1
|
Antonello RM, Canetti D, Riccardi N. Daptomycin synergistic properties from in vitro and in vivo studies: a systematic review. J Antimicrob Chemother 2022; 78:52-77. [PMID: 36227704 DOI: 10.1093/jac/dkac346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/21/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Daptomycin is a bactericidal lipopeptide antibiotic approved for the treatment of systemic infections (i.e. skin and soft tissue infections, bloodstream infections, infective endocarditis) caused by Gram-positive cocci. It is often prescribed in association with a partner drug to increase its bactericidal effect and to prevent the emergence of resistant strains during treatment; however, its synergistic properties are still under evaluation. METHODS We performed a systematic review to offer clinicians an updated overview of daptomycin synergistic properties from in vitro and in vivo studies. Moreover, we reported all in vitro and in vivo data evaluating daptomycin in combination with other antibiotic agents, subdivided by antibiotic classes, and a summary graph presenting the most favourable combinations at a glance. RESULTS A total of 92 studies and 1087 isolates (723 Staphylococcus aureus, 68 Staphylococcus epidermidis, 179 Enterococcus faecium, 105 Enterococcus faecalis, 12 Enterococcus durans) were included. Synergism accounted for 30.9% of total interactions, while indifferent effect was the most frequently observed interaction (41.9%). Antagonistic effect accounted for 0.7% of total interactions. The highest synergistic rates against S. aureus were observed with daptomycin in combination with fosfomycin (55.6%). For S. epidermidis and Enterococcus spp., the most effective combinations were daptomycin plus ceftobiprole (50%) and daptomycin plus fosfomycin (63.6%) or rifampicin (62.8%), respectively. FUTURE PERSPECTIVES We believe this systematic review could be useful for the future updates of guidelines on systemic infections where daptomycin plays a key role.
Collapse
Affiliation(s)
- Roberta Maria Antonello
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50121, Italy
| | - Diana Canetti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Niccolò Riccardi
- Department of Clinical and Experimental Medicine, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa 56124, Italy
| |
Collapse
|
2
|
Matsumoto K, Samura M, Tashiro S, Shishido S, Saiki R, Takemura W, Misawa K, Liu X, Enoki Y, Taguchi K. Target Therapeutic Ranges of Anti-MRSA Drugs, Linezolid, Tedizolid and Daptomycin, and the Necessity of TDM. Biol Pharm Bull 2022; 45:824-833. [PMID: 35786589 DOI: 10.1248/bpb.b22-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The target therapeutic ranges of vancomycin, teicoplanin, and arbekacin have been determined, and therapeutic drug monitoring (TDM) is performed in clinical practice. However, TDM is not obligatory for daptomycin, linezolid, or tedizolid. In this study, we examined whether TDM will be necessary for these 3 drugs in the future. There was no significant difference in therapeutic effects on acute bacterial skin and skin structure infection between linezolid and tedizolid by meta-analysis. Concerning the therapeutic effects on pneumonia, the rate of effectiveness after treatment with tedizolid was significantly lower than with linezolid. With respect to safety, the incidences of gastrointestinal adverse events and blood/lymphatic system disorders related to tedizolid were significantly lower than those related to linezolid. Linezolid exhibits potent therapeutic effects on pneumonia, but the appearance of adverse reactions is indicated as a problem. There was a dose-dependent decrease in the platelet count, and the target trough concentration (Ctrough) was estimated to be 4-6 or 2-7 µg/mL in accordance with the patient's condition. The efficacy of linezolid may be obtained while minimizing the appearance of adverse reactions by performing TDM. The target therapeutic range of tedizolid cannot be achieved in immunocompromised or severe patients. Therefore, we concluded that TDM was unnecessary, considering step-down therapy with oral drugs, use in non-severe patients, and high-level safety. Concerning daptomycin, high-dose administration is necessary to achieve an area under the curve (AUC) of ≥666 as an index of efficacy. To secure its safety, Ctrough (<20 µg/mL) monitoring is important. Therefore, TDM is necessary.
Collapse
Affiliation(s)
| | - Masaru Samura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Sho Tashiro
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Shino Shishido
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Reika Saiki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Wataru Takemura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Kana Misawa
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Xiaoxi Liu
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| |
Collapse
|
3
|
Abstract
Tedizolid is an oxazolidinone antibiotic with high potency against Gram-positive bacteria and currently prescribed in bacterial skin and skin-structure infections. The aim of the review was to summarize and critically review the key pharmacokinetic and pharmacodynamic aspects of tedizolid. Tedizolid displays linear pharmacokinetics with good tissue penetration. In in vitro susceptibility studies, tedizolid exhibits activity against the majority of Gram-positive bacteria (minimal inhibitory concentration [MIC] of ≤ 0.5 mg/L), is four-fold more potent than linezolid, and has the potential to treat pathogens being less susceptible to linezolid. Area under the unbound concentration-time curve (fAUC) related to MIC (fAUC/MIC) was best correlated with efficacy. In neutropenic mice, fAUC/MIC of ~ 50 and ~ 20 induced bacteriostasis in thigh and pulmonary infection models, respectively, at 24 h. The presence of granulocytes augmented its antibacterial effect. Hence, tedizolid is currently not recommended for immunocompromised patients. Clinical investigations with daily doses of 200 mg for 6 days showed non-inferiority to twice-daily dosing of linezolid 600 mg for 10 days in patients with acute bacterial skin and skin-structure infections. In addition to its use in skin and skin-structure infections, the high pulmonary penetration makes it an attractive option for respiratory infections including Mycobacterium tuberculosis. Resistance against tedizolid is rare yet effective antimicrobial surveillance and defining pharmacokinetic/pharmacodynamic targets for resistance suppression are needed to guide dosing strategies to suppress resistance development.
Collapse
Affiliation(s)
- Khalid Iqbal
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Aliki Milioudi
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Sebastian Georg Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany.
| |
Collapse
|
4
|
Schwartz FA, Christophersen L, Laulund AS, Lundquist R, Lerche C, Rude Nielsen P, Bundgaard H, Høiby N, Moser C. Novel human in vitro vegetation simulation model for infective endocarditis. APMIS 2021; 129:653-662. [PMID: 34580927 DOI: 10.1111/apm.13182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023]
Abstract
Infective endocarditis (IE) is a heart valve infection with high mortality rates. IE results from epithelial lesions, inducing sterile healing vegetations consisting of platelets, leucocytes, and fibrin that are susceptible for colonization by temporary bacteremia. Clinical testing of new treatments for IE is difficult and fast models sparse. The present study aimed at establishing an in vitro vegetation simulation IE model for fast screening of novel treatment strategies. A healing promoting platelet and leucocyte-rich fibrin patch was used to establish an IE organoid-like model by colonization with IE-associated bacterial isolates Staphylococcus aureus, Streptococcus spp (S. mitis group), and Enterococcus faecalis. The patch was subsequently exposed to tobramycin, ciprofloxacin, or penicillin. Bacterial colonization was evaluated by microscopy and quantitative bacteriology. We achieved stable bacterial colonization on the patch, comparable to clinical IE vegetations. Microscopy revealed uneven, biofilm-like colonization of the patch. The surface-associated bacteria displayed increased tolerance to antibiotics compared to planktonic bacteria. The present study succeeded in establishing an IE simulation model with the relevant pathogens S. aureus, S. mitis group, and E. faecalis. The findings indicate that the IE model mirrors the natural IE process and has the potential for fast screening of treatment candidates.
Collapse
Affiliation(s)
| | | | - Anne Sofie Laulund
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
| | | | - Christian Lerche
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
| | - Pia Rude Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Lerche CJ, Schwartz F, Theut M, Fosbøl EL, Iversen K, Bundgaard H, Høiby N, Moser C. Anti-biofilm Approach in Infective Endocarditis Exposes New Treatment Strategies for Improved Outcome. Front Cell Dev Biol 2021; 9:643335. [PMID: 34222225 PMCID: PMC8249808 DOI: 10.3389/fcell.2021.643335] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Infective endocarditis (IE) is a life-threatening infective disease with increasing incidence worldwide. From early on, in the antibiotic era, it was recognized that high-dose and long-term antibiotic therapy was correlated to improved outcome. In addition, for several of the common microbial IE etiologies, the use of combination antibiotic therapy further improves outcome. IE vegetations on affected heart valves from patients and experimental animal models resemble biofilm infections. Besides the recalcitrant nature of IE, the microorganisms often present in an aggregated form, and gradients of bacterial activity in the vegetations can be observed. Even after appropriate antibiotic therapy, such microbial formations can often be identified in surgically removed, infected heart valves. Therefore, persistent or recurrent cases of IE, after apparent initial infection control, can be related to biofilm formation in the heart valve vegetations. On this background, the present review will describe potentially novel non-antibiotic, antimicrobial approaches in IE, with special focus on anti-thrombotic strategies and hyperbaric oxygen therapy targeting the biofilm formation of the infected heart valves caused by Staphylococcus aureus. The format is translational from preclinical models to actual clinical treatment strategies.
Collapse
Affiliation(s)
- Christian Johann Lerche
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Franziska Schwartz
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Theut
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis. J Clin Med 2021; 10:jcm10081743. [PMID: 33920526 PMCID: PMC8074169 DOI: 10.3390/jcm10081743] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023] Open
Abstract
Infective endocarditis, osteomyelitis, and osteosynthesis-associated infections are mostly caused by Gram-positive bacteria. They are often difficult to treat and are associated with a poor prognosis. In the past 20 years, nine antibiotic drugs with predominant activity against Gram-positive bacteria have been introduced and approved by the Food and Drug Administration or the European Medicines Agency: ceftaroline, daptomycin, telavancin, dalbavancin, oritavancin, linezolid, tedizolid, delafloxacin, and omadacycline. This narrative review aims to provide an overview on these antibiotics with a special focus on their use in infective endocarditis, osteomyelitis, and osteosynthesis-associated infections. Although some of these approved antibiotics are promising, they should not be used as first- or second-line therapy, awaiting more clinical data.
Collapse
|
7
|
Morrisette T, Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Rybak MJ. The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA-Salvaging the Gold Standards with Combination Therapy. Antibiotics (Basel) 2020; 9:E762. [PMID: 33143290 PMCID: PMC7692208 DOI: 10.3390/antibiotics9110762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is associated with substantial morbidity and mortality. Vancomycin (VAN) has been used as the gold standard treatment for invasive MRSA infections for decades but, unfortunately, the reliance of VAN as the primary treatment option against these infections has led to a reduction in VAN susceptibility in MRSA isolates. Although daptomycin (DAP) is another common treatment option against invasive MRSA infections, it has been shown that the development of VAN resistance can lead to DAP nonsusceptibility. VAN or DAP backbone regimens in combination with other antibiotics has been advocated as an alternative approach to improve patient outcomes in VAN/DAP-susceptible infections, enhance outcomes in infections caused by isolates with reduced VAN/DAP susceptibility, and/or prevent the emergence of VAN/DAP resistance or further resistance. A peer-reviewed literature search was conducted using Medline, Google Scholar and PubMed databases. The primary purpose of this review is to describe the mechanisms and epidemiology of MRSA isolates with a reduction in VAN and/or DAP susceptibility, evaluate in vitro and in vivo literature describing combination therapy (CT) against MRSA isolates with reduced VAN and/or DAP susceptibility and describe studies involving the clinical outcomes of patients treated with CT against invasive MRSA infections.
Collapse
Affiliation(s)
- Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Jacinda C. Abdul-Mutakabbir
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pharmacy, Detroit Receiving Hospital, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Carena AA, Stryjewski ME. Tedizolid (torezolid) for the treatment of complicated skin and skin structure infections. Expert Rev Clin Pharmacol 2020; 13:577-592. [PMID: 32449440 DOI: 10.1080/17512433.2020.1774362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Acute bacterial skin and skin structure infections (ABSSSI) are among the most frequent infectious diseases. Recently, several new antibiotics with activity against MRSA have been approved. Tedizolid, a second-generation oxazolidinone approved for ABSSSI offers theoretical advantages over first-generation oxazolidinones. AREAS COVERED A comprehensive online search of Medline, ClinicalTrials.gov, and conference presentations was made, selecting articles between January 2000 and April 2020. In this review, the authors discuss the chemical and microbiological properties of tedizolid, summarize its efficacy, safety, and potential role in the treatment of ABSSSI as well as the potential for future indications. EXPERT OPINION Tedizolid has proven to be non-inferior compared to linezolid for the treatment of ABSSSI in two registrational phase III clinical trials, being well tolerated. Tedizolid exhibits antibacterial activity against the most important ABSSSI pathogens (including multidrug-resistant strains of MRSA), as well as mycobacteria and Nocardia. It appears to have a safe profile, including decreased myelotoxicity and no significant drug interactions. Preliminary studies with longer duration of therapy seem to confirm these potential benefits. Overall, tedizolid expands the newly acquired armamentarium to treat ABSSSI. The role of tedizolid for other indications is under investigation and has yet to be determined.
Collapse
Affiliation(s)
- Alberto A Carena
- Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina.,Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina
| | - Martin E Stryjewski
- Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina.,Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina
| |
Collapse
|
9
|
Tedizolid as Step-Down Therapy following Daptomycin versus Continuation of Daptomycin against Enterococci and Methicillin- and Vancomycin-Resistant Staphylococcus aureus in a Rat Endocarditis Model. Antimicrob Agents Chemother 2020; 64:AAC.02303-19. [PMID: 32122892 DOI: 10.1128/aac.02303-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/23/2020] [Indexed: 12/23/2022] Open
Abstract
Tedizolid (TZD) and daptomycin (DAP) were assessed in a rat endocarditis model against Enterococcus faecalis, Enterococcus faecium (resistant to vancomycin and ampicillin), and Staphylococcus aureus As a monotherapy, TZD for 5 days was not effective in a comparison with no-treatment controls, while DAP for 5 days was significantly effective against these bacteria. Step-down therapy (DAP for 3 days followed by TZD for 2 days) was as effective as DAP for 5 days and was comparable to 3 days of DAP plus ceftriaxone against all bacteria and to 3 days of DAP plus gentamicin against E. faecalis OG1RF.
Collapse
|
10
|
Naclerio GA, Abutaleb NS, Onyedibe KI, Seleem MN, Sintim HO. Potent trifluoromethoxy, trifluoromethylsulfonyl, trifluoromethylthio and pentafluorosulfanyl containing (1,3,4-oxadiazol-2-yl)benzamides against drug-resistant Gram-positive bacteria. RSC Med Chem 2019; 11:102-110. [PMID: 33479609 DOI: 10.1039/c9md00391f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/09/2019] [Indexed: 12/30/2022] Open
Abstract
According to the Centers for Disease Control and Prevention (CDC), methicillin-resistant Staphylococcus aureus (MRSA) affects about 80 000 patients in the US annually and directly causes about 11 000 deaths. Therefore, despite the fact that there are several drugs available for the treatment of MRSA, there is a need for new chemical entities. We previously reported that 1,3,4-oxadiazolyl sulfonamide F6 was bacteriostatic and inhibited MRSA strains with a minimum inhibitory concentration (MIC) of 2 μg mL-1. Here, we report the discovery of trifluoromethoxy (OCF3), trifluoromethylsulfonyl (SO2CF3), trifluoromethylthio (SCF3) and pentafluorosulfanyl (SF5) containing (1,3,4-oxadiazol-2-yl)benzamides exhibiting potent antibacterial activities against MRSA [MIC values as low as 0.06 μg mL-1 against linezolid-resistant S. aureus (NRS 119)]. Interestingly, whereas the OCF3 and SO2CF3 containing oxadiazoles were bacteriostatic, the SCF3 and SF5 containing oxadiazoles were bactericidal. They exhibited a wide spectrum of activities against an extensive panel of Gram-positive bacterial strains, including MRSA, vancomycin-resistant Staphylococcus aureus (VRSA), vancomycin-resistant enterococcus (VRE) and methicillin-resistant or cephalosporin-resistant Streptococcus pneumoniae. Furthermore, compounds 6 and 12 outperformed vancomycin in clearing intracellular MRSA in infected macrophages. Moreover, the tested compounds behaved synergistically or additively with antibiotics used for the treatment of MRSA infections.
Collapse
Affiliation(s)
- George A Naclerio
- Department of Chemistry , Institute for Drug Discovery , Purdue University , West Lafayette , IN 47907 , USA .
| | - Nader S Abutaleb
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , IN 47907 , USA
| | - Kenneth I Onyedibe
- Department of Chemistry , Institute for Drug Discovery , Purdue University , West Lafayette , IN 47907 , USA . .,Purdue Institute of Inflammation, Immunology, and Infectious Diseases , West Lafayette , IN 47907 , USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , IN 47907 , USA.,Purdue Institute of Inflammation, Immunology, and Infectious Diseases , West Lafayette , IN 47907 , USA
| | - Herman O Sintim
- Department of Chemistry , Institute for Drug Discovery , Purdue University , West Lafayette , IN 47907 , USA . .,Purdue Institute of Inflammation, Immunology, and Infectious Diseases , West Lafayette , IN 47907 , USA
| |
Collapse
|
11
|
Gómara M, Ramón-García S. The FICI paradigm: Correcting flaws in antimicrobial in vitro synergy screens at their inception. Biochem Pharmacol 2019; 163:299-307. [PMID: 30836058 DOI: 10.1016/j.bcp.2019.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Antibiotics have become the corner stone of modern medicine. However, our society is currently facing one of the greatest challenges of its time: the emergence of antimicrobial resistance. It is estimated that if no new therapies are implemented by 2050, 10 million people will die worldwide every year as a result of infections caused by bacteria resistant to current antibiotics; new antimicrobials are thus urgently needed. However, drug development is a tedious and very costly endeavor of hundreds of millions that can take up to 15-20 years from the bench discovery to the bedside. Under this scenario, drug repurposing, which consists in identifying new uses for old, clinically approved drugs, has gathered momentum within the pharmaceutical industry. Because most of these drugs have safety and toxicity information packages available, clinical evaluation could be done in a much shorter period than standard timelines. Synergistic combinations of these clinically approved drugs could also be a promising approach to identify novel antimicrobial therapies that might provide rational choices of available drugs to shorten treatment, increase efficacy, reduce toxicity, prevent resistance and treat infections caused by drug-resistant strains. However, although simple in its conception, translating results from in vitro synergy screens into in vivo efficacy or the clinical practice has proven to be a paramount challenge. In this Commentary, we will discuss common flaws at the inception of synergy research programs, with a special focus on the use of the Fractional Inhibitory Concentration Index (FICI), and evaluate potential interventions that can be made at different developmental pre-clinical stages in order to improve the odds of translation from in vitro studies.
Collapse
Affiliation(s)
- Marta Gómara
- Mycobacterial Genetics Group, Department of Microbiology, Preventive Medicine and Public Health. Faculty of Medicine, University of Zaragoza, Spain
| | - Santiago Ramón-García
- Mycobacterial Genetics Group, Department of Microbiology, Preventive Medicine and Public Health. Faculty of Medicine, University of Zaragoza, Spain; Research & Development Agency of Aragon (ARAID) Foundation, Spain; CIBER Respiratory Diseases, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
12
|
An update on Staphylococcus aureus infective endocarditis from the International Society of Antimicrobial Chemotherapy (ISAC). Int J Antimicrob Agents 2018; 53:9-15. [PMID: 30240836 DOI: 10.1016/j.ijantimicag.2018.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/18/2022]
|
13
|
Lewis PO, Heil EL, Covert KL, Cluck DB. Treatment strategies for persistent methicillin-resistant Staphylococcus aureus bacteraemia. J Clin Pharm Ther 2018; 43:614-625. [PMID: 30003555 DOI: 10.1111/jcpt.12743] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia is a long-standing challenge to health care, often complicated by metastatic infections, treatment failure and mortality. When MRSA bacteraemia persists despite adequate initial treatment, current Infectious Diseases Society of America guidelines recommend evaluation and removal of possible sources of infection. In addition, a change in therapy may be considered. The objective of this review was to explore the therapeutic options for the treatment of persistent MRSA bacteraemia. METHODS A literature search of PubMed, MEDLINE and Google Scholar was performed using the following search terms: [methicillin-resistant Staphylococcus aureus OR MRSA] AND [bacteraemia OR bloodstream infection] AND [persistent OR persistence OR refractory OR treatment failure OR salvage] AND treatment. We evaluated relevant, adult, English-language, peer-reviewed studies published between 1985 and May 2018. In vitro and animal studies were considered as supportive of in vivo data. RESULTS AND DISCUSSION Randomized, controlled trials are lacking. However, case series and case reports support multiple treatment options including high-dose daptomycin in combination with an antistaphylococcal β-lactam, ceftaroline, trimethoprim-sulfamethoxazole (TMP-SMX) or fosfomycin; ceftaroline alone or in combination with vancomycin or TMP-SMX; linezolid alone or in combination with a carbapenem, or telavancin. WHAT IS NEW AND CONCLUSION Given the heterogeneity of the data, a preferred regimen has not emerged. Prescribers must take into consideration recent exposure, source control, and available synergy and clinical data. Further comparative trials are needed to establish a preferred regimen and the creation of a universal treatment algorithm.
Collapse
Affiliation(s)
- Paul O Lewis
- Department of Pharmacy, Johnson City Medical Center, Johnson City, Tennessee
| | - Emily L Heil
- Department of Pharmacy Practice and Science, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Kelly L Covert
- Department of Pharmacy Practice, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee
| | - David B Cluck
- Department of Pharmacy Practice, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|