1
|
Fujimoto S, Fujimoto A, Elorette C, Choi KS, Mayberg H, Russ B, Rudebeck P. What can neuroimaging of neuromodulation reveal about the basis of circuit therapies for psychiatry? Neuropsychopharmacology 2024; 50:184-195. [PMID: 39198580 PMCID: PMC11526173 DOI: 10.1038/s41386-024-01976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Neuromodulation is increasingly becoming a therapeutic option for treatment resistant psychiatric disorders. These non-invasive and invasive therapies are still being refined but are clinically effective and, in some cases, provide sustained symptom reduction. Neuromodulation relies on changing activity within a specific brain region or circuit, but the precise mechanisms of action of these therapies, is unclear. Here we review work in both humans and animals that has provided insight into how therapies such as deep brain and transcranial magnetic stimulation alter neural activity across the brain. We focus on studies that have combined neuromodulation with neuroimaging such as PET and MRI as these measures provide detailed information about the distributed networks that are modulated and thus insight into both the mechanisms of action of neuromodulation but also potentially the basis of psychiatric disorders. Further we highlight work in nonhuman primates that has revealed how neuromodulation changes neural activity at different scales from single neuron activity to functional connectivity, providing key insight into how neuromodulation influences the brain. Ultimately, these studies highlight the value of combining neuromodulation with neuroimaging to reveal the mechanisms through which these treatments influence the brain, knowledge vital for refining targeted neuromodulation therapies for psychiatric disorders.
Collapse
Affiliation(s)
- Satoka Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
- Department of Psychiatry, New York University at Langone, New York, NY, USA.
| | - Peter Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Hirabayashi T, Nagai Y, Hori Y, Hori Y, Oyama K, Mimura K, Miyakawa N, Iwaoki H, Inoue KI, Suhara T, Takada M, Higuchi M, Minamimoto T. Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates. Nat Commun 2024; 15:5369. [PMID: 38987235 PMCID: PMC11237144 DOI: 10.1038/s41467-024-49570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tetsuya Suhara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
3
|
Banai Tizkar R, McIver L, Wood CM, Roberts AC. Subcallosal area 25: Its responsivity to the stress hormone cortisol and its opposing effects on appetitive motivation in marmosets. Neurobiol Stress 2024; 31:100637. [PMID: 38741617 PMCID: PMC11089406 DOI: 10.1016/j.ynstr.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Aberrant activity in caudal subcallosal anterior cingulate cortex (scACC) is implicated in depression and anxiety symptomatology, with its normalisation a putative biomarker of successful treatment response. The function of scACC in emotion processing and mental health is not fully understood despite its known influence on stress-mediated processes through its rich expression of mineralocorticoid and glucocorticoid receptors. Here we examine the causal interaction between area 25 within scACC (scACC-25) and the stress hormone, cortisol, in the context of anhedonia and anxiety-like behaviour. In addition, the overall role of scACC-25 in hedonic capacity and motivation is investigated under transient pharmacological inactivation and overactivation. The results suggest that a local increase of cortisol in scACC-25 shows a rapid induction of anticipatory anhedonia and increased responsiveness to uncertain threat. Separate inactivation and overactivation of scACC-25 increased and decreased motivation and hedonic capacity, respectively, likely through different underlying mechanisms. Together, these data show that area scACC-25 has a causal role in consummatory and motivational behaviour and produces rapid responses to the stress hormone cortisol, that mediates anhedonia and anxiety-like behaviour.
Collapse
Affiliation(s)
- Rana Banai Tizkar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Lauren McIver
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | | | | |
Collapse
|
4
|
Gould SA, Hodgson A, Clarke HF, Robbins TW, Roberts AC. Comparative Roles of the Caudate and Putamen in the Serial Order of Behavior: Effects of Striatal Glutamate Receptor Blockade on Variable versus Fixed Spatial Self-Ordered Sequencing in Marmosets. eNeuro 2024; 11:ENEURO.0541-23.2024. [PMID: 38471779 PMCID: PMC10964048 DOI: 10.1523/eneuro.0541-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Self-ordered sequencing is an important executive function involving planning and executing a series of steps to achieve goal-directed outcomes. The lateral frontal cortex is implicated in this behavior, but downstream striatal outputs remain relatively unexplored. We trained marmosets on a three-stimulus self-ordered spatial sequencing task using a touch-sensitive screen to explore the role of the caudate nucleus and putamen in random and fixed response arrays. By transiently blocking glutamatergic inputs to these regions, using intrastriatal CNQX microinfusions, we demonstrate that the caudate and putamen are both required for, but contribute differently to, flexible and fixed sequencing. CNQX into either the caudate or putamen impaired variable array accuracy, and infusions into both simultaneously elicited greater impairment. We demonstrated that continuous perseverative errors in variable array were caused by putamen infusions, likely due to interference with the putamen's established role in monitoring motor feedback. Caudate infusions, however, did not affect continuous errors, but did cause an upward trend in recurrent perseveration, possibly reflecting interference with the caudate's established role in spatial working memory and goal-directed planning. In contrast to variable array performance, while both caudate and putamen infusions impaired fixed array responding, the combined effects were not additive, suggesting possible competing roles. Infusions into either region individually, but not simultaneously, led to continuous perseveration. Recurrent perseveration in fixed arrays was caused by putamen, but not caudate, infusions. These results are consistent overall with a role of caudate in planning and flexible responding and the putamen in more rigid habitual or automatic responding.
Collapse
Affiliation(s)
- Stacey Anne Gould
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Amy Hodgson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Hannah F Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
5
|
MINAMIMOTO T, NAGAI Y, OYAMA K. Imaging-based chemogenetics for dissecting neural circuits in nonhuman primates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:476-489. [PMID: 39401901 PMCID: PMC11535006 DOI: 10.2183/pjab.100.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 11/08/2024]
Abstract
Nonhuman primates, particularly macaque and marmoset monkeys, serve as invaluable models for studying complex brain functions and behavior. However, the lack of suitable genetic neuromodulation tools has constrained research at the network level. This review examines the application of a chemogenetic technology, specifically, designer receptors exclusively activated by designer drugs (DREADDs), to nonhuman primates. DREADDs offer a means of reversibly controlling neuronal activity within a specific cell type or neural pathway, effectively targeting multiple brain regions simultaneously. The combination of DREADDs with imaging techniques, such as positron emission tomography and magnetic resonance imaging, has significantly enhanced nonhuman primate research, facilitating the precise visualization and manipulation of specific brain circuits and enabling the detailed monitoring of changes in network activity, which can then be correlated with altered behavior. This review outlines these technological advances and considers their potential for enhancing our understanding of primate brain circuit function and developing novel therapeutic approaches for treating brain diseases.
Collapse
Affiliation(s)
- Takafumi MINAMIMOTO
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji NAGAI
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kei OYAMA
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
6
|
Alexander L, Hawkins PCT, Evans JW, Mehta MA, Zarate CA. Preliminary evidence that ketamine alters anterior cingulate resting-state functional connectivity in depressed individuals. Transl Psychiatry 2023; 13:371. [PMID: 38040678 PMCID: PMC10692230 DOI: 10.1038/s41398-023-02674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Activity changes within the anterior cingulate cortex (ACC) are implicated in the antidepressant effects of ketamine, but the ACC is cytoarchitectonically and functionally heterogeneous and ketamine's effects may be subregion specific. In the context of a double-blind randomized placebo-controlled crossover trial investigating the clinical and resting-state fMRI effects of intravenous ketamine vs. placebo in patients with treatment resistant depression (TRD) vs. healthy volunteers (HV), we used seed-based resting-state functional connectivity (rsFC) analyses to determine differential changes in subgenual ACC (sgACC), perigenual ACC (pgACC) and dorsal ACC (dACC) rsFC two days post-infusion. Across cingulate subregions, ketamine differentially modulated rsFC to the right insula and anterior ventromedial prefrontal cortex, compared to placebo, in TRD vs. HV; changes to pgACC-insula connectivity correlated with improvements in depression scores. Post-hoc analysis of each cingulate subregion separately revealed differential modulation of sgACC-hippocampal, sgACC-vmPFC, pgACC-posterior cingulate, and dACC-supramarginal gyrus connectivity. By comparing rsFC changes following ketamine vs. placebo in the TRD group alone, we found that sgACC rsFC was most substantially modulated by ketamine vs. placebo. Changes to sgACC-pgACC, sgACC-ventral striatal, and sgACC-dACC connectivity correlated with improvements in anhedonia symptoms. This preliminary evidence suggests that accurate segmentation of the ACC is needed to understand the precise effects of ketamine's antidepressant and anti-anhedonic action.
Collapse
Affiliation(s)
- Laith Alexander
- Institute of Psychiatry, Psychology and Neuroscience, King's College London & Centre for Neuroimaging Sciences, King's College London, London, UK.
| | - Peter C T Hawkins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London & Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London & Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Young ME, Spencer-Salmon C, Mosher C, Tamang S, Rajan K, Rudebeck PH. Temporally specific patterns of neural activity in interconnected corticolimbic structures during reward anticipation. Neuron 2023; 111:3668-3682.e5. [PMID: 37586366 PMCID: PMC10840822 DOI: 10.1016/j.neuron.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Functional neuroimaging studies indicate that interconnected parts of the subcallosal anterior cingulate cortex (ACC), striatum, and amygdala play a fundamental role in affect in health and disease. Yet, although the patterns of neural activity engaged in the striatum and amygdala during affective processing are well established, especially during reward anticipation, less is known about subcallosal ACC. Here, we recorded neural activity in non-human primate subcallosal ACC and compared this with interconnected parts of the basolateral amygdala and rostromedial striatum while macaque monkeys performed reward-based tasks. Applying multiple analysis approaches, we found that neurons in subcallosal ACC and rostromedial striatum preferentially signal anticipated reward using short bursts of activity that form temporally specific patterns. By contrast, the basolateral amygdala uses a mixture of both temporally specific and more sustained patterns of activity to signal anticipated reward. Thus, dynamic patterns of neural activity across populations of neurons are engaged in affect, especially in subcallosal ACC.
Collapse
Affiliation(s)
- Megan E Young
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Camille Spencer-Salmon
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Clayton Mosher
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sarita Tamang
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kanaka Rajan
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Peter H Rudebeck
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
8
|
Xu C, Wang F, Huang Q, Lyu D, Wu C, Cao T, Zhao J, Wang M, Zhou N, Yang W, Chen Y, Wei Z, Xie B, Hong W. Association between overt aggression and anhedonia in patients with major depressive disorder during the acute phase. J Psychiatr Res 2023; 165:41-47. [PMID: 37459777 DOI: 10.1016/j.jpsychires.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE To explore the factors influencing anhedonia at baseline and use them as confounding factors. To further investigate the correlation between overt aggression and anhedonia during the acute phase of major depressive disorder. METHODS In this eight-week prospective study, 384 major depressive disorder patients were recruited from the outpatient section of Shanghai Mental Health Center from May 1, 2017, to October 30, 2018. Standard treatments were performed with escitalopram or venlafaxine for participants. Depressive symptoms, overt aggression, and anhedonia were assessed using the 17-item Hamilton Rating Scale for Depression, Modified Overt Aggression Scale, and Snaith-Hamilton Pleasure Scale at baseline, and in the 4th and 8th weeks. RESULTS Obsessive-compulsive symptoms and the duration of untreated psychosis were positively associated with aggression (P < 0.05). Patients with aggressive behaviour had worse cognitive impairment and severe anhedonia of pleasurable sensory experiences (P < 0.05). For anhedonia, being female (tau_b = -0.23, P = 0.012) was a protective factor, while number of recurrent, melancholic features, current obsessions, previous combination drug therapies, depressive symptoms, and aggressive behaviour were risk factors (P < 0.05). Social anhedonia related to interests/pastimes, and pleasurable sensory experiences were more severe in major depressive disorder patients with aggressive behaviour in the acute phase (P < 0.05). CONCLUSIONS Anhedonia persisted in major depressive disorder patients with aggressive behaviour after standardized treatment during the acute phase. Being female protected the pleasures from social interaction and sensory experience. However, the number of depressive episodes, melancholic features, current obsessive symptoms, previous combination drug therapies, depressive symptoms, and aggressive behaviour was positively associated with anhedonia.
Collapse
Affiliation(s)
- Chuchen Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. beauty--
| | - Qinte Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Chenglin Wu
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China.
| | - Tongdan Cao
- Shanghai Mental Health Center of Huangpu District, Shanghai, 200011, China.
| | - Jie Zhao
- Shanghai Mental Health Center of Huangpu District, Shanghai, 200011, China.
| | - Meiti Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ni Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Weichieh Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yiming Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zheyi Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Bin Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 20030, China.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 20030, China.
| |
Collapse
|
9
|
Zhang YM, Zhang MY, Wei RM, Zhang JY, Zhang KX, Luo BL, Ge YJ, Kong XY, Li XY, Chen GH. Subsequent maternal sleep deprivation aggravates neurobehavioral abnormalities, inflammation, and synaptic function in adult male mice exposed to prenatal inflammation. Front Behav Neurosci 2023; 17:1226300. [PMID: 37560531 PMCID: PMC10407227 DOI: 10.3389/fnbeh.2023.1226300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE Studies have suggested that prenatal exposure to inflammation increases the risk of neuropsychiatric disorders, including anxiety, depression, and cognitive dysfunction. Because of anatomical and hormonal alterations, pregnant women frequently experience sleep dysfunction, which can enhance the inflammatory response. The aim of this study was to explore the effects of maternal sleep deprivation on prenatal inflammation exposure-induced behavioral phenotypes in offspring and identify the associated mechanisms. METHODS Pregnant mice received an intraperitoneal injection of lipopolysaccharide (LPS) on gestational day 15 and were subsequently subjected to sleep deprivation during gestational days 15-21. Anxiety-like behavior was evaluated by the open field test and the elevated plus maze test. Depression-like behavior was assessed by the tail suspension test and the forced swimming test. Cognitive function was determined using the Morris water maze test. The levels of markers of inflammation and synaptic function were examined employing general molecular biological techniques. RESULTS The results showed that prenatal exposure to LPS resulted in anxiety- and depression-like symptoms and learning and memory deficits, and these effects were exacerbated by maternal sleep deprivation. Furthermore, maternal sleep deprivation aggravated the prenatal LPS exposure-induced increase in the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and decrease in the levels of postsynaptic density-95 and synaptophysin in the hippocampus. DISCUSSION Collectively, these results suggested that maternal sleep deprivation exacerbates anxiety, depression, and cognitive impairment induced by prenatal LPS exposure, effects that were associated with an inflammatory response and synaptic dysfunction.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng-Ying Zhang
- Department of Anesthesiology, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bao-Ling Luo
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|