiu-xia Xiong
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| |
Collapse
|
34
|
Yue M, Hu S, Sun H, Tuo B, Jia B, Chen C, Wang W, Liu J, Liu Y, Sun Z, Hu J. Extracellular vesicles remodel tumor environment for cancer immunotherapy. Mol Cancer 2023; 22:203. [PMID: 38087360 PMCID: PMC10717809 DOI: 10.1186/s12943-023-01898-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Tumor immunotherapy has transformed neoplastic disease management, yet low response rates and immune complications persist as major challenges. Extracellular vesicles including exosomes have emerged as therapeutic agents actively involved in a diverse range of pathological conditions. Mounting evidence suggests that alterations in the quantity and composition of extracellular vesicles (EVs) contribute to the remodeling of the immune-suppressive tumor microenvironment (TME), thereby influencing the efficacy of immunotherapy. This revelation has sparked clinical interest in utilizing EVs for immune sensitization. In this perspective article, we present a comprehensive overview of the origins, generation, and interplay among various components of EVs within the TME. Furthermore, we discuss the pivotal role of EVs in reshaping the TME during tumorigenesis and their specific cargo, such as PD-1 and non-coding RNA, which influence the phenotypes of critical immune cells within the TME. Additionally, we summarize the applications of EVs in different anti-tumor therapies, the latest advancements in engineering EVs for cancer immunotherapy, and the challenges encountered in clinical translation. In light of these findings, we advocate for a broader understanding of the impact of EVs on the TME, as this will unveil overlooked therapeutic vulnerabilities and potentially enhance the efficacy of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Ming Yue
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
35
|
Costa GP, Mensurado S, Silva-Santos B. Therapeutic avenues for γδ T cells in cancer. J Immunother Cancer 2023; 11:e007955. [PMID: 38007241 PMCID: PMC10680012 DOI: 10.1136/jitc-2023-007955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/27/2023] Open
Abstract
γδ T cells are regarded as promising effector lymphocytes for next-generation cancer immunotherapies. In spite of being relatively rare in human peripheral blood, γδ T cells are more abundant in epithelial tissues where many tumors develop, and have been shown to actively participate in anticancer immunity as cytotoxic cells or as "type 1" immune orchestrators. A major asset of γδ T cells for tackling advanced cancers is their independence from antigen presentation via the major histocompatibility complex, which clearly sets them apart from conventional αβ T cells. Here we discuss the main therapeutic strategies based on human γδ T cells. These include antibody-based bispecific engagers and adoptive cell therapies, either focused on the Vδ1+ or Vδ2+ γδ T-cell subsets, which can be expanded selectively and differentiated or engineered to maximize their antitumor functions. We review the preclinical data that supports each of the therapeutic strategies under development; and summarize the clinical trials being pursued towards establishing γδ T cell-based treatments for solid and hematological malignancies.
Collapse
Affiliation(s)
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
37
|
Usaite I, Biswas D, Dijkstra K, Watkins TB, Pich O, Puttick C, Angelova M, Thakkar K, Hiley C, Birkbak N, Kok M, Zaccaria S, Wu Y, Litchfield K, Swanton C, Kanu N. Quantifying the impact of immunotherapy on RNA dynamics in cancer. J Immunother Cancer 2023; 11:e007870. [PMID: 37914385 PMCID: PMC10626770 DOI: 10.1136/jitc-2023-007870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Checkpoint inhibitor (CPI) immunotherapies have provided durable clinical responses across a range of solid tumor types for some patients with cancer. Nonetheless, response rates to CPI vary greatly between cancer types. Resolving intratumor transcriptomic changes induced by CPI may improve our understanding of the mechanisms of sensitivity and resistance. METHODS We assembled a cohort of longitudinal pre-therapy and on-therapy samples from 174 patients treated with CPI across six cancer types by leveraging transcriptomic sequencing data from five studies. RESULTS Meta-analyses of published RNA markers revealed an on-therapy pattern of immune reinvigoration in patients with breast cancer, which was not discernible pre-therapy, providing biological insight into the impact of CPI on the breast cancer immune microenvironment. We identified 98 breast cancer-specific correlates of CPI response, including 13 genes which are known IO targets, such as toll-like receptors TLR1, TLR4, and TLR8, that could hold potential as combination targets for patients with breast cancer receiving CPI treatment. Furthermore, we demonstrate that a subset of response genes identified in breast cancer are already highly expressed pre-therapy in melanoma, and additionally we establish divergent RNA dynamics between breast cancer and melanoma following CPI treatment, which may suggest distinct immune microenvironments between the two cancer types. CONCLUSIONS Overall, delineating longitudinal RNA dynamics following CPI therapy sheds light on the mechanisms underlying diverging response trajectories, and identifies putative targets for combination therapy.
Collapse
Affiliation(s)
- Ieva Usaite
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, UK
| | - Krijn Dijkstra
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Thomas Bk Watkins
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Clare Puttick
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Krupa Thakkar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Crispin Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Nicolai Birkbak
- Department of Molecular Medicine, Aarhus Universitet, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus Universitet, Aarhus, Denmark
| | - Marleen Kok
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Yin Wu
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Peter Gorer Department of Immunobiology and Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| |
Collapse
|
38
|
Wang J, Peng Z, Guo J, Wang Y, Wang S, Jiang H, Wang M, Xie Y, Li X, Hu M, Xie Y, Cheng H, Li T, Jia L, Song J, Wang Y, Hou J, Liu Z. CXCL10 Recruitment of γδ T Cells into the Hypoxic Bone Marrow Environment Leads to IL17 Expression and Multiple Myeloma Progression. Cancer Immunol Res 2023; 11:1384-1399. [PMID: 37586075 DOI: 10.1158/2326-6066.cir-23-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
In multiple myeloma (MM), bone marrow stromal cells (BMSC) shape a unique niche within the bone marrow, promoting T-cell dysfunction and driving MM progression; however, the precise underlying mechanisms remain elusive. Here, we show that BMSC-mediated reprogramming of MM cells led to heightened production of CXCL10. CXCL10 orchestrated the recruitment of γδ T cells into the bone marrow, and this was observed in both the Vk*MYC and 5TGM1 mouse models of MM, as well as in patients experiencing refractory or relapsed MM. Furthermore, the dysfunctional γδ T cells in the MM bone marrow niche exhibited increased PD-1 expression and IL17 production. In the Vk*MYC mouse model, MM-associated bone lesions and mortality were markedly alleviated in Tcrd-/- mice, and MM disease progression could be rescued in these mice upon transplantation of γδ T cells expanded from wild-type mice, but not from Il17-/- mice. Mechanistically, the hypoxic microenvironment prevailing in the MM bone marrow niche stimulated the expression of steroid receptor coactivator 3 (SRC-3) in γδ T cells, which in turn interacted with the transcriptional factor RORγt, promoting Il17 transcription. Pharmacologic inhibition of SRC-3 utilizing SI-2 effectively suppressed Il17A expression in γδ T cells, leading to alleviation of MM progression in the murine models and enhancing the anti-multiple myeloma efficacy of bortezomib. Our results illuminated the bone marrow microenvironment's involvement in provoking γδ T-cell dysfunction throughout MM progression and suggest SRC-3 inhibition as a promising strategy to enhance the effectiveness of immunotherapies targeting γδ T cells.
Collapse
Affiliation(s)
- Jingya Wang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ziyi Peng
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jing Guo
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Yixuan Wang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Sheng Wang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Hongmei Jiang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Mengqi Wang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ying Xie
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xin Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Meilin Hu
- Tianjin Medical University School of Stomatology, Heping, Tianjin, China
| | - Yangyang Xie
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Hao Cheng
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Tiantian Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Linchuang Jia
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yafei Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jian Hou
- Department of Hematology, Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| |
Collapse
|
39
|
Zhao H, Lin Z, Zhang Y, Liu J, Chen Q. Investigating the Heterogeneity of Immune Cells in Triple-Negative Breast Cancer at the Single-Cell Level before and after Paclitaxel Chemotherapy. Int J Mol Sci 2023; 24:14188. [PMID: 37762493 PMCID: PMC10532302 DOI: 10.3390/ijms241814188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the numerous treatments for triple-negative breast cancer (TNBC), chemotherapy is still one of the most effective methods. However, the impact of chemotherapy on immune cells is not yet clear. Therefore, this study aims to explore the different roles of immune cells and their relationship with treatment outcomes in the tumor and blood before and after paclitaxel therapy. We analyzed the single-cell sequencing data of immune cells in tumors and blood before and after paclitaxel treatment. We confirmed a high correlation between T cells, innate lymphoid cells (ILCs), and therapeutic efficacy. The differences in T cells were analyzed related to therapeutic outcomes before and after paclitaxel treatment. In the effective treatment group, post-treatment tumor-infiltrating CD8+ T cells were associated with elevated inflammation, cytokines, and Toll-like-receptor-related gene expression, which were expected to enhance anti-tumor capabilities in tumor immune cells. Moreover, we found that the expression of immune-checkpoint-related genes is also correlated with treatment outcomes. In addition, an ILC subgroup, b_ILC1-XCL1, in which the corresponding marker gene XCL1 was highly expressed, was mainly present in the effective treatment group and was also associated with higher patient survival rates. Overall, we found differences in gene expression in T cells across different groups and a correlation between the expression of immune checkpoint genes in T cells, the b_ILC1-XCL1 subgroup, and patient prognosis.
Collapse
Affiliation(s)
- Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
| | - Zhang Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yangfan Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
| | - Jingjing Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
| |
Collapse
|
40
|
Huang HI, Xue Y, Jewell ML, Tan CY, Theriot B, Aggarwal N, Dockterman J, Lin YD, Schroeder EA, Wang D, Xiong N, Coers J, Shinohara ML, Surana NK, Hammer GE. A binary module for microbiota-mediated regulation of γδ17 cells, hallmarked by microbiota-driven expression of programmed cell death protein 1. Cell Rep 2023; 42:112951. [PMID: 37556321 PMCID: PMC10588736 DOI: 10.1016/j.celrep.2023.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Little is known about how microbiota regulate innate-like γδ T cells or how these restrict their effector functions within mucosal barriers, where microbiota provide chronic stimulation. Here, we show that microbiota-mediated regulation of γδ17 cells is binary, where microbiota instruct in situ interleukin-17 (IL-17) production and concomitant expression of the inhibitory receptor programmed cell death protein 1 (PD-1). Microbiota-driven expression of PD-1 and IL-17 and preferential adoption of a PD-1high phenotype are conserved for γδ17 cells across multiple mucosal barriers. Importantly, microbiota-driven PD-1 inhibits in situ IL-17 production by mucosa-resident γδ17 effectors, linking microbiota to their simultaneous activation and suppression. We further show the dynamic nature of this microbiota-driven module and define an inflammation-associated activation state for γδ17 cells marked by augmented PD-1, IL-17, and lipid uptake, thus linking the microbiota to dynamic subset-specific activation and metabolic remodeling to support γδ17 effector functions in a microbiota-dense tissue environment.
Collapse
Affiliation(s)
- Hsin-I Huang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Xue
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark L Jewell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Barbara Theriot
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Erin A Schroeder
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Donghai Wang
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Neeraj K Surana
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Gianna Elena Hammer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
41
|
Tan G, Spillane KM, Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. BIOLOGY 2023; 12:1079. [PMID: 37626965 PMCID: PMC10452210 DOI: 10.3390/biology12081079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.
Collapse
Affiliation(s)
- Ge Tan
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | | | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
42
|
Coffelt SB, Suzuki T. The two sides of the γδ T cell coin. NATURE CANCER 2023; 4:1056-1057. [PMID: 37474834 DOI: 10.1038/s43018-023-00587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Seth B Coffelt
- Cancer Research UK Beatson Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Toshiyasu Suzuki
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
43
|
Zlatareva I, Wu Y. Local γδ T cells: translating promise to practice in cancer immunotherapy. Br J Cancer 2023; 129:393-405. [PMID: 37311978 PMCID: PMC10403623 DOI: 10.1038/s41416-023-02303-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Rapid bench-to-bedside translation of basic immunology to cancer immunotherapy has revolutionised the clinical practice of oncology over the last decade. Immune checkpoint inhibitors targeting αβ T cells now offer durable remissions and even cures for some patients with hitherto treatment-refractory metastatic cancers. Unfortunately, these treatments only benefit a minority of patients and efforts to improve efficacy through combination therapies utilising αβ T cells have seen diminishing returns. Alongside αβ T cells and B cells, γδ T cells are a third lineage of adaptive lymphocytes. Less is known about these cells, and they remain relatively untested in cancer immunotherapy. Whilst preclinical evidence supports their utility, the few early-phase trials involving γδ T cells have failed to demonstrate convincing efficacy in solid cancers. Here we review recent progress in our understanding of how these cells are regulated, especially locally within tissues, and the potential for translation. In particular, we focus on the latest advances in the field of butyrophilin (BTN) and BTN-like (BTNL) regulation of γδ T cells and speculate on how these advances may address the limitations of historical approaches in utilising these cells, as well as how they may inform novel approaches in deploying these cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Iva Zlatareva
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 9RT, UK.
- Department of Medical Oncology, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
44
|
Geng P, Chi Y, Yuan Y, Yang M, Zhao X, Liu Z, Liu G, Liu Y, Zhu L, Wang S. Novel chimeric antigen receptor T cell-based immunotherapy: a perspective for triple-negative breast cancer. Front Cell Dev Biol 2023; 11:1158539. [PMID: 37457288 PMCID: PMC10339351 DOI: 10.3389/fcell.2023.1158539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and does not express estrogen receptor (ER), progesterone (PR), or human epidermal growth factor receptor 2 (HER2). It has a poor prognosis, and traditional endocrine and anti-HER2 targeted therapies have low efficacy against it. In contrast, surgery, radiotherapy, and/or systemic chemotherapy are relatively effective at controlling TNBC. The resistance of TNBC to currently available clinical therapies has had a significantly negative impact on its treatment outcomes. Hence, new therapeutic options are urgently required. Chimeric antigen receptor T cell (CAR-T) therapy is a type of immunotherapy that integrates the antigen specificity of antibodies and the tumor-killing effect of T cells. CAR-T therapy has demonstrated excellent clinical efficacy against hematological cancers. However, its efficacy against solid tumors such as TNBC is inadequate. The present review aimed to investigate various aspects of CAR-T administration as TNBC therapy. We summarized the potential therapeutic targets of CAR-T that were identified in preclinical studies and clinical trials on TNBC. We addressed the limitations of using CAR-T in the treatment of TNBC in particular and solid tumors in general and explored key strategies to overcome these impediments. Finally, we comprehensively examined the advancement of CAR-T immunotherapy as well as countermeasures that could improve its efficacy as a TNBC treatment and the prognosis of patients with this type of cancer.
Collapse
Affiliation(s)
- Peizhen Geng
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yuhua Chi
- Department of General Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuan Yuan
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Maoquan Yang
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Xiaohua Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhengchun Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Guangwei Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yihui Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Liang Zhu
- Clinical Research Center, Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuai Wang
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
45
|
Erber J, Herndler-Brandstetter D. Regulation of T cell differentiation and function by long noncoding RNAs in homeostasis and cancer. Front Immunol 2023; 14:1181499. [PMID: 37346034 PMCID: PMC10281531 DOI: 10.3389/fimmu.2023.1181499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) increase in genomes of complex organisms and represent the largest group of RNA genes transcribed in mammalian cells. Previously considered only transcriptional noise, lncRNAs comprise a heterogeneous class of transcripts that are emerging as critical regulators of T cell-mediated immunity. Here we summarize the lncRNA expression landscape of different T cell subsets and highlight recent advances in the role of lncRNAs in regulating T cell differentiation, function and exhaustion during homeostasis and cancer. We discuss the different molecular mechanisms of lncRNAs and highlight lncRNAs that can serve as novel targets to modulate T cell function or to improve the response to cancer immunotherapies by modulating the immunosuppressive tumor microenvironment.
Collapse
|
46
|
Nixon BG, Gao S, Wang X, Li MO. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol 2023; 23:346-362. [PMID: 36380023 PMCID: PMC10634249 DOI: 10.1038/s41577-022-00796-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself. The complexity of TGFβ-regulated immune cell circuitries, as well as the contextual roles of TGFβ signalling in cancer cells and tumour stromal cells, necessitates the use of rigorous experimental systems that closely recapitulate human cancer, such as autochthonous tumour models, to uncover the underlying immunobiology. The diverse functions of TGFβ in healthy tissues further complicate the search for effective and safe cancer therapeutics targeting the TGFβ pathway. Here we discuss the contextual complexity of TGFβ signalling in tumour-elicited immune responses and explain how understanding this may guide the development of mechanism-based cancer immunotherapy.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
47
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
48
|
Rancan C, Arias-Badia M, Dogra P, Chen B, Aran D, Yang H, Luong D, Ilano A, Li J, Chang H, Kwek SS, Zhang L, Lanier LL, Meng MV, Farber DL, Fong L. Exhausted intratumoral Vδ2 - γδ T cells in human kidney cancer retain effector function. Nat Immunol 2023; 24:612-624. [PMID: 36928415 PMCID: PMC10063448 DOI: 10.1038/s41590-023-01448-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Gamma delta (γδ) T cells reside within human tissues including tumors, but their function in mediating antitumor responses to immune checkpoint inhibition is unknown. Here we show that kidney cancers are infiltrated by Vδ2- γδ T cells, with equivalent representation of Vδ1+ and Vδ1- cells, that are distinct from γδ T cells found in normal human tissues. These tumor-resident Vδ2- T cells can express the transcriptional program of exhausted αβ CD8+ T cells as well as canonical markers of terminal T-cell exhaustion including PD-1, TIGIT and TIM-3. Although Vδ2- γδ T cells have reduced IL-2 production, they retain expression of cytolytic effector molecules and co-stimulatory receptors such as 4-1BB. Exhausted Vδ2- γδ T cells are composed of three distinct populations that lack TCF7, are clonally expanded and express cytotoxic molecules and multiple Vδ2- T-cell receptors. Human tumor-derived Vδ2- γδ T cells maintain cytotoxic function and pro-inflammatory cytokine secretion in vitro. The transcriptional program of Vδ2- T cells in pretreatment tumor biopsies was used to predict subsequent clinical responses to PD-1 blockade in patients with cancer. Thus, Vδ2- γδ T cells within the tumor microenvironment can contribute to antitumor efficacy.
Collapse
Affiliation(s)
- Chiara Rancan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Marcel Arias-Badia
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Brandon Chen
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Dvir Aran
- The Taub Faculty of Computer Science and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hai Yang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Diamond Luong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Arielle Ilano
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jacky Li
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Hewitt Chang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Serena S Kwek
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Li Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Lewis L Lanier
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Maxwell V Meng
- Department of Urology, University of California, San Francisco, CA, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, CA, USA.
| |
Collapse
|
49
|
Ma L, Feng Y, Zhou Z. A close look at current γδ T-cell immunotherapy. Front Immunol 2023; 14:1140623. [PMID: 37063836 PMCID: PMC10102511 DOI: 10.3389/fimmu.2023.1140623] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Owing to their antitumor and major histocompatibility complex (MHC)-independent capacities, γδ T cells have gained popularity in adoptive T-cell immunotherapy in recent years. However, many unknowns still exist regarding γδ T cells, and few clinical data have been collected. Therefore, this review aims to describe all the main features of the applications of γδ T cells and provide a systematic view of current γδ T-cell immunotherapy. Specifically, this review will focus on how γδ T cells performed in treating cancers in clinics, on the γδ T-cell clinical trials that have been conducted to date, and the role of γδ T cells in the pharmaceutical industry.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Research and Development Department, Beijing Dingchengtaiyuan (DCTY) Biotech Co., Ltd., Beijing, China
| | - Yanmin Feng
- Research and Development Department, Beijing Dingchengtaiyuan (DCTY) Biotech Co., Ltd., Beijing, China
| | - Zishan Zhou
- Research and Development Department, Beijing Dingchengtaiyuan (DCTY) Biotech Co., Ltd., Beijing, China
- *Correspondence: Zishan Zhou,
| |
Collapse
|
50
|
Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell 2023; 186:1708-1728. [PMID: 36931265 DOI: 10.1016/j.cell.2023.01.040] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 03/17/2023]
Abstract
Breast cancer remains a leading cause of cancer-related mortality in women, reflecting profound disease heterogeneity, metastasis, and therapeutic resistance. Over the last decade, genomic and transcriptomic data have been integrated on an unprecedented scale and revealed distinct cancer subtypes, critical molecular drivers, clonal evolutionary trajectories, and prognostic signatures. Furthermore, multi-dimensional integration of high-resolution single-cell and spatial technologies has highlighted the importance of the entire breast cancer ecosystem and the presence of distinct cellular "neighborhoods." Clinically, a plethora of new targeted therapies has emerged, now being rapidly incorporated into routine care. Resistance to therapy, however, remains a crucial challenge for the field.
Collapse
Affiliation(s)
- Emma Nolan
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Geoffrey J Lindeman
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jane E Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|