1
|
Development of Human Immunodeficiency Virus Type 1 Resistance to 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA) Starting with Wild-Type or Nucleoside Reverse Transcriptase Inhibitor Resistant-Strains. Antimicrob Agents Chemother 2021; 65:e0116721. [PMID: 34516245 DOI: 10.1128/aac.01167-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV-1, in Phase III clinical trials. EFdA resistance is not well characterized. To study EFdA-resistance patterns as it may emerge in naïve or tenofovir- (TFV), emtricitabine/lamivudine- (FTC/3TC), or zidovudine- (AZT) treated patients we performed viral passaging experiments starting with wild-type, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless the starting viral sequence, all selected EFdA-resistant variants included the M184V RT mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than WT HIV-1. These mutants also had significantly lower specific infectivity than WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT vs. A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data, suggest that EFdA is an excellent therapeutic candidate for naïve, AZT-, FTC/3TC, and especially tenofovir-treated patients.
Collapse
|
2
|
García-Trejo JJ, Ortega R, Zarco-Zavala M. Putative Repurposing of Lamivudine, a Nucleoside/Nucleotide Analogue and Antiretroviral to Improve the Outcome of Cancer and COVID-19 Patients. Front Oncol 2021; 11:664794. [PMID: 34367956 PMCID: PMC8335563 DOI: 10.3389/fonc.2021.664794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Lamivudine, also widely known as 3TC belongs to a family of nucleotide/nucleoside analogues of cytidine or cytosine that inhibits the Reverse Transcriptase (RT) of retroviruses such as HIV. Lamivudine is currently indicated in combination with other antiretroviral agents for the treatment of HIV-1 infection or for chronic Hepatitis B (HBV) virus infection associated with evidence of hepatitis B viral replication and active liver inflammation. HBV reactivation in patients with HBV infections who receive anticancer chemotherapy can be a life-threatening complication during and after the completion of chemotherapy. Lamivudine is used, as well as other antiretrovirals, to prevent the reactivation of the Hepatitis B virus during and after chemotherapy. In addition, Lamivudine has been shown to sensitize cancer cells to chemotherapy. Lamivudine and other similar analogues also have direct positive effects in the prevention of cancer in hepatitis B or HIV positive patients, independently of chemotherapy or radiotherapy. Recently, it has been proposed that Lamivudine might be also repurposed against SARS-CoV-2 in the context of the COVID-19 pandemic. In this review we first examine recent reports on the re-usage of Lamivudine or 3TC against the SARS-CoV-2, and we present docking evidence carried out in silico suggesting that Lamivudine may bind and possibly work as an inhibitor of the SARS-CoV-2 RdRp RNA polymerase. We also evaluate and propose assessment of repurposing Lamivudine as anti-SARS-CoV-2 and anti-COVID-19 antiviral. Secondly, we summarize the published literature on the use of Lamivudine or (3TC) before or during chemotherapy to prevent reactivation of HBV, and examine reports of enhanced effectiveness of radiotherapy in combination with Lamivudine treatment against the cancerous cells or tissues. We show that the anti-cancer properties of Lamivudine are well established, whereas its putative anti-COVID effect is under investigation. The side effects of lamivudine and the appearance of resistance to 3TC are also discussed.
Collapse
Affiliation(s)
- José J García-Trejo
- Department of Biology, Laboratory of Bioenergetics, Chemistry Faculty and School, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Raquel Ortega
- Department of Biology, Laboratory of Bioenergetics, Chemistry Faculty and School, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Mariel Zarco-Zavala
- Department of Biology, Laboratory of Bioenergetics, Chemistry Faculty and School, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
3
|
Dilmore C, DeStefano JJ. HIV Reverse Transcriptase Pre-Steady-State Kinetic Analysis of Chain Terminators and Translocation Inhibitors Reveals Interactions between Magnesium and Nucleotide 3'-OH. ACS OMEGA 2021; 6:14621-14628. [PMID: 34124485 PMCID: PMC8190884 DOI: 10.1021/acsomega.1c01742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 05/06/2023]
Abstract
Deoxythymidine triphosphate analogues with various 3' substituents in the sugar ring (-OH (dTTP)), -H, -N3, -NH2, -F, -O-CH3, no group (2',3'-didehydro-2',3'-dideoxythymidine triphosphate (d4TTP)), and those retaining the 3'-OH but with 4' additions (4'-C-methyl, 4'-C-ethyl) or sugar ring modifications (d-carba dTTP) were evaluated using pre-steady-state kinetics in low (0.5 mM) and high (6 mM) Mg2+ with HIV reverse transcriptase (RT). Analogues showed diminished observed incorporation rate constants (k obs) compared to dTTP ranging from about 2-fold (3'-H, -N3, and d4TTP with high Mg2+) to >10-fold (3'-NH2 and 3'-F with low Mg2+), while 3'-O-CH3 dTTP incorporated much slower than other analogues. Illustrating the importance of interactions between Mg2+ and the 3'-OH, k obs using 5 μM dTTP and 0.5 mM Mg2+ was only modestly slower (1.6-fold) than with 6 mM Mg2+, while analogues with 3' alterations incorporated 2.8-5.1-fold slower in 0.5 mM Mg2+. In contrast, 4'-C-methyl and d-carba dTTP, which retain the 3'-OH, were not significantly affected by Mg2+. Consistent with these results, analogues with 3' modifications were better inhibitors in 6 versus 0.5 mM Mg2+. Equilibrium dissociation constant (K D) and maximum incorporation rate (k pol) determinations for dTTP and analogues lacking a 3'-OH indicated that low Mg2+ caused a several-fold greater reduction in k pol with the analogues but did not significantly affect K D, results consistent with a role for 3'-OH/Mg2+ interactions in catalysis rather than nucleotide binding. Overall, results emphasize the importance of previously unreported interactions between Mg2+ and the 3'-OH of the incoming nucleotide and suggest that inhibitors with 3'-OH groups may have advantages in low free Mg2+ in physiological settings.
Collapse
Affiliation(s)
- Christopher
R. Dilmore
- Cell
Biology and Molecular Genetics, 3130 Bioscience Research
Building, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffrey J. DeStefano
- Cell
Biology and Molecular Genetics, 3130 Bioscience Research
Building, University of Maryland, College Park, Maryland 20742, United States
- Maryland
Pathogen Research Institute, College
Park, Maryland 20742, United States
| |
Collapse
|
4
|
Ami EI, Ohrui H. Intriguing Antiviral Modified Nucleosides: A Retrospective View into the Future Treatment of COVID-19. ACS Med Chem Lett 2021; 12:510-517. [PMID: 33854700 PMCID: PMC8040047 DOI: 10.1021/acsmedchemlett.1c00070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Great
pioneers of nucleic acid chemistry had elucidated nucleic
acid functions and structures and developed various antiviral modified
nucleoside drugs. It is possible in theory that antiviral modified
nucleosides prevent viral replication by inhibiting viral polymerases.
However, biological phenomena far exceed our predictions at times.
We describe the characteristics of the approved antiviral modified
nucleosides from an organic chemistry perspective. Also, based on
our experiences and findings through the development of the HIV-1
reverse-transcriptase inhibitor “Islatravir”, we provide
the practical and approximate guidelines for the drug development
of antiviral modified nucleosides against COVID-19.
Collapse
Affiliation(s)
- Ei-ichi Ami
- Medical Affairs Division, Kaken Pharmaceutical Co., Ltd., Toshima-ku, Tokyo 171-0033, Japan
| | - Hiroshi Ohrui
- Research Center for Medicinal Chemistry, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| |
Collapse
|
5
|
Yoshida Y, Honma M, Kimura Y, Abe H. Structure, Synthesis and Inhibition Mechanism of Nucleoside Analogues as HIV-1 Reverse Transcriptase Inhibitors (NRTIs). ChemMedChem 2021; 16:743-766. [PMID: 33230979 DOI: 10.1002/cmdc.202000695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/31/2020] [Indexed: 12/13/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) is caused by infection with the human immunodeficiency virus (HIV). Although treatments against HIV infection are available, AIDS remains a serious disease that causes many deaths annually. Although a variety of anti-HIV drugs have been synthesized and marketed to treat HIV-infected patients, nucleoside analogue reverse transcriptase inhibitors (NRTIs), which mimic nucleosides, are used extensively and remain a subject of interest to medicinal chemists. However, HIV has acquired drug resistance against NRTIs, and thus the struggle to find novel therapies continues. In this review, we trace the trajectory of NRTIs, focusing on the synthesis, mechanisms of action and applications of NRTIs that have been developed.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Science, Department of Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Masakazu Honma
- Nucleic Acid Medicine Research Laboratories, Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Asahi-machi, Machida-shi, >, Tokyo, 194-8533, Japan
| | - Yasuaki Kimura
- Graduate School of Science, Department of Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Hiroshi Abe
- Graduate School of Science, Department of Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Research Center for Materials Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
6
|
The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1. Antimicrob Agents Chemother 2015; 59:7437-46. [PMID: 26392486 DOI: 10.1128/aac.01326-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023] Open
Abstract
Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2',3'-didehydro-3'-deoxy-4'-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4'-ethynyl stavudine, or 4'-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture.
Collapse
|
7
|
Haraguchi K, Takeda S, Kubota Y, Kumamoto H, Tanaka H, Hamasaki T, Baba M, Paintsil E, Cheng YC. From the chemistry of epoxy-sugar nucleosides to the discovery of anti-HIV agent 4'-ethynylstavudine-Festinavir. Curr Pharm Des 2013; 19:1880-97. [PMID: 23092278 PMCID: PMC3711117 DOI: 10.2174/1381612811319100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/10/2012] [Indexed: 12/27/2022]
Abstract
Branched sugar nucleosides have attracted much attention due to their biological activities. We have demonstrated that epoxysugar nucleosides serve as versatile precursor for the stereo-defined synthesis of these nucleoside derivatives on the basis of its ring opening with organoaluminum or organosilicon reagents. In this review article, novel methods for the synthesis of nucleoside analogues branched at the 1' and 4'-position will be described. During this study, we could discover an anti-HIV agent, 4'-ethynylstavudine (Festinavir). Festinavir showed more potent anti-HIV activity than the parent compound stavudine (d4T). Other significant properties of Festinavir are as follows: 1) much less toxic to various cells and also to mitochondorial DNA synthesis than d4T, 2) better substrate for human thymidine kinase than d4T, 3) resistant not only to chemical glycosidic bond cleavage but also to catabolism by thymidine phosphorylase, 4) the activity improves in the presence of a major mutation, K103N, associated with resistance to non-nucleoside reverse transcriptase inhibitors. Detailed profile of the antiviral activities, biology and pharmacology of Festinavir are also described.
Collapse
|
8
|
Hukezalie KR, Thumati NR, Côté HCF, Wong JMY. In vitro and ex vivo inhibition of human telomerase by anti-HIV nucleoside reverse transcriptase inhibitors (NRTIs) but not by non-NRTIs. PLoS One 2012; 7:e47505. [PMID: 23166583 PMCID: PMC3499584 DOI: 10.1371/journal.pone.0047505] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/14/2012] [Indexed: 02/03/2023] Open
Abstract
Telomerase is a specialized reverse transcriptase responsible for the de novo synthesis of telomeric DNA repeats. In addition to its established reverse transcriptase and terminal transferase activities, recent reports have revealed unexpected cellular activities of telomerase, including RNA-dependent RNA polymerization. This telomerase characteristic, distinct from other reverse transcriptases, indicates that clinically relevant reverse transcriptase inhibitors might have unexpected telomerase inhibition profiles. This is particularly important for the newer generation of RT inhibitors designed for anti-HIV therapy, which have reported higher safety margins than older agents. Using an in vitro primer extension assay, we tested the effects of clinically relevant HIV reverse transcriptase inhibitors on cellular telomerase activity. We observed that all commonly used nucleoside reverse transcriptase inhibitors (NRTIs), including zidovudine, stavudine, tenofovir, didanosine and abacavir, inhibit telomerase effectively in vitro. Truncated telomere synthesis was consistent with the expected mode of inhibition by all tested NRTIs. Through dose-response experiments, we established relative inhibitory potencies of NRTIs on in vitro telomerase activity as compared to the inhibitory potencies of the corresponding dideoxynucleotide triphosphates. In contrast to NRTIs, the non-nucleoside reverse transcriptase inhibitors (NNRTIs) nevirapine and efavirenz did not inhibit the primer extension activity of telomerase, even at millimolar concentrations. Long-term, continuous treatment of human HT29 cells with select NRTIs resulted in an accelerated loss of telomere repeats. All tested NRTIs exhibited the same rank order of inhibitory potencies on telomerase and HIV RT, which, according to published data, were orders-of-magnitude more sensitive than other DNA polymerases, including the susceptible mitochondria-specific DNA polymerase gamma. We concluded that telomerase activity could be inhibited by common NRTIs, including currently recommended RTI agents tenofovir and abacavir, which warrants large-scale clinical and epidemiological investigation of the off-target effects of long-term highly active antiretroviral therapy (HAART) with these agents.
Collapse
Affiliation(s)
- Kyle R. Hukezalie
- Genetics Graduate Program, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Naresh R. Thumati
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hélène C. F. Côté
- Genetics Graduate Program, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine (HCFC), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Judy M. Y. Wong
- Genetics Graduate Program, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
9
|
Sohl CD, Kasiviswanathan R, Kim J, Pradere U, Schinazi RF, Copeland WC, Mitsuya H, Baba M, Anderson KS. Balancing antiviral potency and host toxicity: identifying a nucleotide inhibitor with an optimal kinetic phenotype for HIV-1 reverse transcriptase. Mol Pharmacol 2012; 82:125-33. [PMID: 22513406 PMCID: PMC3382833 DOI: 10.1124/mol.112.078758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/09/2012] [Indexed: 11/22/2022] Open
Abstract
Two novel thymidine analogs, 3'-fluoro-3'-deoxythymidine (FLT) and 2',3'-didehydro-3'-deoxy-4'-ethynylthymidine (Ed4T), have been investigated as nucleoside reverse transcriptase inhibitors (NRTIs) for treatment of HIV infection. Ed4T seems very promising in phase II clinical trials, whereas toxicity halted FLT development during this phase. To understand these different molecular mechanisms of toxicity, pre-steady-state kinetic studies were used to examine the interactions of FLT and Ed4T with wild-type (WT) human mitochondrial DNA polymerase γ (pol γ), which is often associated with NRTI toxicity, as well as the viral target protein, WT HIV-1 reverse transcriptase (RT). We report that Ed4T-triphosphate (TP) is the first analog to be preferred over native nucleotides by RT but to experience negligible incorporation by WT pol γ, with an ideal balance between high antiretroviral efficacy and minimal host toxicity. WT pol γ could discriminate Ed4T-TP from dTTP 12,000-fold better than RT, with only an 8.3-fold difference in discrimination being seen for FLT-TP. A structurally related NRTI, 2',3'-didehydro-2',3'-dideoxythymidine, is the only other analog favored by RT over native nucleotides, but it exhibits only a 13-fold difference (compared with 12,000-fold for Ed4T) in discrimination between the two enzymes. We propose that the 4'-ethynyl group of Ed4T serves as an enzyme selectivity moiety, critical for discernment between RT and WT pol γ. We also show that the pol γ mutation R964C, which predisposes patients to mitochondrial toxicity when receiving 2',3'-didehydro-2',3'-dideoxythymidine to treat HIV, produced some loss of discrimination for FLT-TP and Ed4T-TP. These molecular mechanisms of analog incorporation, which are critical for understanding pol γ-related toxicity, shed light on the unique toxicity profiles observed during clinical trials.
Collapse
Affiliation(s)
- Christal D Sohl
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Van Cor-Hosmer SK, Daddacha W, Kelly Z, Tsurumi A, Kennedy EM, Kim B. The impact of molecular manipulation in residue 114 of human immunodeficiency virus type-1 reverse transcriptase on dNTP substrate binding and viral replication. Virology 2012; 422:393-401. [PMID: 22153297 PMCID: PMC3804253 DOI: 10.1016/j.virol.2011.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/05/2011] [Accepted: 11/04/2011] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT) has a unique tight binding to dNTP substrates. Structural modeling of Ala-114 of HIV-1 RT suggests that longer side chains at this residue can reduce the space normally occupied by the sugar moiety of an incoming dNTP. Indeed, mutations at Ala-114 decrease the ability of RT to synthesize DNA at low dNTP concentrations and reduce the dNTP-binding affinity (K(d)) of RT. However, the K(d) values of WT and A114C RT remained equivalent with an acyclic dNTP substrate. Finally, mutant A114 RT HIV-1 vectors displayed a greatly reduced transduction in nondividing human lung fibroblasts (HLFs), while WT HIV-1 vector efficiently transduced both dividing and nondividing HLFs. Together these data support that the A114 residue of HIV-1 RT plays a key mechanistic role in the dNTP binding of HIV-1 RT and the unique viral infectivity of target cell types with low dNTP pools.
Collapse
Affiliation(s)
- Sarah K Van Cor-Hosmer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
11
|
Michailidis E, Marchand B, Kodama EN, Singh K, Matsuoka M, Kirby KA, Ryan EM, Sawani AM, Nagy E, Ashida N, Mitsuya H, Parniak MA, Sarafianos SG. Mechanism of inhibition of HIV-1 reverse transcriptase by 4'-Ethynyl-2-fluoro-2'-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor. J Biol Chem 2010; 284:35681-91. [PMID: 19837673 DOI: 10.1074/jbc.m109.036616] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) are employed in first line therapies for the treatment of human immunodeficiency virus (HIV) infection. They generally lack a 3'-hydroxyl group, and thus when incorporated into the nascent DNA they prevent further elongation. In this report we show that 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), a nucleoside analog that retains a 3'-hydroxyl moiety, inhibited HIV-1 replication in activated peripheral blood mononuclear cells with an EC(50) of 0.05 nm, a potency several orders of magnitude better than any of the current clinically used NRTIs. This exceptional antiviral activity stems in part from a mechanism of action that is different from approved NRTIs. Reverse transcriptase (RT) can use EFdA-5'-triphosphate (EFdA-TP) as a substrate more efficiently than the natural substrate, dATP. Importantly, despite the presence of a 3'-hydroxyl, the incorporated EFdA monophosphate (EFdA-MP) acted mainly as a de facto terminator of further RT-catalyzed DNA synthesis because of the difficulty of RT translocation on the nucleic acid primer possessing 3'-terminal EFdA-MP. EFdA-TP is thus a translocation-defective RT inhibitor (TDRTI). This diminished translocation kept the primer 3'-terminal EFdA-MP ideally located to undergo phosphorolytic excision. However, net phosphorolysis was not substantially increased, because of the apparently facile reincorporation of the newly excised EFdA-TP. Our molecular modeling studies suggest that the 4'-ethynyl fits into a hydrophobic pocket defined by RT residues Ala-114, Tyr-115, Phe-160, and Met-184 and the aliphatic chain of Asp-185. These interactions, which contribute to both enhanced RT utilization of EFdA-TP and difficulty in the translocation of 3'-terminal EFdA-MP primers, underlie the mechanism of action of this potent antiviral nucleoside.
Collapse
Affiliation(s)
- Eleftherios Michailidis
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
13
|
Impact of novel human immunodeficiency virus type 1 reverse transcriptase mutations P119S and T165A on 4'-ethynylthymidine analog resistance profile. Antimicrob Agents Chemother 2009; 53:4640-6. [PMID: 19704131 DOI: 10.1128/aac.00686-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2',3'-Didehydro-3'-deoxy-4'-ethynylthymidine (4'-Ed4T), a derivative of stavudine (d4T), has potent activity against human immunodeficiency virus and is much less inhibitory to mitochondrial DNA synthesis and cell growth than its progenitor, d4T. 4'-Ed4T triphosphate was a better reverse transcriptase (RT) inhibitor than d4T triphosphate, due to the additional binding of the 4'-ethynyl group at a presumed hydrophobic pocket in the RT active site. Previous in vitro selection for 4'-Ed4T-resistant viral strains revealed M184V and P119S/T165A/M184V mutations on days 26 and 81, respectively; M184V and P119S/T165A/M184V conferred 3- and 130-fold resistance to 4'-Ed4T, respectively. We investigated the relative contributions of these mutations, engineered into the strain NL4-3 background, to drug resistance, RT activity, and viral growth. Viral variants with single RT mutations (P119S or T165A) did not show resistance to 4'-Ed4T; however, M184V and P119S/T165A/M184V conferred three- and fivefold resistance, respectively, compared with that of the wild-type virus. The P119S/M184V and T165A/M184V variants showed about fourfold resistance to 4'-Ed4T. The differences in the growth kinetics of the variants were not more than threefold. The purified RT of mutants with the P119S/M184V and T165A/M184V mutations were inhibited by 4'-Ed4TTP with 8- to 13-fold less efficiency than wild-type RT. M184V may be the primary resistance-associated mutation of 4'-Ed4T, and P119S and T165A are secondary mutations. On the basis of our findings and the results of structural modeling, a virus with a high degree of resistance to 4'-Ed4T (e.g., more than 50-fold resistance) will be difficult to develop. The previously observed 130-fold resistance of the virus with P119S/T165A/M184V to 4'-Ed4T may be partly due to mutations both in the RT sequence and outside the RT sequence.
Collapse
|
14
|
Abstract
Numerous pathological states, including cancer, autoimmune diseases, and viral/bacterial infections, are often attributed to uncontrollable DNA replication. Inhibiting this essential biological process provides an obvious therapeutic target against these diseases. A logical target is the DNA polymerase, the enzyme responsible for catalyzing the addition of mononucleotides to a growing polymer using a DNA or RNA template as a guide for directing each incorporation event. This review provides a summary of therapeutic agents that target polymerase activity. A discussion of the biological function and mechanism of polymerases is first provided to illustrate the strategy for therapeutic intervention as well as the rational design of various nucleoside analogues that inhibit various polymerases associated with viral infections and cancer. The development of nucleoside and non-nucleoside inhibitors as antiviral agents is discussed with particular emphasis on their mechanism of action, structure-activity relationships, toxicity, and mechanism of resistance. In addition, commonly used anticancer agents are described to illustrate the similarities and differences associated with various nucleoside analogues as therapeutic agents. Finally, new therapeutic approaches that include the inhibition of selective polymerases involved in DNA repair and/or translesion DNA synthesis as anticancer agents are discussed.
Collapse
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|