1
|
Russell JK, Conley AC, Wilson JE, Newhouse PA. Cholinergic System Structure and Function Changes in Individuals with Down Syndrome During the Development of Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39485646 DOI: 10.1007/7854_2024_523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adults with Down syndrome represent the population with the highest risk of developing Alzheimer's disease worldwide. The cholinergic system is known to decline in Alzheimer's disease, with this decline responsible for many of the cognitive deficits that develop. The integrity of the cholinergic system across the lifespan in individuals with Down syndrome is not well characterized. Small fetal and infant post-mortem studies suggest an intact cholinergic projection system with a potential reduction in cholinergic receptors, while post-mortem studies in adults with Down syndrome reveal an age-related decrease in cholinergic integrity. Advances in magnetic resonance imaging (MRI) and positron emission tomography (PET) over the last 20 years have allowed for studies investigating the changes in cholinergic integrity across aging and during the development of Alzheimer's disease. One large cross-sectional study demonstrated reduced cholinergic basal forebrain volume measured by MRI associated with increasing Alzheimer's disease pathology. In a small cohort of adults with Down syndrome, we have recently reported that PET measures of cholinergic integrity negatively correlated with amyloid accumulation. New disease-modifying treatments for Alzheimer's disease and treatments under development for Alzheimer's disease in Down syndrome have the potential to preserve the cholinergic system, while treatments targeting the cholinergic system directly may be used in conjunction with disease-modifying therapies to improve cognitive function further. A greater understanding of cholinergic neuronal and receptor integrity across the lifespan in individuals with Down syndrome will provide insights as to when targeting the cholinergic system is an appropriate therapeutic option and, in the future, maybe a valuable screening tool to identify individuals that would most benefit from cholinergic interventions.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander C Conley
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jo Ellen Wilson
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Paul A Newhouse
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
2
|
Walker LC, Huckstep KL, Becker HC, Langmead CJ, Lawrence AJ. Targeting muscarinic receptors for the treatment of alcohol use disorders: Opportunities and hurdles for clinical development. Br J Pharmacol 2024; 181:4385-4398. [PMID: 37005377 DOI: 10.1111/bph.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Emerging evidence suggests muscarinic acetylcholine receptors represent novel targets to treat alcohol use disorder. In this review, we draw from literature across medicinal chemistry, molecular biology, addiction and learning/cognition fields to interrogate the proposition for muscarinic receptor ligands in treating various aspects of alcohol use disorder, including cognitive dysfunction, motivation to consume alcohol and relapse. In support of this proposition, we describe cholinergic dysfunction in the pathophysiology of alcohol use disorder at a network level, including alcohol-induced adaptations present in both human post-mortem brains and reverse-translated rodent models. Preclinical behavioural pharmacology implicates specific muscarinic receptors, in particular, M4 and M5 receptors, as potential therapeutic targets worthy of further interrogation. We detail how these receptors can be selectively targeted in vivo by the use of subtype-selective allosteric modulators, a strategy that overcomes the issue of targeting a highly conserved orthosteric site bound by acetylcholine. Finally, we highlight the intense pharma interest in allosteric modulators of muscarinic receptors for other indications that provide an opportunity for repurposing into the alcohol use disorder space and provide some currently unanswered questions as a roadmap for future investigation.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kade L Huckstep
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Belov V, Guehl NJ, Duvvuri S, Iredale P, Moon SH, Dhaynaut M, Chakilam S, MacDonagh AC, Rice PA, Yokell DL, Renger JJ, El Fakhri G, Normandin MD. PET imaging of M4 muscarinic acetylcholine receptors in rhesus macaques using [ 11C]MK-6884: Quantification with kinetic modeling and receptor occupancy by CVL-231 (emraclidine), a novel positive allosteric modulator. J Cereb Blood Flow Metab 2024; 44:1329-1342. [PMID: 38477292 PMCID: PMC11342722 DOI: 10.1177/0271678x241238820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Stimulation of the M4 muscarinic acetylcholine receptor reduces striatal hyperdopaminergia, suggesting its potential as a therapeutic target for schizophrenia. Emraclidine (CVL-231) is a novel, highly selective, positive allosteric modulator (PAM) of M4 muscarinic acetylcholine receptors i.e. acts as a modulator that increases the response of these receptors. First, we aimed to further characterize the positron emission tomography (PET) imaging and quantification performance of a recently developed M4 PAM radiotracer, [11C]MK-6884, in non-human primates (NHPs). Second, we applied these results to determine the receptor occupancy of CVL-231 as a function of dose. Using paired baseline-blocking PET scans, we quantified total volume of distribution, binding potential, and receptor occupancy. Both blood-based and reference region-based methods quantified M4 receptor levels across brain regions. The 2-tissue 4-parameter kinetic model best fitted regional [11C]MK-6884-time activity curves. Only the caudate nucleus and putamen displayed statistically significant [11C]MK-6884 uptake and dose-dependent blocking by CVL-231. For binding potential and receptor occupancy quantification, the simplified reference tissue model using the grey cerebellum as a reference region was employed. CVL-231 demonstrated dose-dependent M4 receptor occupancy in the striatum of the NHP brain and shows promise for further development in clinical trials.
Collapse
Affiliation(s)
- Vasily Belov
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alexander C MacDonagh
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Rice
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel L Yokell
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Qi A, Kling HE, Billard N, Rodriguez AL, Peng L, Dickerson JW, Engers JL, Bender AM, Moehle MS, Lindsley CW, Rook JM, Niswender CM. Development of a Selective and High Affinity Radioligand, [ 3H]VU6013720, for the M 4 Muscarinic Receptor. Mol Pharmacol 2023; 104:195-202. [PMID: 37595966 PMCID: PMC10586508 DOI: 10.1124/molpharm.122.000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
M4 muscarinic receptors are highly expressed in the striatum and cortex, brain regions that are involved in diseases such as Parkinson's disease, schizophrenia, and dystonia. Despite potential therapeutic advantages of specifically targeting the M4 receptor, it has been historically challenging to develop highly selective ligands, resulting in undesired off-target activity at other members of the muscarinic receptor family. Recently, we have reported first-in-class, potent, and selective M4 receptor antagonists. As an extension of that work, we now report the development and characterization of a radiolabeled M4 receptor antagonist, [3H]VU6013720, with high affinity (pKd of 9.5 ± 0.2 at rat M4, 9.7 at mouse M4, and 10 ± 0.1 at human M4 with atropine to define nonspecific binding) and no significant binding at the other muscarinic subtypes. Binding assays using this radioligand in rodent brain tissues demonstrate loss of specific binding in Chrm4 knockout animals. Dissociation kinetics experiments with various muscarinic ligands show differential effects on the dissociation of [3H]VU6013720 from M4 receptors, suggesting a binding site that is overlapping but may be distinct from the orthosteric site. Overall, these results demonstrate that [3H]VU6013720 is the first highly selective antagonist radioligand for the M4 receptor, representing a useful tool for studying the basic biology of M4 as well for the support of M4 receptor-based drug discovery. SIGNIFICANCE STATEMENT: This manuscript describes the development and characterization of a novel muscarinic (M) acetylcholine subtype 4 receptor antagonist radioligand, [3H]VU6013720. This ligand binds to or overlaps with the acetylcholine binding site, providing a highly selective radioligand for the M4 receptor that can be used to quantify M4 protein expression in vivo and probe the selective interactions of acetylcholine with M4 versus the other members of the muscarinic receptor family.
Collapse
Affiliation(s)
- Aidong Qi
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Haley E Kling
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Natasha Billard
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Alice L Rodriguez
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Li Peng
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Jonathan W Dickerson
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Julie L Engers
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Aaron M Bender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Mark S Moehle
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Craig W Lindsley
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Jerri M Rook
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Wang J, Jin C, Zhou J, Zhou R, Tian M, Lee HJ, Zhang H. PET molecular imaging for pathophysiological visualization in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:765-783. [PMID: 36372804 PMCID: PMC9852140 DOI: 10.1007/s00259-022-05999-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. The exact etiology of AD is unclear as yet, and no effective treatments are currently available, making AD a tremendous burden posed on the whole society. As AD is a multifaceted and heterogeneous disease, and most biomarkers are dynamic in the course of AD, a range of biomarkers should be established to evaluate the severity and prognosis. Positron emission tomography (PET) offers a great opportunity to visualize AD from diverse perspectives by using radiolabeled agents involved in various pathophysiological processes; PET imaging technique helps to explore the pathomechanisms of AD comprehensively and find out the most appropriate biomarker in each AD phase, leading to a better evaluation of the disease. In this review, we discuss the application of PET in the course of AD and summarized radiolabeled compounds with favorable imaging characteristics.
Collapse
Affiliation(s)
- Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Chentao Jin
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Jinyun Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Mei Tian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Hyeon Jeong Lee
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China ,grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
8
|
Structure-activity relationship of pyrazol-4-yl-pyridine derivatives and identification of a radiofluorinated probe for imaging the muscarinic acetylcholine receptor M 4. Acta Pharm Sin B 2023; 13:213-226. [PMID: 36815036 PMCID: PMC9939360 DOI: 10.1016/j.apsb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
There is an accumulating body of evidence implicating the muscarinic acetylcholine receptor 4 (M4) in schizophrenia and dementia with Lewy bodies, however, a clinically validated M4 positron emission tomography (PET) radioligand is currently lacking. As such, the aim of this study was to develop a suitable M4 PET ligand that allows the non-invasive visualization of M4 in the brain. Structure-activity relationship studies of pyrazol-4-yl-pyridine derivates led to the discovery of target compound 12 - a subtype-selective positive allosteric modulator (PAM). The radiofluorinated analogue, [18F]12, was synthesized in 28 ± 10% radiochemical yield, >37 GBq/μmol and an excellent radiochemical purity >99%. Initial in vitro autoradiograms on rodent brain sections were performed in the absence of carbachol and showed moderate specificity as well as a low selectivity of [18F]12 for the M4-rich striatum. However, in the presence of carbachol, a significant increase in tracer binding was observed in the rat striatum, which was reduced by >60% under blocking conditions, thus indicating that orthosteric ligand interaction is required for efficient binding of [18F]12 to the allosteric site. Remarkably, however, the presence of carbachol was not required for high specific binding in the non-human primate (NHP) and human striatum, and did not further improve the specificity and selectivity of [18F]12 in higher species. These results pointed towards significant species-differences and paved the way for a preliminary PET study in NHP, where peak brain uptake of [18F]12 was found in the putamen and temporal cortex. In conclusion, we report on the identification and preclinical development of the first radiofluorinated M4 PET radioligand with promising attributes. The availability of a clinically validated M4 PET radioligand harbors potential to facilitate drug development and provide a useful diagnostic tool for non-invasive imaging.
Collapse
|
9
|
Cookson J, Jonsson F. A new cholinergic mechanism for antipsychotics: emraclidine and M4 muscarinic receptors. Lancet 2022; 400:2159-2161. [PMID: 36528365 DOI: 10.1016/s0140-6736(22)02421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Affiliation(s)
- John Cookson
- Department of Psychological Medicine, Royal London Hospital, London E1 1BB, UK.
| | - Ferdinand Jonsson
- Department of Psychological Medicine, Royal London Hospital, London E1 1BB, UK
| |
Collapse
|
10
|
Tiepolt S, Meyer PM, Patt M, Deuther-Conrad W, Hesse S, Barthel H, Sabri O. PET Imaging of Cholinergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med 2022; 63:33S-44S. [PMID: 35649648 DOI: 10.2967/jnumed.121.263198] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
As a neuromodulator, the neurotransmitter acetylcholine plays an important role in cognitive, mood, locomotor, sleep/wake, and olfactory functions. In the pathophysiology of most neurodegenerative diseases, such as Alzheimer disease (AD) or Lewy body disorder (LBD), cholinergic receptors, transporters, or enzymes are involved and relevant as imaging targets. The aim of this review is to summarize current knowledge on PET imaging of cholinergic neurotransmission in neurodegenerative diseases. For PET imaging of presynaptic vesicular acetylcholine transporters (VAChT), (-)-18F-fluoroethoxybenzovesamicol (18F-FEOBV) was the first PET ligand that could be successfully translated to clinical application. Since then, the number of 18F-FEOBV PET investigations on patients with AD or LBD has grown rapidly and provided novel, important findings concerning the pathophysiology of AD and LBD. Regarding the α4β2 nicotinic acetylcholine receptors (nAChRs), various second-generation PET ligands, such as 18F-nifene, 18F-AZAN, 18F-XTRA, (-)-18F-flubatine, and (+)-18F-flubatine, were developed and successfully translated to human application. In neurodegenerative diseases such as AD and LBD, PET imaging of α4β2 nAChRs is of special value for monitoring disease progression and drugs directed to α4β2 nAChRs. For PET of α7 nAChR, 18F-ASEM and 11C-MeQAA were successfully applied in mild cognitive impairment and AD, respectively. The highest potential for α7 nAChR PET is seen in staging, in evaluating disease progression, and in therapy monitoring. PET of selective muscarinic acetylcholine receptors (mAChRs) is still in an early stage, as the development of subtype-selective radioligands is complicated. Promising radioligands to image mAChR subtypes M1 (11C-LSN3172176), M2 (18F-FP-TZTP), and M4 (11C-MK-6884) were developed and successfully translated to humans. PET imaging of mAChRs is relevant for the assessment and monitoring of therapies in AD and LBD. PET of acetylcholine esterase activity has been investigated since the 1990s. Many PET studies with 11C-PMP and 11C-MP4A demonstrated cortical cholinergic dysfunction in dementia associated with AD and LBD. Recent studies indicated a solid relationship between subcortical and cortical cholinergic dysfunction and noncognitive dysfunctions such as balance and gait in LBD. Taken together, PET of distinct components of cholinergic neurotransmission is of great interest for diagnosis, disease monitoring, and therapy monitoring and to gain insight into the pathophysiology of different neurodegenerative disorders.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | | | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| |
Collapse
|