1
|
Sims AC, Schäfer A, Okuda K, Leist SR, Kocher JF, Cockrell AS, Hawkins PE, Furusho M, Jensen KL, Kyle JE, Burnum-Johnson KE, Stratton KG, Lamar NC, Niccora CD, Weitz KK, Smith RD, Metz TO, Waters KM, Boucher RC, Montgomery SA, Baric RS, Sheahan TP. Dysregulation of lung epithelial cell homeostasis and immunity contributes to Middle East respiratory syndrome coronavirus disease severity. mSphere 2025:e0095124. [PMID: 39882872 DOI: 10.1128/msphere.00951-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Coronaviruses (CoV) emerge suddenly from animal reservoirs to cause novel diseases in new hosts. Discovered in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in camels in the Middle East and is continually causing local outbreaks and epidemics. While all three newly emerging human CoVs from the past 20 years (SARS-CoV, SARS-CoV-2, and MERS-CoV) cause respiratory disease, each CoV has unique host interactions that drive differential pathogeneses. To better understand the virus and host interactions driving lethal MERS-CoV infection, we performed a longitudinal multi-omics analysis of sublethal and lethal MERS-CoV infection in mice. Significant differences were observed in body weight loss, virus titers, and acute lung injury among lethal and sub-lethal virus doses. Virus-induced apoptosis of type I and II alveolar epithelial cells suggests that loss or dysregulation of these key cell populations was a major driver of severe disease. Omics analysis suggested differential pathogenesis was multi-factorial with clear differences among innate and adaptive immune pathways as well as those that regulate lung epithelial homeostasis. Infection of mice lacking functional T and B cells showed that adaptive immunity was important in controlling viral replication but also increased pathogenesis. In summary, we provide a high-resolution host response atlas for MERS-CoV infection and disease severity. Multi-omics studies of viral pathogenesis offer a unique opportunity to not only better understand the molecular mechanisms of disease but also to identify genes and pathways that can be exploited for therapeutic intervention all of which is important for our future pandemic preparedness.IMPORTANCEEmerging coronaviruses like SARS-CoV, SARS-CoV-2, and MERS-CoV cause a range of disease outcomes in humans from an asymptomatic, moderate, and severe respiratory disease that can progress to death but the factors causing these disparate outcomes remain unclear. Understanding host responses to mild and life-threatening infections provides insight into virus-host networks within and across organ systems that contribute to disease outcomes. We used multi-omics approaches to comprehensively define the host response to moderate and severe MERS-CoV infection. Severe respiratory disease was associated with dysregulation of the immune response. Key lung epithelial cell populations that are essential for lung function get infected and die. Mice lacking key immune cell populations experienced greater virus replication but decreased disease severity implicating the immune system in both protective and pathogenic roles in response to MERS-CoV. These data could be utilized to design new therapeutic strategies targeting specific pathways that contribute to severe disease.
Collapse
Affiliation(s)
- Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jacob F Kocher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adam S Cockrell
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Padraig E Hawkins
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Minako Furusho
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kara L Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Kristin E Burnum-Johnson
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Natalie C Lamar
- AI & Data Analytics Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Carrie D Niccora
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, McGowan J, Simmons B, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. Cell Rep 2024; 43:115036. [PMID: 39644492 DOI: 10.1016/j.celrep.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus that causes severe respiratory illness in humans. There are no licensed vaccines against MERS-CoV and only a few candidates in phase I clinical trials. Here, we develop MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two-component nanoparticles displaying spike (S)-derived antigens induce neutralizing responses and protect mice against challenge with mouse-adapted MERS-CoV. Epitope mapping reveals the dominant responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle elicits antibodies targeting multiple non-overlapping epitopes in the RBD. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jackson McGowan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Boston Simmons
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98115, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Zhou NE, Tang S, Bian X, Parai MK, Krieger IV, Flores A, Jaiswal PK, Bam R, Wood JL, Shi Z, Stevens LJ, Scobey T, Diefenbacher MV, Moreira FR, Baric TJ, Acharya A, Shin J, Rathi MM, Wolff KC, Riva L, Bakowski MA, McNamara CW, Catanzaro NJ, Graham RL, Schultz DC, Cherry S, Kawaoka Y, Halfmann PJ, Baric RS, Denison MR, Sheahan TP, Sacchettini JC. An oral non-covalent non-peptidic inhibitor of SARS-CoV-2 Mpro ameliorates viral replication and pathogenesis in vivo. Cell Rep 2024; 43:114929. [PMID: 39504242 DOI: 10.1016/j.celrep.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Safe, effective, and low-cost oral antiviral therapies are needed to treat those at high risk for developing severe COVID-19. To that end, we performed a high-throughput screen to identify non-peptidic, non-covalent inhibitors of the SARS-CoV-2 main protease (Mpro), an essential enzyme in viral replication. NZ-804 was developed from a screening hit through iterative rounds of structure-guided medicinal chemistry. NZ-804 potently inhibits SARS-CoV-2 Mpro (0.009 μM IC50) as well as SARS-CoV-2 replication in human lung cell lines (0.008 μM EC50) and primary human airway epithelial cell cultures. Antiviral activity is maintained against distantly related sarbecoviruses and endemic human CoV OC43. In SARS-CoV-2 mouse and hamster disease models, NZ-804 therapy given once or twice daily significantly diminished SARS-CoV-2 replication and pathogenesis. NZ-804 synthesis is low cost and uncomplicated, simplifying global production and access. These data support the exploration of NZ-804 as a therapy for COVID-19 and future emerging sarbecovirus infections.
Collapse
Affiliation(s)
- Nian E Zhou
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Su Tang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Xuelin Bian
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Maloy K Parai
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Inna V Krieger
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Armando Flores
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Pradeep K Jaiswal
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Radha Bam
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Jeremy L Wood
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Zhe Shi
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Laura J Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meghan V Diefenbacher
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando R Moreira
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas J Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arjun Acharya
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Joonyoung Shin
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Manish M Rathi
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Karen C Wolff
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Laura Riva
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Malina A Bakowski
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Case W McNamara
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel L Graham
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark R Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - James C Sacchettini
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA.
| |
Collapse
|
4
|
Ragotte RJ, Tortorici MA, Catanzaro NJ, Addetia A, Coventry B, Froggatt HM, Lee J, Stewart C, Brown JT, Goreshnik I, Sims JN, Milles LF, Wicky BI, Glögl M, Gerben S, Kang A, Bera AK, Sharkey W, Schäfer A, Baric RS, Baker D, Veesler D. Designed miniproteins potently inhibit and protect against MERS-CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.03.621760. [PMID: 39574666 PMCID: PMC11580849 DOI: 10.1101/2024.11.03.621760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Middle-East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen with 36% case-fatality rate in humans. No vaccines or specific therapeutics are currently approved to use in humans or the camel host reservoir. Here, we computationally designed monomeric and homo-oligomeric miniproteins binding with high affinity to the MERS-CoV spike (S) glycoprotein, the main target of neutralizing antibodies and vaccine development. We show that these miniproteins broadly neutralize a panel of MERS-CoV S variants, spanning the known antigenic diversity of this pathogen, by targeting a conserved site in the receptor-binding domain (RBD). The miniproteins directly compete with binding of the DPP4 receptor to MERS-CoV S, thereby blocking viral attachment to the host entry receptor and subsequent membrane fusion. Intranasal administration of a lead miniprotein provides prophylactic protection against stringent MERS-CoV challenge in mice motivating future clinical development as a next-generation countermeasure against this virus with pandemic potential.
Collapse
Affiliation(s)
- Robert J. Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | | | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Heather M. Froggatt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jeremiah N. Sims
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lukas F. Milles
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Basile I.M. Wicky
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Matthias Glögl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - William Sharkey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Tolentino JE, Lytras S, Ito J, Holmes EC, Sato K. Recombination as an evolutionary driver of MERS-related coronavirus emergence. THE LANCET. INFECTIOUS DISEASES 2024; 24:e546. [PMID: 39067463 DOI: 10.1016/s1473-3099(24)00461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Jarel Elgin Tolentino
- Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Tokyo 113-0033, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Spyros Lytras
- Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Tokyo 113-0033, Japan; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Infectious Diseases, The University of Tokyo, Tokyo 113-0033, Japan
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Infectious Diseases, The University of Tokyo, Tokyo 113-0033, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
6
|
Addetia A, Stewart C, Seo AJ, Sprouse KR, Asiri AY, Al-Mozaini M, Memish ZA, Alshukairi AN, Veesler D. Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans. Cell Rep 2024; 43:114530. [PMID: 39058596 DOI: 10.1016/j.celrep.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts are limited by a poor understanding of antibody responses elicited by infection. Here, we analyze S-directed antibody responses in plasma collected from MERS-CoV-infected individuals. We observe that binding and neutralizing antibodies peak 1-6 weeks after symptom onset/hospitalization, persist for at least 6 months, and neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the receptor-binding domain (RBD), account for most plasma neutralizing activity. Antigenic site mapping reveals that plasma antibodies frequently target RBD epitopes, whereas targeting of S2 subunit epitopes is rare. Our data reveal the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.
Collapse
Affiliation(s)
- Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ayed Y Asiri
- Al-Hayat National Hospital, Riyadh, Saudi Arabia
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Kyung Hee University, Seoul, South Korea
| | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep Med 2024; 5:101668. [PMID: 39094579 PMCID: PMC11384961 DOI: 10.1016/j.xcrm.2024.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
We describe the molecular-level composition of polyclonal immunoglobulin G (IgG) anti-spike antibodies from ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or their combination ("hybrid immunity") at monoclonal resolution. Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, whereas vaccination mainly induces anti-receptor-binding domain (RBD) antibodies. This imprint persists after secondary exposures wherein >60% of ensuing hybrid immunity derives from the original IgG pool. Monoclonal constituents of the original IgG pool can increase breadth, affinity, and prevalence upon secondary exposures, as exemplified by the plasma antibody SC27. Following a breakthrough infection, vaccine-induced SC27 gained neutralization breadth and potency against SARS-CoV-2 variants and zoonotic viruses (half-maximal inhibitory concentration [IC50] ∼0.1-1.75 nM) and increased its binding affinity to the protective RBD class 1/4 epitope (dissociation constant [KD] < 5 pM). According to polyclonal escape analysis, SC27-like binding patterns are common in SARS-CoV-2 hybrid immunity. Our findings provide a detailed molecular definition of immunological imprinting and show that vaccination can produce class 1/4 (SC27-like) IgG antibodies circulating in the blood.
Collapse
Affiliation(s)
- William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Mallory
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Marchioni
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sean A Knudson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John M Powers
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica Kain
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ed Satterwhite
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Paresi
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer E Munt
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Seeger
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Rhodin MHJ, Reyes AC, Balakrishnan A, Bisht N, Kelly NM, Gibbons JS, Lloyd J, Vaine M, Cressey T, Crepeau M, Shen R, Manalo N, Castillo J, Levene RE, Leonard D, Zang T, Jiang L, Daniels K, Cox RM, Lieber CM, Wolf JD, Plemper RK, Leist SR, Scobey T, Baric RS, Wang G, Goodwin B, Or YS. The small molecule inhibitor of SARS-CoV-2 3CLpro EDP-235 prevents viral replication and transmission in vivo. Nat Commun 2024; 15:6503. [PMID: 39090095 PMCID: PMC11294338 DOI: 10.1038/s41467-024-50931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The COVID-19 pandemic has led to the deaths of millions of people and severe global economic impacts. Small molecule therapeutics have played an important role in the fight against SARS-CoV-2, the virus responsible for COVID-19, but their efficacy has been limited in scope and availability, with many people unable to access their benefits, and better options are needed. EDP-235 is specifically designed to inhibit the SARS-CoV-2 3CLpro, with potent nanomolar activity against all SARS-CoV-2 variants to date, as well as clinically relevant human and zoonotic coronaviruses. EDP-235 maintains potency against variants bearing mutations associated with nirmatrelvir resistance. Additionally, EDP-235 demonstrates a ≥ 500-fold selectivity index against multiple host proteases. In a male Syrian hamster model of COVID-19, EDP-235 suppresses SARS-CoV-2 replication and viral-induced hamster lung pathology. In a female ferret model, EDP-235 inhibits production of SARS-CoV-2 infectious virus and RNA at multiple anatomical sites. Furthermore, SARS-CoV-2 contact transmission does not occur when naïve ferrets are co-housed with infected, EDP-235-treated ferrets. Collectively, these results demonstrate that EDP-235 is a broad-spectrum coronavirus inhibitor with efficacy in animal models of primary infection and transmission.
Collapse
Affiliation(s)
| | | | | | - Nalini Bisht
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | | | | | | | | | | | | | - Ruichao Shen
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | | | | | | | | | - Tianzhu Zang
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | - Lijuan Jiang
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | | | - Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Carolin M Lieber
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Josef D Wolf
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sarah R Leist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Yat Sun Or
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| |
Collapse
|
9
|
Peña-Hernández MA, Alfajaro MM, Filler RB, Moriyama M, Keeler EL, Ranglin ZE, Kong Y, Mao T, Menasche BL, Mankowski MC, Zhao Z, Vogels CBF, Hahn AM, Kalinich CC, Zhang S, Huston N, Wan H, Araujo-Tavares R, Lindenbach BD, Homer R, Pyle AM, Martinez DR, Grubaugh ND, Israelow B, Iwasaki A, Wilen CB. SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity. Nat Microbiol 2024; 9:2038-2050. [PMID: 39075235 DOI: 10.1038/s41564-024-01765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Circulating bat coronaviruses represent a pandemic threat. However, our understanding of bat coronavirus pathogenesis and transmission potential is limited by the lack of phenotypically characterized strains. We created molecular clones for the two closest known relatives of SARS-CoV-2, BANAL-52 and BANAL-236. We demonstrated that BANAL-CoVs and SARS-CoV-2 have similar replication kinetics in human bronchial epithelial cells. However, BANAL-CoVs have impaired replication in human nasal epithelial cells and in the upper airway of mice. We also observed reduced pathogenesis in mice and diminished transmission in hamsters. Further, we observed that diverse bat coronaviruses evade interferon and downregulate major histocompatibility complex class I. Collectively, our study demonstrates that despite high genetic similarity across bat coronaviruses, prediction of pandemic potential of a virus necessitates functional characterization. Finally, the restriction of bat coronavirus replication in the upper airway highlights that transmission potential and innate immune restriction can be uncoupled in this high-risk family of emerging viruses.
Collapse
Affiliation(s)
- Mario A Peña-Hernández
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Miyu Moriyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emma L Keeler
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zara E Ranglin
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yong Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Madeleine C Mankowski
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chaney C Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Shuo Zhang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Nicholas Huston
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Rafael Araujo-Tavares
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David R Martinez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Addetia A, Stewart C, Seo AJ, Sprouse KR, Asiri AY, Al-Mozaini M, Memish ZA, Alshukairi A, Veesler D. Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.586409. [PMID: 38617298 PMCID: PMC11014493 DOI: 10.1101/2024.03.31.586409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Middle-East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Most vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts, however, are limited by a poor understanding of antibody responses elicited by infection along with their durability, fine specificity and contribution of distinct S antigenic sites to neutralization. To address this knowledge gap, we analyzed S-directed binding and neutralizing antibody titers in plasma collected from individuals infected with MERS-CoV in 2017-2019 (prior to the COVID-19 pandemic). We observed that binding and neutralizing antibodies peak 1 to 6 weeks after symptom onset/hospitalization, persist for at least 6 months, and broadly neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the RBD, account for most plasma neutralizing activity. Antigenic site mapping revealed that polyclonal plasma antibodies frequently target RBD epitopes, particularly a site exposed irrespective of the S trimer conformation, whereas targeting of S2 subunit epitopes is rare, similar to SARS-CoV-2. Our data reveal in unprecedented details the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.
Collapse
Affiliation(s)
- Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ayed Y Asiri
- Al-Hayat National Hospital, Riyadh, Saudi Arabia
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Kyung Hee University, Seoul, South Korea
| | - Abeer Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Failayev H, Ganoth A, Tsfadia Y. Molecular insights on the coronavirus MERS-CoV interaction with the CD26 receptor. Virus Res 2024; 342:199330. [PMID: 38272241 PMCID: PMC10862065 DOI: 10.1016/j.virusres.2024.199330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The Middle East respiratory syndrome (MERS) is a severe respiratory disease with high fatality rates, caused by the Middle East respiratory syndrome coronavirus (MERS-CoV). The virus initiates infection by binding to the CD26 receptor (also known as dipeptidyl peptidase 4 or DPP4) via its spike protein. Although the receptor-binding domain (RBD) of the viral spike protein and the complex between RBD and the extracellular domain of CD26 have been studied using X-ray crystallography, conflicting studies exist regarding the importance of certain amino acids outside the resolved RBD-CD26 complex interaction interface. To gain atomic-level knowledge of the RBD-CD26 complex, we employed computational simulations to study the complex's dynamic behavior as it evolves from its crystal structure to a conformation stable in solution. Our study revealed previously unidentified interaction regions and interacting amino acids within the complex, determined a novel comprehensive RBD-binding domain of CD26, and by that expanded the current understanding of its structure. Additionally, we examined the impact of a single amino acid substitution, E513A, on the complex's stability. We discovered that this substitution disrupts the complex through an allosteric domino-like mechanism that affects other residues. Since MERS-CoV is a zoonotic virus, we evaluated its potential risk of human infection via animals, and suggest a low likelihood for possible infection by cats or dogs. The molecular structural information gleaned from our insights into the RBD-CD26 complex pre-dissociative states may be proved useful not only from a mechanistic view but also in assessing inter-species transmission and in developing anti-MERS-CoV antiviral therapeutics.
Collapse
Affiliation(s)
- Hila Failayev
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Assaf Ganoth
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; The Interdisciplinary Center (IDC), P.O. Box 167, Herzliya 4610101, Israel
| | - Yossi Tsfadia
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
12
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584735. [PMID: 38558973 PMCID: PMC10979991 DOI: 10.1101/2024.03.13.584735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Xiong Q, Ma C, Liu C, Tong F, Huang M, Yan H. ACE2-using merbecoviruses: Further evidence of convergent evolution of ACE2 recognition by NeoCoV and other MERS-CoV related viruses. CELL INSIGHT 2024; 3:100145. [PMID: 38476250 PMCID: PMC10928290 DOI: 10.1016/j.cellin.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 03/14/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) was recognized as an entry receptor shared by coronaviruses from Sarbecovirus and Setracovirus subgenera, including three human coronaviruses: SARS-CoV, SARS-CoV-2, and NL63. We recently disclosed that NeoCoV and three other merbecoviruses (PDF-2180, MOW15-22, PnNL 2018B), which are MERS-CoV relatives found in African and European bats, also utilize ACE2 as their functional receptors through unique receptor binding mechanisms. This unexpected receptor usage assumes significance, particularly in light of the prior recognition of Dipeptidyl peptidase-4 (DPP4) as the only known protein receptor for merbecoviruses. In contrast to other ACE2-using coronaviruses, NeoCoV and PDF-2180 engage a distinct and relatively compact binding surface on ACE2, facilitated by protein-glycan interactions, which is demonstrated by the Cryo-EM structures of the receptor binding domains (RBDs) of these viruses in complex with a bat ACE2 orthologue. These findings further support the hypothesis that phylogenetically distant coronaviruses, characterized by distinct RBD structures, can independently evolve to acquire ACE2 affinity during inter-species transmission and adaptive evolution. To date, these viruses have exhibited limited efficiency in entering human cells, although single mutations like T510F in NeoCoV can overcome the incompatibility with human ACE2. In this review, we present a comprehensive overview of ACE2-using merbecoviruses, summarize our current knowledge regarding receptor usage and host tropism determination, and deliberate on potential strategies for prevention and intervention, with the goal of mitigating potential future outbreaks caused by spillover of these viruses.
Collapse
Affiliation(s)
- Qing Xiong
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chengbao Ma
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fei Tong
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Meiling Huang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
14
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576742. [PMID: 38545622 PMCID: PMC10970720 DOI: 10.1101/2024.01.22.576742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.
Collapse
|