1
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
2
|
Kenney LL, Chiu RSY, Dutra MN, Wactor A, Honan C, Shelerud L, Corrigan JJ, Yu K, Ferrari JD, Jeffrey KL, Huang E, Stein PL. mRNA-delivery of IDO1 suppresses T cell-mediated autoimmunity. Cell Rep Med 2024; 5:101717. [PMID: 39243754 PMCID: PMC11525033 DOI: 10.1016/j.xcrm.2024.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Indoleamine-2,3-dioxygenase (IDO)1 degrades tryptophan, obtained through dietary intake, into immunoregulatory metabolites of the kynurenine pathway. Deficiency or blockade of IDO1 results in the enhancement of autoimmune severity in rodent models and increased susceptibility to developing autoimmunity in humans. Despite this, therapeutic modalities that leverage IDO1 for the treatment of autoimmunity remain limited. Here, we use messenger (m)RNA formulated in lipid nanoparticles (LNPs) to deliver a human IDO1 variant containing the myristoylation site of Src to anchor the protein to the inner face of the plasma membrane. This membrane-anchored IDO1 has increased protein production, leading to increased metabolite changes, and ultimately ameliorates disease in three models of T cell-mediated autoimmunity: experimental autoimmune encephalomyelitis (EAE), rat collagen-induced arthritis (CIA), and acute graft-versus-host disease (aGVHD). The efficacy of IDO1 is correlated with hepatic expression and systemic tryptophan depletion. Thus, the delivery of membrane-anchored IDO1 by mRNA suppresses the immune response in several well-characterized models of autoimmunity.
Collapse
MESH Headings
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Animals
- Autoimmunity
- Humans
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Rats
- Tryptophan/metabolism
- Graft vs Host Disease/immunology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Mice
- Nanoparticles/chemistry
- Female
Collapse
Affiliation(s)
- Laurie L Kenney
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA.
| | - Rebecca Suet-Yan Chiu
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Michelle N Dutra
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Alexandra Wactor
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Chris Honan
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Lukas Shelerud
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Joshua J Corrigan
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Kelly Yu
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Joseph D Ferrari
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Kate L Jeffrey
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Eric Huang
- Moderna Genomics, Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Paul L Stein
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Castillo-Mancho V, Atienza-Manuel A, Sarmiento-Jiménez J, Ruiz-Gómez M, Culi J. Phospholipid scramblase 1: an essential component of the nephrocyte slit diaphragm. Cell Mol Life Sci 2024; 81:261. [PMID: 38878170 PMCID: PMC11335299 DOI: 10.1007/s00018-024-05287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Blood ultrafiltration in nephrons critically depends on specialized intercellular junctions between podocytes, named slit diaphragms (SDs). Here, by studying a homologous structure found in Drosophila nephrocytes, we identify the phospholipid scramblase Scramb1 as an essential component of the SD, uncovering a novel link between membrane dynamics and SD formation. In scramb1 mutants, SDs fail to form. Instead, the SD components Sticks and stones/nephrin, Polychaetoid/ZO-1, and the Src-kinase Src64B/Fyn associate in cortical foci lacking the key SD protein Dumbfounded/NEPH1. Scramb1 interaction with Polychaetoid/ZO-1 and Flotillin2, the presence of essential putative palmitoylation sites and its capacity to oligomerize, suggest a function in promoting SD assembly within lipid raft microdomains. Furthermore, Scramb1 interactors as well as its functional sensitivity to temperature, suggest an active involvement in membrane remodeling processes during SD assembly. Remarkably, putative Ca2+-binding sites in Scramb1 are essential for its activity raising the possibility that Ca2+ signaling may control the assembly of SDs by impacting on Scramb1 activity.
Collapse
Affiliation(s)
- Vicente Castillo-Mancho
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Alexandra Atienza-Manuel
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Jorge Sarmiento-Jiménez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain.
| | - Joaquim Culi
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
4
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
5
|
Chen Y, Li Y, Wu L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Front Immunol 2024; 15:1337478. [PMID: 38415253 PMCID: PMC10896991 DOI: 10.3389/fimmu.2024.1337478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that involves the addition of a 16-carbon palmitoyl group to a protein cysteine residue via a thioester linkage. This modification plays a crucial role in the regulation protein localization, accumulation, secretion, stability, and function. Dysregulation of protein S-palmitoylation can disrupt cellular pathways and contribute to the development of various diseases, particularly cancers. Aberrant S-palmitoylation has been extensively studied and proven to be involved in tumor initiation and growth, metastasis, and apoptosis. In addition, emerging evidence suggests that protein S-palmitoylation may also have a potential role in immune modulation. Therefore, a comprehensive understanding of the regulatory mechanisms of S-palmitoylation in tumor cells and the tumor immune microenvironment is essential to improve our understanding of this process. In this review, we summarize the recent progress of S-palmitoylation in tumors and the tumor immune microenvironment, focusing on the S-palmitoylation modification of various proteins. Furthermore, we propose new ideas for immunotherapeutic strategies through S-palmitoylation intervention.
Collapse
Affiliation(s)
- Yijiao Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Okamoto A, Nakanishi T, Tonai S, Shimada M, Yamashita Y. Neurotensin induces sustainable activation of the ErbB-ERK1/2 pathway, which is required for developmental competence of oocytes in mice. Reprod Med Biol 2024; 23:e12571. [PMID: 38510925 PMCID: PMC10951886 DOI: 10.1002/rmb2.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose LH induces the expression of EGF-like factors and their shedding enzyme (ADAM17) in granulosa cells (GCs), which is essential for ovulation via activation of the ErbB-ERK1/2 pathway in cumulus cells (CCs). Neurotensin (NTS) is reported as a novel regulator of ovulation, whereas the NTS-induced maturation mechanism in oocytes remains unclear. In this study, we focused on the role of NTS in the expression of EGF-like factors and ErbBs, and ADAM17 activity, during oocyte maturation and ovulation in mice. Methods The expression and localization in GC and CC were examined. Next, hCG and NTS receptor 1 antagonist (SR) were injected into eCG-primed mice, and the effects of SR on ERK1/2 phosphorylation were investigated. Finally, we explored the effects of SR on the expression of EGF-like factors and ErbBs, and ADAM17 activity in GC and CC. Results NTS was significantly upregulated in GC and CC following hCG injection. SR injection suppressed oocyte maturation and ERK1/2 phosphorylation. SR also downregulated part of the expression of EGF-like factors and their receptors, and ADAM17 activity. Conclusions NTS induces oocyte maturation through the sustainable activation of the ERK1/2 signaling pathway by upregulating part of the EGF-like factor-induced pathway during oocyte maturation in mice.
Collapse
Affiliation(s)
- Asako Okamoto
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Tomoya Nakanishi
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| |
Collapse
|
7
|
Li MD, Wang L, Zheng YQ, Huang DH, Xia ZX, Liu JM, Tian D, OuYang H, Wang ZH, Huang Z, Lin XS, Zhu XQ, Wang SY, Chen WK, Yang SW, Zhao YL, Liu JA, Shen ZC. DHHC2 regulates fear memory formation, LTP, and AKAP150 signaling in the hippocampus. iScience 2023; 26:107561. [PMID: 37664599 PMCID: PMC10469764 DOI: 10.1016/j.isci.2023.107561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Palmitoyl acyltransferases (PATs) have been suggested to be involved in learning and memory. However, the underlying mechanisms have not yet been fully elucidated. Here, we found that the activity of DHHC2 was upregulated in the hippocampus after fear conditioning, and DHHC2 knockdown impaired fear induced memory and long-term potentiation (LTP). Additionally, the activity of DHHC2 and its synaptic expression were increased after high frequency stimulation (HFS) or glycine treatment. Importantly, fear learning selectively augmented the palmitoylation level of AKAP150, not PSD-95, and this effect was abolished by DHHC2 knockdown. Furthermore, 2-bromopalmitic acid (2-BP), a palmitoylation inhibitor, attenuated the increased palmitoylation level of AKAP150 and the interaction between AKAP150 and PSD-95 induced by HFS. Lastly, DHHC2 knockdown reduced the phosphorylation level of GluA1 at Ser845, and also induced an impairment of LTP in the hippocampus. Our results suggest that DHHC2 plays a critical role in regulating fear memory via AKAP150 signaling.
Collapse
Affiliation(s)
- Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lu Wang
- Department of Nephrology, Fuzhou Children’s Hospital of Fujian Province, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yu-Qi Zheng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan-Hong Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430000, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hui OuYang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zi-Hao Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Shan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Qian Zhu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jia-An Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
8
|
Lazaro CM, Victorio JA, Davel AP, Oliveira HCF. CETP expression ameliorates endothelial function in female mice through estrogen receptor-α and endothelial nitric oxide synthase pathway. Am J Physiol Heart Circ Physiol 2023; 325:H592-H600. [PMID: 37539470 DOI: 10.1152/ajpheart.00365.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Endothelial dysfunction is an early manifestation of atherosclerosis. The cholesteryl ester transfer protein (CETP) has been considered proatherogenic by reducing plasma HDL levels. However, CETP may exhibit cell- or tissue-specific effects. We have previously reported that male mice expressing the human CETP gene show impaired endothelium-mediated vascular relaxation associated with oxidative stress. Although sexual dimorphisms on the metabolic role of CETP have been proposed, possible sex differences in the vascular effects of CETP were not previously studied. Thus, here we investigated the endothelial function of female CETP transgenic mice as compared with nontransgenic controls (NTg). Aortas from CETP females presented preserved endothelium-dependent relaxation to acetylcholine and an endothelium-dependent reduction of phenylephrine-induced contraction. eNOS phosphorylation (Ser1177) and calcium-induced NO levels were enhanced, whereas reactive oxygen species (ROS) production and NOX2 and SOD2 expression were reduced in the CETP female aortas. Furthermore, CETP females exhibited increased aortic relaxation to 17β-estradiol (E2) and upregulation of heat shock protein 90 (HSP90) and caveolin-1, proteins that stabilize estrogen receptor (ER) in the caveolae. Indeed, CETP females showed an increased E2-induced relaxation in a manner sensitive to estrogen receptor-α (ERα) and HSP90 inhibitors methylpiperidinopyrazole (MPP) and geldanamycin, respectively. MPP also impaired the relaxation response to acetylcholine in CETP but not in NTg females. Altogether, the study indicates that CETP expression ameliorates the anticontractile endothelial effect and relaxation to E2 in females. This was associated with less ROS production, and increased eNOS-NO and E2-ERα pathways. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.NEW & NOTEWORTHY Here we demonstrated that CETP expression has a sex-specific impact on the endothelium function. Contrary to what was described for males, CETP-expressing females present preserved endothelium-dependent relaxation to acetylcholine and improved relaxation response to 17β-estradiol. This was associated with less ROS production, increased eNOS-derived NO, and increased expression of proteins that stabilize estrogen receptor-α (ERα), thus increasing E2-ERα signaling sensitivity. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.
Collapse
Affiliation(s)
- Carolina M Lazaro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Jamaira A Victorio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
9
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
10
|
Abazari D, Wild AR, Qiu T, Dickinson BC, Bamji SX. Activity-dependent post-translational regulation of palmitoylating and depalmitoylating enzymes in the hippocampus. J Cell Sci 2023; 136:jcs260629. [PMID: 37039765 PMCID: PMC10113885 DOI: 10.1242/jcs.260629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 04/12/2023] Open
Abstract
Activity-induced changes in protein palmitoylation can regulate the plasticity of synaptic connections, critically impacting learning and memory. Palmitoylation is a reversible post-translational modification regulated by both palmitoyl-acyl transferases that mediate palmitoylation and palmitoyl thioesterases that depalmitoylate proteins. However, it is not clear how fluctuations in synaptic activity can mediate the dynamic palmitoylation of neuronal proteins. Using primary hippocampal cultures, we demonstrate that synaptic activity does not impact the transcription of palmitoylating and depalmitoylating enzymes, changes in thioesterase activity, or post-translational modification of the depalmitoylating enzymes of the ABHD17 family and APT2 (also known as LYPLA2). In contrast, synaptic activity does mediate post-translational modification of the palmitoylating enzymes ZDHHC2, ZDHHC5 and ZDHHC9 (but not ZDHHC8) to influence protein-protein interactions, enzyme stability and enzyme function. Post-translational modifications of the ZDHHC enzymes were also observed in the hippocampus following fear conditioning. Taken together, our findings demonstrate that signaling events activated by synaptic activity largely impact activity of the ZDHHC family of palmitoyl-acyl transferases with less influence on the activity of palmitoyl thioesterases.
Collapse
Affiliation(s)
- Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Angela R. Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tian Qiu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Shernaz X. Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
11
|
Ozkan Kucuk NE, Yigit BN, Degirmenci BS, Qureshi MH, Yapici GN, Kamacıoglu A, Bavili N, Kiraz A, Ozlu N. Cell cycle-dependent palmitoylation of protocadherin 7 by ZDHHC5 promotes successful cytokinesis. J Cell Sci 2023; 136:297268. [PMID: 36762613 DOI: 10.1242/jcs.260266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cell division requires dramatic reorganization of the cell cortex, which is primarily driven by the actomyosin network. We previously reported that protocadherin 7 (PCDH7) gets enriched at the cell surface during mitosis, which is required to build up the full mitotic rounding pressure. Here, we report that PCDH7 interacts with and is palmitoylated by the palmitoyltransferase, ZDHHC5. PCDH7 and ZDHHC5 colocalize at the mitotic cell surface and translocate to the cleavage furrow during cytokinesis. The localization of PCDH7 depends on the palmitoylation activity of ZDHHC5. Silencing PCDH7 increases the percentage of multinucleated cells and the duration of mitosis. Loss of PCDH7 expression correlates with reduced levels of active RhoA and phospho-myosin at the cleavage furrow. This work uncovers a palmitoylation-dependent translocation mechanism for PCDH7, which contributes to the reorganization of the cortical cytoskeleton during cell division.
Collapse
Affiliation(s)
- Nazlı Ezgi Ozkan Kucuk
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Türkiye
| | - Berfu Nur Yigit
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
| | | | | | - Gamze Nur Yapici
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
| | - Altuğ Kamacıoglu
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
| | - Nima Bavili
- Department of Physics, Koç University, 34450 Istanbul, Türkiye
| | - Alper Kiraz
- Department of Physics, Koç University, 34450 Istanbul, Türkiye
- Department of Electrical and Electronics Engineering, Koç University, 34450 Istanbul, Türkiye
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Türkiye
| |
Collapse
|
12
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
13
|
Prolonged contextual fear memory in AMPA receptor palmitoylation-deficient mice. Neuropsychopharmacology 2022; 47:2150-2159. [PMID: 35618841 PMCID: PMC9556755 DOI: 10.1038/s41386-022-01347-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 11/24/2022]
Abstract
Long-lasting fear-related disorders depend on the excessive retention of traumatic fear memory. We previously showed that the palmitoylation-dependent removal of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors prevents hyperexcitation-based epileptic seizures and that AMPA receptor palmitoylation maintains neural network stability. In this study, AMPA receptor subunit GluA1 C-terminal palmitoylation-deficient (GluA1C811S) mice were subjected to comprehensive behavioral battery tests to further examine whether the mutation causes other neuropsychiatric disease-like symptoms. The behavioral analyses revealed that palmitoylation-deficiency in GluA1 is responsible for characteristic prolonged contextual fear memory formation, whereas GluA1C811S mice showed no impairment of anxiety-like behaviors at the basal state. In addition, fear generalization gradually increased in these mutant mice without affecting their cued fear. Furthermore, fear extinction training by repeated exposure of mice to conditioned stimuli had little effect on GluA1C811S mice, which is in line with augmentation of synaptic transmission in pyramidal neurons in the basolateral amygdala. In contrast, locomotion, sociability, depression-related behaviors, and spatial learning and memory were unaffected by the GluA1 non-palmitoylation mutation. These results indicate that impairment of AMPA receptor palmitoylation specifically causes posttraumatic stress disorder (PTSD)-like symptoms.
Collapse
|
14
|
Transcriptome Analysis Revealed Inhibition of Lipid Metabolism in 2-D Porcine Enteroids by Infection with Porcine Epidemic Diarrhea Virus. Vet Microbiol 2022; 273:109525. [DOI: 10.1016/j.vetmic.2022.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
|
15
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Tao YX. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front Endocrinol (Lausanne) 2022; 13:934685. [PMID: 36093106 PMCID: PMC9452723 DOI: 10.3389/fendo.2022.934685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre,
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
16
|
Hovde MJ, Bolland DE, Armand A, Pitsch E, Bakker C, Kooiker AJ, Provost JJ, Vaughan RA, Wallert MA, Foster JD. Sodium hydrogen exchanger (NHE1) palmitoylation and potential functional regulation. Life Sci 2022; 288:120142. [PMID: 34774621 PMCID: PMC8692447 DOI: 10.1016/j.lfs.2021.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
AIMS Determine the effect of palmitoylation on the sodium hydrogen exchanger isoform 1 (NHE1), a member of the SLC9 family. MAIN METHODS NHE1 expressed in native rat tissues or in heterologous cells was assessed for palmitoylation by acyl-biotinyl exchange (ABE) and metabolic labeling with [3H]palmitate. Cellular palmitoylation was inhibited using 2-bromopalmitate (2BP) followed by determination of NHE1 palmitoylation status, intracellular pH, stress fiber formation, and cell migration. In addition, NHE1 was activated with LPA treatment followed by determination of NHE1 palmitoylation status and LPA-induced change in intracellular pH was determined in the presence and absence of preincubation with 2BP. KEY FINDINGS In this study we demonstrate for the first time that NHE1 is palmitoylated in both cells and rat tissue, and that processes controlled by NHE1 including intracellular pH (pHi), stress fiber formation, and cell migration, are regulated in concert with NHE1 palmitoylation status. Importantly, LPA stimulates NHE1 palmitoylation, and 2BP pretreatment dampens LPA-induced increased pHi which is dependent on the presence of NHE1. SIGNIFICANCE Palmitoylation is a reversible lipid modification that regulates an array of critical protein functions including activity, trafficking, membrane microlocalization and protein-protein interactions. Our results suggest that palmitoylation of NHE1 and other control/signaling proteins play a major role in NHE1 regulation that could significantly impact multiple critical cellular functions.
Collapse
Affiliation(s)
- Moriah J Hovde
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, United States of America.
| | - Danielle E Bolland
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, United States of America.
| | - Aryna Armand
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, United States of America.
| | - Emily Pitsch
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, United States of America
| | - Clare Bakker
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, United States of America.
| | - Amanda J Kooiker
- Biology Department, Bemidji State University, Bemidji, MN 56601, United States of America.
| | - Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, United States of America.
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, United States of America.
| | - Mark A Wallert
- Biology Department, Bemidji State University, Bemidji, MN 56601, United States of America.
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, United States of America.
| |
Collapse
|
17
|
Dispatching plasma membrane cholesterol and Sonic Hedgehog dispatch: two sides of the same coin? Biochem Soc Trans 2021; 49:2455-2463. [PMID: 34515747 PMCID: PMC8589413 DOI: 10.1042/bst20210918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Vertebrate and invertebrate Hedgehog (Hh) morphogens signal over short and long distances to direct cell fate decisions during development and to maintain tissue homeostasis after birth. One of the most important questions in Hh biology is how such Hh signaling to distant target cells is achieved, because all Hh proteins are secreted as dually lipidated proteins that firmly tether to the outer plasma membrane leaflet of their producing cells. There, Hhs multimerize into light microscopically visible storage platforms that recruit factors required for their regulated release. One such recruited release factor is the soluble glycoprotein Scube2 (Signal sequence, cubulin domain, epidermal-growth-factor-like protein 2), and maximal Scube2 function requires concomitant activity of the resistance-nodulation-division (RND) transporter Dispatched (Disp) at the plasma membrane of Hh-producing cells. Although recently published cryo-electron microscopy-derived structures suggest possible direct modes of Scube2/Disp-regulated Hh release, the mechanism of Disp-mediated Hh deployment is still not fully understood. In this review, we discuss suggested direct modes of Disp-dependent Hh deployment and relate them to the structural similarities between Disp and the related RND transporters Patched (Ptc) and Niemann-Pick type C protein 1. We then discuss open questions and perspectives that derive from these structural similarities, with particular focus on new findings that suggest shared small molecule transporter functions of Disp to deplete the plasma membrane of cholesterol and to modulate Hh release in an indirect manner.
Collapse
|
18
|
Uzbekova S, Teixeira-Gomes AP, Marestaing A, Jarrier-Gaillard P, Papillier P, Shedova EN, Singina GN, Uzbekov R, Labas V. Protein Palmitoylation in Bovine Ovarian Follicle. Int J Mol Sci 2021; 22:ijms222111757. [PMID: 34769186 PMCID: PMC8583988 DOI: 10.3390/ijms222111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Protein palmitoylation is a reversible post-translational modification by fatty acids (FA), mainly a palmitate (C16:0). Palmitoylation allows protein shuttling between the plasma membrane and cytosol to regulate protein stability, sorting and signaling activity and its deficiency leads to diseases. We aimed to characterize the palmitoyl-proteome of ovarian follicular cells and molecular machinery regulating protein palmitoylation within the follicle. For the first time, 84 palmitoylated proteins were identified from bovine granulosa cells (GC), cumulus cells (CC) and oocytes by acyl-biotin exchange proteomics. Of these, 32 were transmembrane proteins and 27 proteins were detected in bovine follicular fluid extracellular vesicles (ffEVs). Expression of palmitoylation and depalmitoylation enzymes as palmitoyltransferases (ZDHHCs), acylthioesterases (LYPLA1 and LYPLA2) and palmitoylthioesterases (PPT1 and PPT2) were analysed using transcriptome and proteome data in oocytes, CC and GC. By immunofluorescence, ZDHHC16, PPT1, PPT2 and LYPLA2 proteins were localized in GC, CC and oocyte. In oocyte and CC, abundance of palmitoylation-related enzymes significantly varied during oocyte maturation. These variations and the involvement of identified palmitoyl-proteins in oxidation-reduction processes, energy metabolism, protein localization, vesicle-mediated transport, response to stress, G-protein mediated and other signaling pathways suggests that protein palmitoylation may play important roles in oocyte maturation and ffEV-mediated communications within the follicle.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
- Correspondence: ; Tel.: +33-247-427-951
| | | | - Aurélie Marestaing
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
| | - Peggy Jarrier-Gaillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
| | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
| | - Ekaterina N. Shedova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitzy 60, 142132 Podolsk, Russia; (E.N.S.); (G.N.S.)
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitzy 60, 142132 Podolsk, Russia; (E.N.S.); (G.N.S.)
| | - Rustem Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Électronique, Faculté de Médecine, Université de Tours, 37032 Tours, France;
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
| |
Collapse
|
19
|
Chen L, Kashina A. Post-translational Modifications of the Protein Termini. Front Cell Dev Biol 2021; 9:719590. [PMID: 34395449 PMCID: PMC8358657 DOI: 10.3389/fcell.2021.719590] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTM) involve enzyme-mediated covalent addition of functional groups to proteins during or after synthesis. These modifications greatly increase biological complexity and are responsible for orders of magnitude change between the variety of proteins encoded in the genome and the variety of their biological functions. Many of these modifications occur at the protein termini, which contain reactive amino- and carboxy-groups of the polypeptide chain and often are pre-primed through the actions of cellular machinery to expose highly reactive residues. Such modifications have been known for decades, but only a few of them have been functionally characterized. The vast majority of eukaryotic proteins are N- and C-terminally modified by acetylation, arginylation, tyrosination, lipidation, and many others. Post-translational modifications of the protein termini have been linked to different normal and disease-related processes and constitute a rapidly emerging area of biological regulation. Here we highlight recent progress in our understanding of post-translational modifications of the protein termini and outline the role that these modifications play in vivo.
Collapse
Affiliation(s)
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Blocking Palmitoylation of Toxoplasma gondii Myosin Light Chain 1 Disrupts Glideosome Composition but Has Little Impact on Parasite Motility. mSphere 2021; 6:6/3/e00823-20. [PMID: 34011689 PMCID: PMC8265671 DOI: 10.1128/msphere.00823-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is a widespread apicomplexan parasite that causes severe disease in immunocompromised individuals and the developing fetus. Like other apicomplexans, T. gondii uses an unusual form of substrate-dependent gliding motility to invade cells of its hosts and to disseminate throughout the body during infection. It is well established that a myosin motor consisting of a class XIVa heavy chain (TgMyoA) and two light chains (TgMLC1 and TgELC1/2) plays an important role in parasite motility. The ability of the motor to generate force at the parasite periphery is thought to be reliant upon its anchoring and immobilization within a peripheral membrane-bound compartment, the inner membrane complex (IMC). The motor does not insert into the IMC directly; rather, this interaction is believed to be mediated by the binding of TgMLC1 to the IMC-anchored protein, TgGAP45. Therefore, the binding of TgMLC1 to TgGAP45 is considered a key element in the force transduction machinery of the parasite. TgMLC1 is palmitoylated, and we show here that palmitoylation occurs on two N-terminal cysteine residues, C8 and C11. Mutations that block TgMLC1 palmitoylation completely abrogate the binding of TgMLC1 to TgGAP45. Surprisingly, the loss of TgMLC1 binding to TgGAP45 in these mutant parasites has little effect on their ability to initiate or sustain movement. These results question a key tenet of the current model of apicomplexan motility and suggest that our understanding of gliding motility in this important group of human and animal pathogens is not yet complete. IMPORTANCE Gliding motility plays a central role in the life cycle of T. gondii and other apicomplexan parasites. The myosin motor thought to power motility is essential for virulence but distinctly different from the myosins found in humans. Consequently, an understanding of the mechanism(s) underlying parasite motility and the role played by this unusual myosin may reveal points of vulnerability that can be targeted for disease prevention or treatment. We show here that mutations that uncouple the motor from what is thought to be a key structural component of the motility machinery have little impact on parasite motility. This finding runs counter to predictions of the current, widely held “linear motor” model of motility, highlighting the need for further studies to fully understand how apicomplexan parasites generate the forces necessary to move into, out of, and between cells of the hosts they infect.
Collapse
|
21
|
Shimell JJ, Globa A, Sepers MD, Wild AR, Matin N, Raymond LA, Bamji SX. Regulation of hippocampal excitatory synapses by the Zdhhc5 palmitoyl acyltransferase. J Cell Sci 2021; 134:237816. [PMID: 33758079 PMCID: PMC8182408 DOI: 10.1242/jcs.254276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Palmitoylation is the most common post-translational lipid modification in the brain; however, the role of palmitoylation and palmitoylating enzymes in the nervous system remains elusive. One of these enzymes, Zdhhc5, has previously been shown to regulate synapse plasticity. Here, we report that Zdhhc5 is also essential for the formation of excitatory, but not inhibitory, synapses both in vitro and in vivo. We demonstrate in vitro that this is dependent on the enzymatic activity of Zdhhc5, its localization at the plasma membrane and its C-terminal domain, which has been shown to be truncated in a patient with schizophrenia. Loss of Zdhhc5 in mice results in a decrease in the density of excitatory hippocampal synapses accompanied by alterations in membrane capacitance and synaptic currents, consistent with an overall decrease in spine number and silent synapses. These findings reveal an important role for Zdhhc5 in the formation and/or maintenance of excitatory synapses. Summary: The plasma membrane-associated Zdhhc5 enzyme enhances excitatory synapse formation in vitro and in vivo through motifs at its C-terminal domain.
Collapse
Affiliation(s)
- Jordan J Shimell
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Andrea Globa
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marja D Sepers
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Angela R Wild
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nusrat Matin
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lynn A Raymond
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
22
|
Dai W, Xie S, Chen C, Choi BH. Ras sumoylation in cell signaling and transformation. Semin Cancer Biol 2021; 76:301-309. [PMID: 33812985 DOI: 10.1016/j.semcancer.2021.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/13/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Ras proteins are small GTPases that participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, and differentiation. Mutations or deregulated activities of Ras are frequently the driving force for oncogenic transformation and tumorigenesis. Posttranslational modifications play a crucial role in mediating the stability, activity, or subcellular localization/trafficking of numerous cellular regulators including Ras proteins. A series of recent studies reveal that Ras proteins are also regulated by sumoylation. All three Ras protein isoforms (HRas, KRas, and NRas) are modified by SUMO3. The conserved lysine42 appears to be the primary site for mediating sumoylation. Expression of KRasV12/R42 mutants compromised the activation of the Raf/MEK/ERK signaling axis, leading to a reduced rate of cell migration and invasion in vitro in multiple cell lines. Moreover, treatment of transformed pancreatic cells with a SUMO E2 inhibitor blocks cell migration in a concentration-dependent manner, which is associated with a reduced level of both KRas sumoylation and expression of mesenchymal cell markers. Furthermore, mouse xenograft experiments reveal that expression of a SUMO-resistant mutant appears to suppress tumor development in vivo. Combined, these studies indicate that sumoylation functions as an important mechanism in mediating the roles of Ras in cell proliferation, differentiation, and malignant transformation and that the SUMO-modification system of Ras oncoproteins can be explored as a new druggable target for various human malignancies.
Collapse
Affiliation(s)
- Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, USA
| | - Suqing Xie
- Institute of Pathology, Kings County Hospital Center, Brooklyn, NY, USA
| | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Byeong Hyeok Choi
- Department of Environmental Medicine, New York University Langone Medical Center, USA.
| |
Collapse
|
23
|
Hernández-Fernández J, Pinzón-Velasco A, López EA, Rodríguez-Becerra P, Mariño-Ramírez L. Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle. TOXICS 2021; 9:70. [PMID: 33805397 PMCID: PMC8066450 DOI: 10.3390/toxics9040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
- Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Calle 45, Cra. 7, Bogotá 110231, Colombia
| | - Andrés Pinzón-Velasco
- Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Calle 45, Cra. 30, Bogotá 111321, Colombia;
| | - Ellie Anne López
- IDEASA Research Group-Environment and Sustainability, Institute of Environmental Studies and Services, Sergio Arboleda University, Bogotá 111711, Colombia;
| | - Pilar Rodríguez-Becerra
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
| | - Leonardo Mariño-Ramírez
- NCBI, NLM, NIH Computational Biology Branch, Building 38A, Room 6S614M 8600 Rockville Pike, MSC 6075, Bethesda, MD 20894-6075, USA;
| |
Collapse
|
24
|
Differential expression of two ATPases revealed by lipid raft isolation from gills of euryhaline teleosts with different salinity preferences. Comp Biochem Physiol B Biochem Mol Biol 2021; 253:110562. [PMID: 33453387 DOI: 10.1016/j.cbpb.2021.110562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
In euryhaline teleosts, Na+, K+-ATPase (NKA) and V-type H + -ATPase A (VHA A) are important ion-transporters located in cell membrane. Lipid rafts (LR) are plasma membrane microdomains enriched in cholesterol, sphingolipids, and proteins (e.g., flotillin). Flotillin is a LR-associated protein, commonly used as the LR marker. Previous mammalian studies showed that LR may play a crucial role in ion exchanges. Meanwhile, studies on mammals and rainbow trout showed that NKA were found to be present mainly in LR. However, little is known about LR in fish. Therefore, the present study aimed to investigate the involvement of branchial LR in osmoregulation of tilapia and milkfish, two euryhaline teleosts with different salinity preferences, by (i) extracting LR from the gills of euryhaline teleosts; (ii) detecting the abundance of LR marker protein (flotillin-2) and ion-transporters (NKA and VHA A) in branchial LR and non-LR of fresh water- and seawater-acclimated milkfish and tilapia. The results indicated that the protein abundance of LR marker, flotillin-2, changed with environmental salinities in branchial LR of tilapia. In addition, flotillin-2 and NKA were only found in LR in both tilapia and milkfish gills, while VHA A were mainly present in non-LR. Relative protein abundance of NKA was found to be significantly higher in gills of freshwater milkfish and seawater tilapia, while VHA A was significantly higher in gills of freshwater tilapia and milkfish. This study illustrated differential distribution and salinity-dependent expression of NKA and VHA A in cell membrane of gill tissues of euryhaline teleosts with different salinity preferences.
Collapse
|
25
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
26
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
27
|
Chen M, Huang B, Zhu L, Chen K, Liu M, Zhong C. Structural and Functional Overview of TEAD4 in Cancer Biology. Onco Targets Ther 2020; 13:9865-9874. [PMID: 33116572 PMCID: PMC7547805 DOI: 10.2147/ott.s266649] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
TEA domain transcription factor 4 (TEAD4) is an important member of the TEAD family. As a downstream effector of the Hippo pathway, TEAD4 has essential roles in cell proliferation, cell survival, tissue regeneration, and stem cell maintenance. TEAD4 contains a TEA DNA binding domain that binds the promoters of target genes and a Yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) binding domain that associates with transcriptional cofactors. TEAD4 coordinates with YAP, TAZ, VGLL, and other transcription factors to regulate different cellular processes in cancer via its transcriptional output. Moreover, TEAD4 undergoes post-translational modifications and subcellular translocations, and both processes have been shown to shed new insights on how TEAD transcriptional activity can be modified. In summary, TEAD4 has important roles in cancer, including epithelial-mesenchymal transition (EMT), metastasis, cancer stem cell dynamics, and chemotherapeutic drug resistance, suggesting that TEAD4 may be a promising prognostic biomarker in cancer.
Collapse
Affiliation(s)
- Mu Chen
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Bingsong Huang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Lei Zhu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Kui Chen
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| |
Collapse
|
28
|
Plain F, Howie J, Kennedy J, Brown E, Shattock MJ, Fraser NJ, Fuller W. Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase. Commun Biol 2020; 3:411. [PMID: 32737405 PMCID: PMC7395175 DOI: 10.1038/s42003-020-01145-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Although palmitoylation regulates numerous cellular processes, as yet efforts to manipulate this post-translational modification for therapeutic gain have proved unsuccessful. The Na-pump accessory sub-unit phospholemman (PLM) is palmitoylated by zDHHC5. Here, we show that PLM palmitoylation is facilitated by recruitment of the Na-pump α sub-unit to a specific site on zDHHC5 that contains a juxtamembrane amphipathic helix. Site-specific palmitoylation and GlcNAcylation of this helix increased binding between the Na-pump and zDHHC5, promoting PLM palmitoylation. In contrast, disruption of the zDHHC5-Na-pump interaction with a cell penetrating peptide reduced PLM palmitoylation. Our results suggest that by manipulating the recruitment of specific substrates to particular zDHHC-palmitoyl acyl transferases, the palmitoylation status of individual proteins can be selectively altered, thus opening the door to the development of molecular modulators of protein palmitoylation for the treatment of disease.
Collapse
Affiliation(s)
- Fiona Plain
- School of Medicine, University of Dundee, Dundee, UK
| | - Jacqueline Howie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Elaine Brown
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael J Shattock
- Cardiovascular Division, The Rayne Institute, King's College London, London, UK
| | | | - William Fuller
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
29
|
Tohumeken S, Baur R, Böttcher M, Stoll A, Loschinski R, Panagiotidis K, Braun M, Saul D, Völkl S, Baur AS, Bruns H, Mackensen A, Jitschin R, Mougiakakos D. Palmitoylated Proteins on AML-Derived Extracellular Vesicles Promote Myeloid-Derived Suppressor Cell Differentiation via TLR2/Akt/mTOR Signaling. Cancer Res 2020; 80:3663-3676. [PMID: 32605996 DOI: 10.1158/0008-5472.can-20-0024] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) represents the most common acute leukemia among adults. Despite recent progress in diagnosis and treatment, long-term outcome remains unsatisfactory. The success of allogeneic stem cell transplantation underscores the immunoresponsive nature of AML, creating the basis for further exploiting immunotherapies. However, emerging evidence suggests that AML, similar to other malignant entities, employs a variety of mechanisms to evade immunosurveillance. In light of this, T-cell inhibitory myeloid-derived suppressor cells (MDSC) are gaining interest as key facilitators of immunoescape. Accumulation of CD14+HLA-DRlow monocytic MDSCs has been described in newly diagnosed AML patients, and deciphering the underlying mechanisms could help to improve anti-AML immunity. Here, we report that conventional monocytes readily take-up AML-derived extracellular vesicles (EV) and subsequently undergo MDSC differentiation. They acquired an CD14+HLA-DRlow phenotype, expressed the immunomodulatory indoleamine-2,3-dioxygenase, and upregulated expression of genes characteristic for MDSCs, such as S100A8/9 and cEBPβ. The Akt/mTOR pathway played a critical role in the AML-EV-induced phenotypical and functional transition of monocytes. Generated MDSCs displayed a glycolytic switch, which rendered them more susceptible toward glycolytic inhibitors. Furthermore, palmitoylated proteins on the AML-EV surface activated Toll-like receptor 2 as the initiating event of Akt/mTOR-dependent induction of MDSC. Therefore, targeting protein palmitoylation in AML blasts could block MDSC accumulation to improve immune responses. SIGNIFICANCE: These findings indicate that targeting protein palmitoylation in AML could interfere with the leukemogenic potential and block MDSC accumulation to improve immunity.
Collapse
Affiliation(s)
- Sehmus Tohumeken
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca Baur
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Böttcher
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrej Stoll
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Romy Loschinski
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Konstantinos Panagiotidis
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Braun
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Domenica Saul
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simon Völkl
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas S Baur
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heiko Bruns
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Jitschin
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
30
|
Wang Y, Lu H, Fang C, Xu J. Palmitoylation as a Signal for Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:399-424. [DOI: 10.1007/978-981-15-3266-5_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Siddiqui MA, Singh S, Malhotra P, Chitnis CE. Protein S-Palmitoylation Is Responsive to External Signals and Plays a Regulatory Role in Microneme Secretion in Plasmodium falciparum Merozoites. ACS Infect Dis 2020; 6:379-392. [PMID: 32003970 DOI: 10.1021/acsinfecdis.9b00321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein S-palmitoylation is an important post-translational modification (PTM) in blood stages of the malaria parasite, Plasmodium falciparum. S-palmitoylation refers to reversible covalent modification of cysteine residues of proteins by saturated fatty acids. In vivo, palmitoylation is regulated by concerted activities of DHHC palmitoyl acyl transferases (DHHC PATs) and acyl protein thioesterases (APTs), which are enzymes responsible for protein palmitoylation and depalmitoylation, respectively. Here, we investigate the role of protein palmitoylation in red blood cell (RBC) invasion by P. falciparum merozoites. We demonstrate for the first time that free merozoites require PAT activity for microneme secretion in response to exposure to the physiologically relevant low [K+] environment, characteristic of blood plasma. We have adapted copper catalyzed alkyne azide chemistry (CuAAC) to image palmitoylation in merozoites and found that exposure to low [K+] activates PAT activity in merozoites. Moreover, using acyl biotin exchange chemistry (ABE) and confocal imaging, we demonstrate that a calcium dependent protein kinase, PfCDPK1, an essential regulator of key invasion processes such as motility and microneme secretion, undergoes dynamic palmitoylation and localizes to the merozoite membrane. Treatment of merozoites with the PAT inhibitor, 2-bromopalmitate (2-BP), effectively inhibits microneme secretion and RBC invasion by the parasite, thus opening the possibility of targeting P. falciparum PATs for antimalarial drug discovery to inhibit blood stage growth of malaria parasites.
Collapse
Affiliation(s)
- Mansoor A. Siddiqui
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailja Singh
- Institut Pasteur, 25-28 Rue du Dr. Roux, Paris 75016, France
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Chetan E. Chitnis
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- Institut Pasteur, 25-28 Rue du Dr. Roux, Paris 75016, France
| |
Collapse
|
32
|
Pinner AL, Mueller TM, Alganem K, McCullumsmith R, Meador-Woodruff JH. Protein expression of prenyltransferase subunits in postmortem schizophrenia dorsolateral prefrontal cortex. Transl Psychiatry 2020; 10:3. [PMID: 32066669 PMCID: PMC7026430 DOI: 10.1038/s41398-019-0610-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
The pathophysiology of schizophrenia includes altered neurotransmission, dysregulated intracellular signaling pathway activity, and abnormal dendritic morphology that contribute to deficits of synaptic plasticity in the disorder. These processes all require dynamic protein-protein interactions at cell membranes. Lipid modifications target proteins to membranes by increasing substrate hydrophobicity by the addition of a fatty acid or isoprenyl moiety, and recent evidence suggests that dysregulated posttranslational lipid modifications may play a role in multiple neuropsychiatric disorders, including schizophrenia. Consistent with these emerging findings, we have recently reported decreased protein S-palmitoylation in schizophrenia. Protein prenylation is a lipid modification that occurs upstream of S-palmitoylation on many protein substrates, facilitating membrane localization and activity of key intracellular signaling proteins. Accordingly, we hypothesized that, in addition to palmitoylation, protein prenylation may be abnormal in schizophrenia. To test this, we assayed protein expression of the five prenyltransferase subunits (FNTA, FNTB, PGGT1B, RABGGTA, and RABGGTB) in postmortem dorsolateral prefrontal cortex from patients with schizophrenia and paired comparison subjects (n = 13 pairs). We found decreased levels of FNTA (14%), PGGT1B (13%), and RABGGTB (8%) in schizophrenia. To determine whether upstream or downstream factors may be driving these changes, we also assayed protein expression of the isoprenoid synthases FDPS and GGPS1 and prenylation-dependent processing enzymes RCE and ICMT. We found these upstream and downstream enzymes to have normal protein expression. To rule out effects from chronic antipsychotic treatment, we assayed FNTA, PGGT1B, and RABGGTB in the cortex from rats treated long-term with haloperidol decanoate and found no change in the expression of these proteins. Given the role prenylation plays in localization of key signaling proteins found at the synapse, these data offer a potential mechanism underlying abnormal protein-protein interactions and protein localization in schizophrenia.
Collapse
Affiliation(s)
- Anita L Pinner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA.
| | - Toni M Mueller
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614-2598, USA
| | | | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| |
Collapse
|
33
|
Therapeutic targeting of protein S-acylation for the treatment of disease. Biochem Soc Trans 2019; 48:281-290. [DOI: 10.1042/bst20190707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
The post-translational modification protein S-acylation (commonly known as palmitoylation) plays a critical role in regulating a wide range of biological processes including cell growth, cardiac contractility, synaptic plasticity, endocytosis, vesicle trafficking, membrane transport and biased-receptor signalling. As a consequence, zDHHC-protein acyl transferases (zDHHC-PATs), enzymes that catalyse the addition of fatty acid groups to specific cysteine residues on target proteins, and acyl proteins thioesterases, proteins that hydrolyse thioester linkages, are important pharmaceutical targets. At present, no therapeutic drugs have been developed that act by changing the palmitoylation status of specific target proteins. Here, we consider the role that palmitoylation plays in the development of diseases such as cancer and detail possible strategies for selectively manipulating the palmitoylation status of specific target proteins, a necessary first step towards developing clinically useful molecules for the treatment of disease.
Collapse
|
34
|
Palmitoylation of Hepatitis C Virus NS2 Regulates Its Subcellular Localization and NS2-NS3 Autocleavage. J Virol 2019; 94:JVI.00906-19. [PMID: 31597774 PMCID: PMC6912101 DOI: 10.1128/jvi.00906-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is a major cause of severe liver diseases responsible for nearly 400,000 deaths per year. HCV NS2 protein is a multifunctional regulator of HCV replication involved in both viral-genome replication and infectious-virus assembly. However, the underlying mechanism that enables the protein to participate in multiple steps of HCV replication remains unknown. In this study, we discovered that NS2 palmitoylation is the master regulator of its multiple functions, including NS2-mediated self-cleavage and HCV envelope protein recruitment to the virus assembly sites, which in turn promote HCV RNA replication and infectious-particle assembly, respectively. This newly revealed information suggests that NS2 palmitoylation could serve as a promising target to inhibit both HCV RNA replication and virus assembly, representing a new avenue for host-targeting strategies against HCV infection. Hepatitis C virus (HCV) nonstructural protein 2 (NS2) is a multifunctional protein implicated in both HCV RNA replication and virus particle assembly. NS2-encoded cysteine protease is responsible for autoprocessing of NS2-NS3 precursor, an essential step in HCV RNA replication. NS2 also promotes HCV particle assembly by recruiting envelope protein 2 (E2) to the virus assembly sites located at the detergent-resistant membranes (DRM). However, the fundamental mechanism regulating multiple functions of NS2 remains unclear. In this study, we discovered that NS2 is palmitoylated at the position 113 cysteine residue (NS2/C113) when expressed by itself in cells and during infectious-HCV replication. Blocking NS2 palmitoylation by introducing an NS2/C113S mutation reduced NS2-NS3 autoprocessing and impaired HCV RNA replication. Replication of the NS2/C113S mutant was restored by inserting an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) between NS2 and NS3 to separate the two proteins independently of NS2-mediated autoprocessing. These results suggest that NS2 palmitoylation is critical for HCV RNA replication by promoting NS2-NS3 autoprocessing. The NS2/C113S mutation also impaired infectious-HCV assembly, DRM localization of NS2 and E2, and colocalization of NS2 with Core and endoplasmic reticulum lipid raft-associated protein 2 (Erlin-2). In conclusion, our study revealed that two major functions of NS2 involved in HCV RNA replication and virus assembly, i.e., NS2-NS3 autoprocessing and E2 recruitment to the DRM, are regulated by palmitoylation at NS2/C113. Since S-palmitoylation is reversible, NS2 palmitoylation likely allows NS2 to fine tune both HCV RNA replication and infectious-particle assembly. IMPORTANCE Chronic infection with hepatitis C virus (HCV) is a major cause of severe liver diseases responsible for nearly 400,000 deaths per year. HCV NS2 protein is a multifunctional regulator of HCV replication involved in both viral-genome replication and infectious-virus assembly. However, the underlying mechanism that enables the protein to participate in multiple steps of HCV replication remains unknown. In this study, we discovered that NS2 palmitoylation is the master regulator of its multiple functions, including NS2-mediated self-cleavage and HCV envelope protein recruitment to the virus assembly sites, which in turn promote HCV RNA replication and infectious-particle assembly, respectively. This newly revealed information suggests that NS2 palmitoylation could serve as a promising target to inhibit both HCV RNA replication and virus assembly, representing a new avenue for host-targeting strategies against HCV infection.
Collapse
|
35
|
Palmitoyl Acyltransferase Activity of ZDHHC13 Regulates Skin Barrier Development Partly by Controlling PADi3 and TGM1 Protein Stability. J Invest Dermatol 2019; 140:959-970.e3. [PMID: 31669413 DOI: 10.1016/j.jid.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023]
Abstract
Deficiency of the palmitoyl-acyl transferase ZDHHC13 compromises skin barrier permeability and renders mice susceptible to environmental bacterial infection and inflammatory dermatitis. It had been unclear how the lack of ZDHHC13 proteins resulted in cutaneous abnormalities. In this study, we first demonstrate that enzymatic palmitoylation activity, rather than protein scaffolding, by ZDHHC13 is essential for skin barrier integrity, showing that knock-in mice bearing an enzymatically dead DQ-to-AA ZDHHC13 mutation lost their hair after weaning cyclically, recapitulating knockout phenotypes of skin inflammation and dermatitis. To establish the ZDHHC13 substrates responsible for skin barrier development, we employed quantitative proteomic approaches to identify protein molecules whose palmitoylation is tightly controlled by ZDHHC13. We identified over 300 candidate proteins that could be classified into four biological categories: immunological disease, skin development and function, dermatological disease, and lipid metabolism. Palmitoylation of three of these candidates-loricrin, peptidyl arginine deiminase type III, and keratin fiber crosslinker transglutaminase 1-by ZDHHC13 was confirmed by biochemical assay. Palmitoylation was critical for in vivo protein stability of the latter two candidates. Our findings reveal the importance of protein palmitoylation in skin barrier development, partly by promoting envelope protein crosslinking and the filaggrin processing pathway.
Collapse
|
36
|
Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol 2019; 252:509-526. [PMID: 31485700 DOI: 10.1007/s00232-019-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR-G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.
Collapse
|
37
|
Buenaventura T, Bitsi S, Laughlin WE, Burgoyne T, Lyu Z, Oqua AI, Norman H, McGlone ER, Klymchenko AS, Corrêa IR, Walker A, Inoue A, Hanyaloglu A, Grimes J, Koszegi Z, Calebiro D, Rutter GA, Bloom SR, Jones B, Tomas A. Agonist-induced membrane nanodomain clustering drives GLP-1 receptor responses in pancreatic beta cells. PLoS Biol 2019; 17:e3000097. [PMID: 31430273 PMCID: PMC6716783 DOI: 10.1371/journal.pbio.3000097] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/30/2019] [Accepted: 08/05/2019] [Indexed: 12/26/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R), a key pharmacological target in type 2 diabetes (T2D) and obesity, undergoes rapid endocytosis after stimulation by endogenous and therapeutic agonists. We have previously highlighted the relevance of this process in fine-tuning GLP-1R responses in pancreatic beta cells to control insulin secretion. In the present study, we demonstrate an important role for the translocation of active GLP-1Rs into liquid-ordered plasma membrane nanodomains, which act as hotspots for optimal coordination of intracellular signaling and clathrin-mediated endocytosis. This process is dynamically regulated by agonist binding through palmitoylation of the GLP-1R at its carboxyl-terminal tail. Biased GLP-1R agonists and small molecule allosteric modulation both influence GLP-1R palmitoylation, clustering, nanodomain signaling, and internalization. Downstream effects on insulin secretion from pancreatic beta cells indicate that these processes are relevant to GLP-1R physiological actions and might be therapeutically targetable. Nanodomain segregation and clustering of the glucagon-like peptide-1 receptor, a key target for type 2 diabetes therapy, is regulated by agonist binding, leading to compartmentalization of downstream signaling and clathrin-dependent internalization and impacting pancreatic beta cell responses.
Collapse
Affiliation(s)
- Teresa Buenaventura
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - William E. Laughlin
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Thomas Burgoyne
- Department of Cell Biology, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Zekun Lyu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Affiong I. Oqua
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Hannah Norman
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Emma R. McGlone
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, University of Strasbourg, Illkirch-Strasbourg, France
| | - Ivan R. Corrêa
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Abigail Walker
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | - Aylin Hanyaloglu
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jak Grimes
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham and Nottingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham and Nottingham, United Kingdom
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham and Nottingham, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Stephen R. Bloom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (AT); (BJ)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (AT); (BJ)
| |
Collapse
|
38
|
Huh HD, Kim DH, Jeong HS, Park HW. Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019; 8:E600. [PMID: 31212916 PMCID: PMC6628201 DOI: 10.3390/cells8060600] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional enhanced associate domain (TEAD) transcription factors play important roles during development, cell proliferation, regeneration, and tissue homeostasis. TEAD integrates with and coordinates various signal transduction pathways including Hippo, Wnt, transforming growth factor beta (TGFβ), and epidermal growth factor receptor (EGFR) pathways. TEAD deregulation affects well-established cancer genes such as KRAS, BRAF, LKB1, NF2, and MYC, and its transcriptional output plays an important role in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. To date, TEADs have been recognized to be key transcription factors of the Hippo pathway. Therefore, most studies are focused on the Hippo kinases and YAP/TAZ, whereas the Hippo-dependent and Hippo-independent regulators and regulations governing TEAD only emerged recently. Deregulation of the TEAD transcriptional output plays important roles in tumor progression and serves as a prognostic biomarker due to high correlation with clinicopathological parameters in human malignancies. In addition, discovering the molecular mechanisms of TEAD, such as post-translational modifications and nucleocytoplasmic shuttling, represents an important means of modulating TEAD transcriptional activity. Collectively, this review highlights the role of TEAD in multistep-tumorigenesis by interacting with upstream oncogenic signaling pathways and controlling downstream target genes, which provides unprecedented insight and rationale into developing TEAD-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
39
|
Palmitoylation in apicomplexan parasites: from established regulatory roles to putative new functions. Mol Biochem Parasitol 2019; 230:16-23. [PMID: 30978365 DOI: 10.1016/j.molbiopara.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/17/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
This minireview aims to provide a comprehensive synthesis on protein palmitoylation in apicomplexan parasites and higher eukaryotes where most of the data is available. Apicomplexan parasites encompass numerous obligate intracellular parasites with significant health risk to animals and humans. Protein palmitoylation is a widespread post-translational modification that plays important regulatory roles in several physiological and pathological states. Functional studies demonstrate that many processes important for parasites are regulated by protein palmitoylation. Structural analyses suggest that enzymes responsible for the palmitoylation process have a conserved architecture in eukaryotes although there are particular differences which could be related to their substrate specificities. Interestingly, with the publication of T. gondii and P. falciparum palmitoylomes new possible regulatory functions are unveiled. Here we focus our discussion on data from both palmitoylomes that suggest that palmitoylation of nuclear proteins regulate different chromatin-related processes such as nucleosome assembly and stability, transcription, translation and DNA repair.
Collapse
|
40
|
Identification of Novel Inhibitors of DLK Palmitoylation and Signaling by High Content Screening. Sci Rep 2019; 9:3632. [PMID: 30842471 PMCID: PMC6403299 DOI: 10.1038/s41598-019-39968-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/04/2019] [Indexed: 12/05/2022] Open
Abstract
After axonal insult and injury, Dual leucine-zipper kinase (DLK) conveys retrograde pro-degenerative signals to neuronal cell bodies via its downstream target c-Jun N-terminal kinase (JNK). We recently reported that such signals critically require modification of DLK by the fatty acid palmitate, via a process called palmitoylation. Compounds that inhibit DLK palmitoylation could thus reduce neurodegeneration, but identifying such inhibitors requires a suitable assay. Here we report that DLK subcellular localization in non-neuronal cells is highly palmitoylation-dependent and can thus serve as a proxy readout to identify inhibitors of DLK palmitoylation by High Content Screening (HCS). We optimized an HCS assay based on this readout, which showed highly robust performance in a 96-well format. Using this assay we screened a library of 1200 FDA-approved compounds and found that ketoconazole, the compound that most dramatically affected DLK localization in our primary screen, dose-dependently inhibited DLK palmitoylation in follow-up biochemical assays. Moreover, ketoconazole significantly blunted phosphorylation of c-Jun in primary sensory neurons subjected to trophic deprivation, a well known model of DLK-dependent pro-degenerative signaling. Our HCS platform is thus capable of identifying novel inhibitors of DLK palmitoylation and signalling that may have considerable therapeutic potential.
Collapse
|
41
|
Deficiency of AMPAR-Palmitoylation Aggravates Seizure Susceptibility. J Neurosci 2018; 38:10220-10235. [PMID: 30355633 DOI: 10.1523/jneurosci.1590-18.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023] Open
Abstract
Synaptic AMPAR expression controls the strength of excitatory synaptic transmission and plasticity. An excess of synaptic AMPARs leads to epilepsy in response to seizure-inducible stimulation. The appropriate regulation of AMPARs plays a crucial role in the maintenance of the excitatory/inhibitory synaptic balance; however, the detailed mechanisms underlying epilepsy remain unclear. Our previous studies have revealed that a key modification of AMPAR trafficking to and from postsynaptic membranes is the reversible, posttranslational S-palmitoylation at the C-termini of receptors. To clarify the role of palmitoylation-dependent regulation of AMPARs in vivo, we generated GluA1 palmitoylation-deficient (Cys811 to Ser substitution) knock-in mice. These mutant male mice showed elevated seizure susceptibility and seizure-induced neuronal activity without impairments in synaptic transmission, gross brain structure, or behavior at the basal level. Disruption of the palmitoylation site was accompanied by upregulated GluA1 phosphorylation at Ser831, but not at Ser845, in the hippocampus and increased GluA1 protein expression in the cortex. Furthermore, GluA1 palmitoylation suppressed excessive spine enlargement above a certain size after LTP. Our findings indicate that an abnormality in GluA1 palmitoylation can lead to hyperexcitability in the cerebrum, which negatively affects the maintenance of network stability, resulting in epileptic seizures.SIGNIFICANCE STATEMENT AMPARs predominantly mediate excitatory synaptic transmission. AMPARs are regulated in a posttranslational, palmitoylation-dependent manner in excitatory synapses of the mammalian brain. Reversible palmitoylation dynamically controls synaptic expression and intracellular trafficking of the receptors. Here, we generated GluA1 palmitoylation-deficient knock-in mice to clarify the role of AMPAR palmitoylation in vivo We showed that an abnormality in GluA1 palmitoylation led to hyperexcitability, resulting in epileptic seizure. This is the first identification of a specific palmitoylated protein critical for the seizure-suppressing process. Our data also provide insight into how predicted receptors such as AMPARs can effectively preserve network stability in the brain. Furthermore, these findings help to define novel key targets for developing anti-epileptic drugs.
Collapse
|
42
|
Yamashita YM, Inaba M, Buszczak M. Specialized Intercellular Communications via Cytonemes and Nanotubes. Annu Rev Cell Dev Biol 2018; 34:59-84. [PMID: 30074816 DOI: 10.1146/annurev-cellbio-100617-062932] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, thin membrane protrusions such as cytonemes and tunneling nanotubes have emerged as a novel mechanism of intercellular communication. Protrusion-based cellular interactions allow for specific communication between participating cells and have a distinct spectrum of advantages compared to secretion- and diffusion-based intercellular communication. Identification of protrusion-based signaling in diverse systems suggests that this mechanism is a ubiquitous and prevailing means of communication employed by many cell types. Moreover, accumulating evidence indicates that protrusion-based intercellular communication is often involved in pathogenesis, including cancers and infections. Here we review our current understanding of protrusion-based intercellular communication.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
43
|
Manikowski D, Kastl P, Grobe K. Taking the Occam's Razor Approach to Hedgehog Lipidation and Its Role in Development. J Dev Biol 2018; 6:jdb6010003. [PMID: 29615552 PMCID: PMC5875562 DOI: 10.3390/jdb6010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
All Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles called lipophorins and exosomes. The alternative situation that tight membrane association merely serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural studies suggesting Hh extraction from the membrane or proteolytic Hh release. While some of these models may act in different organisms, tissues or developmental programs, others may act together to specify Hh short- and long-range signaling in the same tissues. To test and rank these possibilities, we here review major models of Hh release and transport and hypothesize that the (bio)chemical and physical properties of firmly established, homologous, and functionally essential biochemical Hh modifications are adapted to specify and determine interdependent steps of Hh release, transport and signaling, while ruling out other steps. This is also described by the term “congruence”, meaning that the logical combination of biochemical Hh modifications can reveal their true functional implications. This combined approach reveals potential links between models of Hh release and transport that were previously regarded as unrelated, thereby expanding our view of how Hhs can steer development in a simple, yet extremely versatile, manner.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
44
|
Sobocińska J, Roszczenko-Jasińska P, Ciesielska A, Kwiatkowska K. Protein Palmitoylation and Its Role in Bacterial and Viral Infections. Front Immunol 2018; 8:2003. [PMID: 29403483 PMCID: PMC5780409 DOI: 10.3389/fimmu.2017.02003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Abstract
S-palmitoylation is a reversible, enzymatic posttranslational modification of proteins in which palmitoyl chain is attached to a cysteine residue via a thioester linkage. S-palmitoylation determines the functioning of proteins by affecting their association with membranes, compartmentalization in membrane domains, trafficking, and stability. In this review, we focus on S-palmitoylation of proteins, which are crucial for the interactions of pathogenic bacteria and viruses with the host. We discuss the role of palmitoylated proteins in the invasion of host cells by bacteria and viruses, and those involved in the host responses to the infection. We highlight recent data on protein S-palmitoylation in pathogens and their hosts obtained owing to the development of methods based on click chemistry and acyl-biotin exchange allowing proteomic analysis of protein lipidation. The role of the palmitoyl moiety present in bacterial lipopolysaccharide and lipoproteins, contributing to infectivity and affecting recognition of bacteria by innate immune receptors, is also discussed.
Collapse
Affiliation(s)
- Justyna Sobocińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Paula Roszczenko-Jasińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
45
|
Gao X, Hannoush RN. A Decade of Click Chemistry in Protein Palmitoylation: Impact on Discovery and New Biology. Cell Chem Biol 2017; 25:236-246. [PMID: 29290622 DOI: 10.1016/j.chembiol.2017.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/10/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Protein palmitoylation plays diverse roles in regulating the trafficking, stability, and activity of cellular proteins. The advent of click chemistry has propelled the field of protein palmitoylation forward by providing specific, sensitive, rapid, and easy-to-handle methods for studying protein palmitoylation. This year marks the 10th anniversary since the first click chemistry-based fatty acid probes for detecting protein lipid modifications were reported. The goal of this review is to highlight key biological advancements in the field of protein palmitoylation during the past 10 years. In particular, we discuss the impact of click chemistry on enabling protein palmitoylation proteomics methods, uncovering novel lipid modifications on proteins and elucidating their functions, as well as the development of non-radioactive biochemical and enzymatic assays. In addition, this review provides context for building and exploring new research avenues in protein palmitoylation through the use of clickable fatty acid probes.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
46
|
Haines RJ, Wang CY, Yang CGY, Eitnier RA, Wang F, Wu MH. Targeting palmitoyl acyltransferase ZDHHC21 improves gut epithelial barrier dysfunction resulting from burn-induced systemic inflammation. Am J Physiol Gastrointest Liver Physiol 2017; 313:G549-G557. [PMID: 28838985 PMCID: PMC5814670 DOI: 10.1152/ajpgi.00145.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/11/2017] [Accepted: 08/18/2017] [Indexed: 01/31/2023]
Abstract
Clinical studies in burn patients demonstrate a close association between leaky guts and increased incidence or severity of sepsis and other complications. Severe thermal injury triggers intestinal inflammation that contributes to intestinal epithelial hyperpermeability, which exacerbates systemic response leading to multiple organ failure and sepsis. In this study, we identified a significant function of a particular palmitoyl acyltransferase, zinc finger DHHC domain-containing protein-21 (ZDHHC21), in mediating signaling events required for gut hyperpermeability induced by inflammation. Using quantitative PCR, we show that ZDHHC21 mRNA production was enhanced twofold when intestinal epithelial cells were treated with TNF-α-IFN-γ in vitro. In addition, pharmacological targeting of palmitoyl acyltransferases with 2-bromopalmitate (2-BP) showed significant improvement in TNF-α-IFN-γ-mediated epithelial barrier dysfunction by using electric cell-substrate impedance-sensing assays, as well as FITC-labeled dextran permeability assays. Using acyl-biotin exchange assay and click chemistry, we show that TNF-α-IFN-γ treatment of intestinal epithelial cells results in enhanced detection of total palmitoylated proteins and this response is inhibited by 2-BP. Using ZDHHC21-deficient mice or wild-type mice treated with 2-BP, we showed that mice with impaired ZDHHC21 expression or pharmacological inhibition resulted in attenuated intestinal barrier dysfunction caused by thermal injury. Moreover, hematoxylin and eosin staining of the small intestine, as well as transmission electron microscopy, showed that mice with genetic interruption of ZDHHC21 had attenuated villus structure disorganization associated with thermal injury-induced intestinal barrier damage. Taken together, these results suggest an important role of ZDHHC21 in mediating gut hyperpermeability resulting from thermal injury.NEW & NOTEWORTHY Increased mucosal permeability in the gut is one of the major complications following severe burn. Here we report the novel finding that zinc finger DHHC domain-containing protein-21 (ZDHHC21) mediates gut epithelial hyperpermeability resulting from an experimental model of thermal injury. The hyperpermeability response was significantly attenuated with a pharmacological inhibitor of palmitoyl acyltransferases and in mice with genetic ablation of ZDHHC21. These findings suggest that ZDHHC21 may serve as a novel therapeutic target for treating burn-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- R. J. Haines
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - C. Y. Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - C. G. Y. Yang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - R. A. Eitnier
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - F. Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - M. H. Wu
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
47
|
Yakubu RR, Weiss LM, Silmon de Monerri NC. Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies. Mol Microbiol 2017; 107:1-23. [PMID: 29052917 DOI: 10.1111/mmi.13867] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022]
Abstract
Parasites of the Apicomplexa phylum, such as Plasmodium spp. and Toxoplasma gondii, undergo complex life cycles involving multiple stages with distinct biology and morphologies. Post-translational modifications (PTMs), such as phosphorylation, acetylation and glycosylation, regulate numerous cellular processes, playing a role in every aspect of cell biology. PTMs can occur on proteins at any time in their lifespan and through alterations of target protein activity, localization, protein-protein interactions, among other functions, dramatically increase proteome diversity and complexity. In addition, PTMs can be induced or removed on changes in cellular environment and state. Thus, PTMs are likely to be key regulators of developmental transitions, biology and pathogenesis of apicomplexan parasites. In this review we examine the roles of PTMs in both parasite-specific and conserved eukaryotic processes, and the potential crosstalk between PTMs, that together regulate the intricate lives of these protozoa.
Collapse
Affiliation(s)
- Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| | - Natalie C Silmon de Monerri
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| |
Collapse
|
48
|
Roy K, Jerman S, Jozsef L, McNamara T, Onyekaba G, Sun Z, Marin EP. Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation. J Biol Chem 2017; 292:17703-17717. [PMID: 28848045 PMCID: PMC5663873 DOI: 10.1074/jbc.m117.792937] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Primary cilia are hairlike extensions of the plasma membrane of most mammalian cells that serve specialized signaling functions. To traffic properly to cilia, multiple cilia proteins rely on palmitoylation, the post-translational attachment of a saturated 16-carbon lipid. However, details regarding the mechanism of how palmitoylation affects cilia protein localization and function are unknown. Herein, we investigated the protein ADP-ribosylation factor-like GTPase 13b (ARL13b) as a model palmitoylated ciliary protein. Using biochemical, cellular, and in vivo studies, we found that ARL13b palmitoylation occurs in vivo in mouse kidneys and that it is required for trafficking to and function within cilia. Myristoylation, a 14-carbon lipid, is shown to largely substitute for palmitoylation with regard to cilia localization of ARL13b, but not with regard to its function within cilia. The functional importance of palmitoylation results in part from a dramatic increase in ARL13b stability, which is not observed with myristoylation. Additional results show that blockade of depalmitoylation slows the degradation of ARL13b that occurs during cilia resorption, raising the possibility that the sensitivity of ARL13b stability to palmitoylation may be exploited by the cell to accelerate degradation of ARL13b by depalmitoylating it. Together, the results show that palmitoylation plays a unique and critical role in controlling the localization, stability, abundance, and thus function of ARL13b. Pharmacological manipulation of protein palmitoylation may be a strategy to alter cilia function.
Collapse
Affiliation(s)
- Kasturi Roy
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| | - Stephanie Jerman
- the Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Levente Jozsef
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| | - Thomas McNamara
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| | - Ginikanwa Onyekaba
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| | - Zhaoxia Sun
- the Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Ethan P Marin
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| |
Collapse
|
49
|
Karam CS, Javitch JA. Phosphorylation of the Amino Terminus of the Dopamine Transporter: Regulatory Mechanisms and Implications for Amphetamine Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:205-234. [PMID: 29413521 DOI: 10.1016/bs.apha.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amphetamines (AMPHs) are potent psychostimulants that are widely used and abused, with profound medical and societal impact. Their actions at dopaminergic neurons are thought to mediate their therapeutic efficacy as well as their liability for abuse and dependence. AMPHs target the dopamine transporter (DAT), the plasmalemmal membrane protein that mediates the inactivation of released dopamine (DA) through its reuptake. AMPHs act as substrates for DAT and are known to cause mobilization of dopamine (DA) to the cell exterior via DAT-mediated reverse transport (efflux). It has become increasingly evident that the mechanisms that regulate AMPH-induced DA efflux are distinct from those that regulate DA uptake. Central to these mechanisms is the phosphorylation of the DAT amino (N)-terminus, which has been repeatedly demonstrated to facilitate DAT-mediated DA efflux, without impacting other aspects of DAT physiology. This review aims to summarize the current status of knowledge regarding DAT N-terminal phosphorylation and its regulation by protein modulators and the membrane microenvironment. A better understanding of these mechanisms may lead to the identification of novel therapeutic approaches that interfere selectively with the pharmacological effects of AMPHs without altering the physiological function of DAT.
Collapse
Affiliation(s)
- Caline S Karam
- College of Physicians & Surgeons, Columbia University, New York, NY, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Jonathan A Javitch
- College of Physicians & Surgeons, Columbia University, New York, NY, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States.
| |
Collapse
|
50
|
Koivuniemi A. The biophysical properties of plasmalogens originating from their unique molecular architecture. FEBS Lett 2017; 591:2700-2713. [PMID: 28710769 DOI: 10.1002/1873-3468.12754] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/11/2022]
Abstract
Plasmalogens are a unique class of phospholipids that are present in many organisms. Their presence in cell membranes has intrigued researchers for decades due to their unique molecular structure, namely the vinyl-ether bond at the sn-1 position, and their association with brain related disorders. Apparently, based on their amount in the cell membranes, their function is to provide exclusive structural and dynamical properties to these complex molecular assemblies. Yet, many of their physiological roles manifested through their biophysical properties have been challenging to identify. In this review, the biophysical properties of plasmalogens are discussed and compared to other lipid species. The role of plasmalogens is examined in the context of cell membrane function, and some future directions are given.
Collapse
Affiliation(s)
- Artturi Koivuniemi
- The Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|