1
|
Abstract
BK channels are universal regulators of cell excitability, given their exceptional unitary conductance selective for K(+), joint activation mechanism by membrane depolarization and intracellular [Ca(2+)] elevation, and broad expression pattern. In this chapter, we discuss the structural basis and operational principles of their activation, or gating, by membrane potential and calcium. We also discuss how the two activation mechanisms interact to culminate in channel opening. As members of the voltage-gated potassium channel superfamily, BK channels are discussed in the context of archetypal family members, in terms of similarities that help us understand their function, but also seminal structural and biophysical differences that confer unique functional properties.
Collapse
Affiliation(s)
- A Pantazis
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - R Olcese
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Li XT, Qiu XY. 17β-Estradiol Upregulated Expression of α and β Subunits of Larger-Conductance Calcium-Activated K(+) Channels (BK) via Estrogen Receptor β. J Mol Neurosci 2015; 56:799-807. [PMID: 25676031 DOI: 10.1007/s12031-015-0502-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/26/2015] [Indexed: 11/28/2022]
Abstract
Large-conductance Ca(2+)-activated K(+) channels, which were known as BK channels, were widely distributed in brain tissues and played a crucial role in neuroprotection. Previous studies found that estrogen, a steroid hormone, was able to interact with distinct K(+) channels such as Kv (voltage-gated K(+) channels) in various tissues. However, current knowledge about possible effects of estrogen on BK channels is rather poor. In the present study here, the investigation for the interaction of estrogen with BK channels was performed in mouse N2A cells and human SK-N-SH cells. At first, the different expression patterns of α and β subunits of BK channels in these cells were explored by conducting RT-PCR. After exposure to varying dose of 17β-estradiol (E2) for 24 h, the messenger RNA (mRNA) levels of these BK channel subunits in both N2A and SK-N-SH cells were significantly increased in a concentration-dependent way. A prolonged incubation for 48 h also potentiated the effects of E2 on β1 and β4 subunits in N2A cells as well as α and β3 subunits in SK-N-SH cells. The small interfering RNAs (siRNAs) against the ERα (siERα) or ERβ (siERβ) was induced into N2A and SK-N-SH cells by transfection and resulted in a decrease in the level of corresponding ER transcript. Furthermore, treatment with siERβ but not siERα attenuated the action of E2 on BK channel subunits, suggesting that estradiol exerted its action by binding to ERβ. Our data indicated that 17β-estradiol was able to regulate the expression of BK channel subunits via ERβ.
Collapse
Affiliation(s)
- Xian-Tao Li
- Department of Neuroscience, College of Life Sciences, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, 430074, China.
| | - Xiao-Yue Qiu
- South-Central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
3
|
Hoshi T, Pantazis A, Olcese R. Transduction of voltage and Ca2+ signals by Slo1 BK channels. Physiology (Bethesda) 2013; 28:172-89. [PMID: 23636263 DOI: 10.1152/physiol.00055.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca2+ -and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors such as Mg2+. Recent advances permit elucidation of structural correlates of the biophysical mechanism.
Collapse
Affiliation(s)
- T Hoshi
- Department of Physiology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
4
|
Rothberg BS. The BK channel: a vital link between cellular calcium and electrical signaling. Protein Cell 2012; 3:883-92. [PMID: 22996175 PMCID: PMC4875380 DOI: 10.1007/s13238-012-2076-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022] Open
Abstract
Large-conductance Ca²⁺-activated K⁺ channels (BK channels) constitute an key physiological link between cellular Ca²⁺ signaling and electrical signaling at the plasma membrane. Thus these channels are critical to the control of action potential firing and neurotransmitter release in several types of neurons, as well as the dynamic control of smooth muscle tone in resistance arteries, airway, and bladder. Recent advances in our understanding of K⁺ channel structure and function have led to new insight toward the molecular mechanisms of opening and closing (gating) of these channels. Here we will focus on mechanisms of BK channel gating by Ca²⁺, transmembrane voltage, and auxiliary subunit proteins.
Collapse
Affiliation(s)
- Brad S Rothberg
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
5
|
Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. Pharmacol Ther 2012; 135:133-50. [PMID: 22584144 DOI: 10.1016/j.pharmthera.2012.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 11/21/2022]
Abstract
Cholesterol (CLR) is an essential component of eukaryotic plasma membranes. CLR regulates the membrane physical state, microdomain formation and the activity of membrane-spanning proteins, including ion channels. Large conductance, voltage- and Ca²⁺-gated K⁺ (BK) channels link membrane potential to cell Ca²⁺ homeostasis. Thus, they control many physiological processes and participate in pathophysiological mechanisms leading to human disease. Because plasmalemma BK channels cluster in CLR-rich membrane microdomains, a major driving force for studying BK channel-CLR interactions is determining how membrane CLR controls the BK current phenotype, including its pharmacology, channel sorting, distribution, and role in cell physiology. Since both BK channels and CLR tissue levels play a pathophysiological role in human disease, identifying functional and structural aspects of the CLR-BK channel interaction may open new avenues for therapeutic intervention. Here, we review the studies documenting membrane CLR-BK channel interactions, dissecting out the many factors that determine the final BK current response to changes in membrane CLR content. We also summarize work in reductionist systems where recombinant BK protein is studied in artificial lipid bilayers, which documents a direct inhibition of BK channel activity by CLR and builds a strong case for a direct interaction between CLR and the BK channel-forming protein. Bilayer lipid-mediated mechanisms in CLR action are also discussed. Finally, we review studies of BK channel function during hypercholesterolemia, and underscore the many consequences that the CLR-BK channel interaction brings to cell physiology and human disease.
Collapse
|
6
|
Seidel KN, Derst C, Salzmann M, HöLtje M, Priller J, Markgraf R, Heinemann SH, Heilmann H, Skatchkov SN, Eaton MJ, Veh RW, Prüss H. Expression of the voltage- and Ca2+-dependent BK potassium channel subunits BKβ1 and BKβ4 in rodent astrocytes. Glia 2011; 59:893-902. [DOI: 10.1002/glia.21160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 01/20/2011] [Indexed: 11/08/2022]
|
7
|
Song L, Santos-Sacchi J. Conformational state-dependent anion binding in prestin: evidence for allosteric modulation. Biophys J 2010; 98:371-6. [PMID: 20141749 DOI: 10.1016/j.bpj.2009.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 11/24/2022] Open
Abstract
Outer hair cells boost auditory performance in mammals. This amplification relies on an expansive array of intramembranous molecular motors, identified as prestin, that drive somatic electromotility. By measuring nonlinear capacitance, the electrical signature of electromotility, we are able to assess prestin's conformational state and interrogate the effectiveness of anions on prestin's activity. We find that the affinity of anions depends on the state of prestin that we set with a variety of perturbations (in membrane tension, temperature, and voltage), and that movement into the expanded state reduces the affinity of prestin for anions. These data signify that anions work allosterically on prestin. Consequently, anions are released from prestin's binding site during expansion, i.e., during hyperpolarization. This is at odds with the extrinsic voltage sensor model, which suggests that prestin-bound intracellular anions are propelled deep into the membrane. Furthermore, we hypothesize that prestin's susceptibility to many biophysical forces, and notably its piezoelectric nature, may reflect anion interactions with the motor.
Collapse
Affiliation(s)
- Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
8
|
Hou S, Horrigan FT, Xu R, Heinemann SH, Hoshi T. Comparative effects of H+ and Ca2+ on large-conductance Ca2+- and voltage-gated Slo1 K+ channels. Channels (Austin) 2009; 3:249-58. [PMID: 19617704 DOI: 10.4161/chan.3.4.9253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Large-conductance Ca(2+)- and voltage-gated Slo1 BK channels are allosterically activated by depolarization and intracellular ligands such as Ca(2+). Of the two high-affinity Ca(2+) sensors present in the channel, the RCK1 sensor also mediates H(+)-dependent activation of the channel. In this study, we examined the comparative mechanisms of the channel activation by Ca(2+) and H(+). Steady-state macroscopic conductance-voltage measurements as well as single-channel openings at negative voltages where voltage-sensor activation is negligible showed that at respective saturating concentrations Ca(2+) is more effective in relative stabilization of the open conformation than H(+). Calculations using the Debye-Hückel formalism suggest that small structural changes in the RCK1 sensor, on the order of few angstroms, may accompany the H(+)-mediated opening of the channel. While the efficacy of H(+) in activation of the channel is less than that of Ca(2+), H(+) more effectively accelerates the activation kinetics when examined at the concentrations equipotent on macroscopic voltage-dependent activation. The RCK1 sensor therefore is capable of transducing the nature of the bound ligand and transmits qualitatively different information to the channel's permeation gate.
Collapse
Affiliation(s)
- Shangwei Hou
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Large conductance, Ca(2+)-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca(2+) and other ligands. Similar to voltage-gated K(+) channels, BK channels possess a pore-gate domain (S5-S6 transmembrane segments) and a voltage-sensor domain (S1-S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K(+) flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca(2+)- and Mg(2+)-dependent activation of the channel.
Collapse
Affiliation(s)
- J Cui
- Department of Biomedical Engineering and Cardiac Bioelectricity and Arrhythmia Center, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
| | | | | |
Collapse
|
10
|
Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell Mol Life Sci 2008; 65:3196-217. [PMID: 18597044 PMCID: PMC2798969 DOI: 10.1007/s00018-008-8216-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small conductance calcium-activated potassium (SK or KCa2) channels link intracellular calcium transients to membrane potential changes. SK channel subtypes present different pharmacology and distribution in the nervous system. The selective blocker apamin, SK enhancers and mice lacking specific SK channel subunits have revealed multifaceted functions of these channels in neurons, glia and cerebral blood vessels. SK channels regulate neuronal firing by contributing to the afterhyperpolarization following action potentials and mediating IAHP, and partake in a calcium-mediated feedback loop with NMDA receptors, controlling the threshold for induction of hippocampal long-term potentiation. The function of distinct SK channel subtypes in different neurons often results from their specific coupling to different calcium sources. The prominent role of SK channels in the modulation of excitability and synaptic function of limbic, dopaminergic and cerebellar neurons hints at their possible involvement in neuronal dysfunction, either as part of the causal mechanism or as potential therapeutic targets.
Collapse
|
11
|
Abstract
Large-conductance (BK-type) Ca2+-activated potassium channels are activated by membrane depolarization and cytoplasmic Ca2+. BK channels are expressed in a broad variety of cells and have a corresponding diversity in properties. Underlying much of the functional diversity is a family of four tissue-specific accessory subunits (β1–β4). Biophysical characterization has shown that the β4 subunit confers properties of the so-called “type II” BK channel isotypes seen in brain. These properties include slow gating kinetics and resistance to iberiotoxin and charybdotoxin blockade. In addition, the β4 subunit reduces the apparent voltage sensitivity of channel activation and has complex effects on apparent Ca2+ sensitivity. Specifically, channel activity at low Ca2+ is inhibited, while at high Ca2+, activity is enhanced. The goal of this study is to understand the mechanism underlying β4 subunit action in the context of a dual allosteric model for BK channel gating. We observed that β4's most profound effect is a decrease in Po (at least 11-fold) in the absence of calcium binding and voltage sensor activation. However, β4 promotes channel opening by increasing voltage dependence of Po-V relations at negative membrane potentials. In the context of the dual allosteric model for BK channels, we find these properties are explained by distinct and opposing actions of β4 on BK channels. β4 reduces channel opening by decreasing the intrinsic gating equilibrium (L0), and decreasing the allosteric coupling between calcium binding and voltage sensor activation (E). However, β4 has a compensatory effect on channel opening following depolarization by shifting open channel voltage sensor activation (Vho) to more negative membrane potentials. The consequence is that β4 causes a net positive shift of the G-V relationship (relative to α subunit alone) at low calcium. At higher calcium, the contribution by Vho and an increase in allosteric coupling to Ca2+ binding (C) promotes a negative G-V shift of α+β4 channels as compared to α subunits alone. This manner of modulation predicts that type II BK channels are downregulated by β4 at resting voltages through effects on L0. However, β4 confers a compensatory effect on voltage sensor activation that increases channel opening during depolarization.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | |
Collapse
|
12
|
Huang MH, So EC, Liu YC, Wu SN. Glucocorticoids stimulate the activity of large-conductance Ca2+ -activated K+ channels in pituitary GH3 and AtT-20 cells via a non-genomic mechanism. Steroids 2006; 71:129-40. [PMID: 16274717 DOI: 10.1016/j.steroids.2005.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 08/23/2005] [Accepted: 09/07/2005] [Indexed: 12/18/2022]
Abstract
The effects of glucocorticoids on ion currents were investigated in pituitary GH3 and AtT-20 cells. In whole-cell configuration, dexamethasone, a synthetic glucocorticoid, reversibly increased the density of Ca2+ -activated K+ current (IK(Ca)) with an EC50 value of 21 +/- 5 microM. Dexamethasone-induced increase in IK(Ca) density was suppressed by paxilline (1 microM), yet not by glibenclamide (10 microM), pandinotoxin-Kalpha (1 microM) or mifepristone (10 microM). Paxilline is a blocker of large-conductance Ca2+ -activated K+ (BKCa) channels, while glibenclamide and pandinotoxin-Kalpha are blockers of ATP-sensitive and A-type K+ channels, respectively. Mifepristone can block cytosolic glucocorticoid receptors. In inside-out configuration, the application of dexamethasone (30 microM) into the intracellular surface caused no change in single-channel conductance; however, it did increase BKCa -channel activity. Its effect was associated with a negative shift of the activation curve. However, no Ca2+ -sensitiviy of these channels was altered by dexamethasone. Dexamethasone-stimulated channel activity involves an increase in mean open time and a decrease in mean closed time. Under current-clamp configuration, dexamethasone decreased the firing frequency of action potentials. In pituitary AtT-20 cells, dexamethasone (30 microM) also increased BKCa -channel activity. Dexamethasone-mediated stimulation of IK(Ca) presented here that is likely pharmacological, seems to be not linked to a genomic mechanism. The non-genomic, channel-stimulating properties of dexamethasone may partly contribute to the underlying mechanisms by which glucocorticoids affect neuroendocrine function.
Collapse
Affiliation(s)
- Mei-Han Huang
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, No. 1, University Road, Tainan, Taiwan
| | | | | | | |
Collapse
|
13
|
Kindzelskii AL, Petty HR. Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:1-26. [PMID: 16044273 DOI: 10.1007/s00249-005-0001-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 05/13/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
We have tested Galvanovskis and Sandblom's prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K(v)1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca(2+) channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K(+) and Ca(2+) channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K(+) channel blockers act by reducing the neutrophil's membrane potential. Mibefradil and SKF93635, which block T-type Ca(2+) channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca(2+) signaling. Electric fields enhanced Ca(2+) spike amplitude and triggered formation of a second traveling Ca(2+) wave. Mibefradil blocked Ca(2+) spikes and waves. Although 10 microM SKF96365 mimicked mibefradil, 7 microM SKF96365 specifically inhibited electric field-induced Ca(2+) signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-beta-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.
Collapse
Affiliation(s)
- Andrei L Kindzelskii
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
14
|
Abstract
Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531-535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G-V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G-V simulated by weakening the coupling of both Ca(2+) binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca(2+)- and voltage-dependent gating as well as intrinsic stability of the open state.
Collapse
Affiliation(s)
- Frank T Horrigan
- Department of Physiology, School of Medecine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Toshinori Hoshi
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|