1
|
Khan NU, Chengfeng X, Jiang MQ, Khan ZU, Razzaq A, Ullah A, Ni J, Abdullah, Iqbal H, Jin ZM. Obstructed vein delivery of ceftriaxone via poly(vinyl-pyrrolidone)-iodine-chitosan nanofibers for the management of diabetic foot infections and burn wounds. Int J Biol Macromol 2024; 277:134166. [PMID: 39084444 DOI: 10.1016/j.ijbiomac.2024.134166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Superficial skin injuries especially burn injuries and unhealed diabetic foot open wounds remain troubling for public health. The healing process is often interrupted by the invasion of resistant pathogens that results in the failure of conventional procedures outside the clinical settings. Herein, we designed nanofibers dressing with intrinsic antibacterial potential of poly(vinyl-pyrrolidone)-iodine/ poly (vinyl)-alcohol by electrospinning with chitosan encapsulating ceftriaxone (CPC/NFs). The optimized electrospun CPC/NFs exhibited smooth surface morphology with average diameter of 165 ± 7.1 nm, drug entrapment and loading efficiencies of 76.97 ± 4.7 % and 8.32 ± 1.73 %, respectively. The results displayed smooth and uniformed fibers with adequate thermal stability and ensured chemical doping. The enhanced in vitro antibacterial efficacy of CPC/NFs against resistant E. coli isolates and biosafety studies encourage the use of designed nanofibers dressing for burn injuries and diabetic foot injuries. In vivo studies proved the healing power of dressing for burn wounds model and diabetic infected wounds model. Immunofluorescence investigation of the wound tissue also suggested promising healing ability of CPC/NFs. The designed approach would be helpful to treat these infected skin open wounds in the hospitals and outside the clinical settings.
Collapse
Affiliation(s)
- Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Xie Chengfeng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Meng-Qin Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Asmat Ullah
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, PR China
| | - Abdullah
- College of Food Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, PR China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China.
| | - Zhi Min Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China.
| |
Collapse
|
2
|
Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota. MICROBIAL ECOLOGY 2023; 87:8. [PMID: 38036921 PMCID: PMC10689560 DOI: 10.1007/s00248-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.
Collapse
Affiliation(s)
- Luigui Gallardo-Becerra
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Melany Cervantes-Echeverría
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Luis E Vazquez-Morado
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
3
|
Santana FL, Estrada K, Alford MA, Wu BC, Dostert M, Pedraz L, Akhoundsadegh N, Kalsi P, Haney EF, Straus SK, Corzo G, Hancock REW. Novel Alligator Cathelicidin As-CATH8 Demonstrates Anti-Infective Activity against Clinically Relevant and Crocodylian Bacterial Pathogens. Antibiotics (Basel) 2022; 11:1603. [PMID: 36421248 PMCID: PMC9686568 DOI: 10.3390/antibiotics11111603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2024] Open
Abstract
Host defense peptides (HDPs) represent an alternative way to address the emergence of antibiotic resistance. Crocodylians are interesting species for the study of these molecules because of their potent immune system, which confers high resistance to infection. Profile hidden Markov models were used to screen the genomes of four crocodylian species for encoded cathelicidins and eighteen novel sequences were identified. Synthetic cathelicidins showed broad spectrum antimicrobial and antibiofilm activity against several clinically important antibiotic-resistant bacteria. In particular, the As-CATH8 cathelicidin showed potent in vitro activity profiles similar to the last-resort antibiotics vancomycin and polymyxin B. In addition, As-CATH8 demonstrated rapid killing of planktonic and biofilm cells, which correlated with its ability to cause cytoplasmic membrane depolarization and permeabilization as well as binding to DNA. As-CATH8 displayed greater antibiofilm activity than the human cathelicidin LL-37 against methicillin-resistant Staphylococcus aureus in a human organoid model of biofilm skin infection. Furthermore, As-CATH8 demonstrated strong antibacterial effects in a murine abscess model of high-density bacterial infections against clinical isolates of S. aureus and Acinetobacter baumannii, two of the most common bacterial species causing skin infections globally. Overall, this work expands the repertoire of cathelicidin peptides known in crocodylians, including one with considerable therapeutic promise for treating common skin infections.
Collapse
Affiliation(s)
- Felix L. Santana
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karel Estrada
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Morgan A. Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bing C. Wu
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Melanie Dostert
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lucas Pedraz
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Noushin Akhoundsadegh
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Pavneet Kalsi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Ding K, Shen P, Xie Z, Wang L, Dang X. In vitro and in vivo antifungal activity of two peptides with the same composition and different distribution. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109243. [PMID: 34768011 DOI: 10.1016/j.cbpc.2021.109243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022]
Abstract
Candida albicans can cause local or systemic diseases when host immune status is disrupted. Drug resistance to C. albicans highlights the necessity of novel antifungal drugs. Antimicrobial peptides exhibit potential as antifungal drugs. PAF26 was found to exhibit favorable activity against plant pathogenic fungi. However, it showed low antifungal activity against C. albicans. Here, P255 and P256 with the same composition and different distribution were derived from PAF26. P256 exhibited higher antifungal activity against C. albicans than did P255 and PAF26. P256 and P255 exhibited synergism when combined with amphotericin B (AMB). Both peptides reduced cell wall integrity, rapidly increased membrane permeability, disrupted cell morphology and intracellular alterations. The peptides affected the expression of fungal DNA replication and repair, cell wall synthesis and ergosterol synthesis genes. They increased cellular reactive oxygen species production and bound with fungal genomic DNA. Antibiofilm activities were observed when peptide alone or combined with AMB. Finally, these peptides protected 70% of Galleria mellonella from infection-caused death. Insects treated with peptides exhibited fewer infection foci compared with the untreatment. These results demonstrate the therapeutic potential of the peptides, particularly P256 with clear amphipathicity, in the development of therapies for C. albicans infections.
Collapse
Affiliation(s)
- Kang Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Panpan Shen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Lifang Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, Bumann D. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci U S A 2021; 118:e2113951118. [PMID: 34911764 PMCID: PMC8713819 DOI: 10.1073/pnas.2113951118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.
Collapse
Affiliation(s)
- Jiagui Li
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Joseph Fanous
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
6
|
Multidrug resistance crisis during COVID-19 pandemic: Role of anti-microbial peptides as next-generation therapeutics. Colloids Surf B Biointerfaces 2021; 211:112303. [PMID: 34952285 PMCID: PMC8685351 DOI: 10.1016/j.colsurfb.2021.112303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
The decreasing effectiveness of conventional drugs due to multidrug-resistance is a major challenge for the scientific community, necessitating development of novel antimicrobial agents. In the present era of coronavirus 2 (COVID-19) pandemic, patients are being widely exposed to antimicrobial drugs and hence the problem of multidrug-resistance shall be aggravated in the days to come. Consequently, revisiting the phenomena of multidrug resistance leading to formulation of effective antimicrobial agents is the need of the hour. As a result, this review sheds light on the looming crisis of multidrug resistance in wake of the COVID-19 pandemic. It highlights the problem, significance and approaches for tackling microbial resistance with special emphasis on anti-microbial peptides as next-generation therapeutics against multidrug resistance associated diseases. Antimicrobial peptides exhibit exceptional mechanism of action enabling rapid killing of microbes at low concentration, antibiofilm activity, immunomodulatory properties along with a low tendency for resistance development providing them an edge over conventional antibiotics. The review is unique as it discusses the mode of action, pharmacodynamic properties and application of antimicrobial peptides in areas ranging from therapeutics to agriculture.
Collapse
|
7
|
Ibarra-Valencia MA, Espino-Solis GP, Estrada BE, Corzo G. Immunomodulatory Responses of Two Synthetic Peptides against Salmonella Typhimurium Infection. Molecules 2021; 26:5573. [PMID: 34577046 PMCID: PMC8466354 DOI: 10.3390/molecules26185573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/04/2022] Open
Abstract
In vitro assays of phagocytic activity showed that the peptide Pin2[G] stimulates phagocytosis in BMDM cells from 0.15 to 1.25 μg/mL, and in RAW 264.7 cells at 0.31 μg/mL. In the same way, the peptide FA1 induced phagocytosis in BMDM cells from 1.17 to 4.69 μg/mL and in RAW 264.7 cells at 150 μg/mL. Cytokine profiles of uninfected RAW 264.7 showed that Pin2[G] increased liberation TNF (from 1.25 to 10 μg/mL) and MCP-1 (10 μg/mL), and FA1 also increased the release of TNF (from 18.75 to 75 μg/mL) but did not increase the liberation of MCP-1. In RAW 264.7 macrophages infected with Salmonella enterica serovar Typhimurium, the expression of TNF increases with Pin2[G] (1.25-10 μg/mL) or FA1 (18.75-75 μg/mL). In these cells, FA1 also increases the expression of IL-12p70, IL-10 and IFN-γ when applied at concentrations of 37.5, 75 and 150 μg/mL, respectively. On the other hand, stimulation with 1.25 and 10 μg/mL of Pin2[G] promotes the expression of MCP-1 and IL-12p70, respectively. Finally, peptides treatment did not resolve murine gastric infection, but improves their physical condition. Cytokine profiles showed that FA1 reduces IFN-γ and MCP-1 but increases IL-10, while Pin2[G] reduces IFN-γ but increases the liberation of IL-6 and IL-12p70. This data suggests a promising activity of FA1 and Pin2[G] as immunomodulators of gastric infections in S. Typhimurium.
Collapse
Affiliation(s)
- Marco Antonio Ibarra-Valencia
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca 62250, Mexico
| | - Gerardo Pável Espino-Solis
- Laboratorio de Investigación Traslacional and Laboratorio Nacional de Citometría de Flujo-UACH, Universidad Autónoma de Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (G.P.E.-S.); (B.E.E.)
| | - Blanca Elisa Estrada
- Laboratorio de Investigación Traslacional and Laboratorio Nacional de Citometría de Flujo-UACH, Universidad Autónoma de Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (G.P.E.-S.); (B.E.E.)
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca 62250, Mexico
| |
Collapse
|
8
|
Santana FL, Arenas I, Haney EF, Estrada K, Hancock REW, Corzo G. Identification of a crocodylian β-defensin variant from Alligator mississippiensis with antimicrobial and antibiofilm activity. Peptides 2021; 141:170549. [PMID: 33865931 DOI: 10.1016/j.peptides.2021.170549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
β-defensin host defense peptides are important components of the innate immune system of vertebrates. Although evidence of their broad antimicrobial, antibiofilm and immunomodulatory activities in mammals have been presented, β-defensins from other vertebrate species, like crocodylians, remain largely unexplored. In this study, five new crocodylian β-defensin variants from Alligator mississippiensis and Crocodylus porosus were selected for synthesis and characterization based on their charge and hydrophobicity values. Linear peptides were synthesized, folded, purified and then evaluated for their antimicrobial and antibiofilm activities against the bacterial pathogens, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Enterobacter cloacae and Acinetobacter baumannii. The Am23SK variant (SCRFSGGYCIWNWERCRSGHFLVALCPFRKRCCK) from A. mississippiensis displayed promising activity against both planktonic cells and bacterial biofilms, outperforming the human β-defensin 3 under the experimental conditions. Moreover, Am23SK exhibited no cytotoxicity towards mammalian cells and exerted immunomodulatory effects in vitro, moderately suppressing the production of proinflammatory mediators from stimulated human bronchial epithelial cells. Overall, our results have expanded the activity landscape of crocodylian and reptilian β-defensin in general.
Collapse
Affiliation(s)
- Felix L Santana
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca, Mor., 62250, Mexico; Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC, V6T1Z4, Canada
| | - Iván Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca, Mor., 62250, Mexico
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC, V6T1Z4, Canada
| | - Karel Estrada
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC, V6T1Z4, Canada
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca, Mor., 62250, Mexico.
| |
Collapse
|
9
|
Jiménez-Vargas JM, Ramírez-Carreto S, Corzo G, Possani LD, Becerril B, Ortiz E. Structural and functional characterization of NDBP-4 family antimicrobial peptides from the scorpion Mesomexovis variegatus. Peptides 2021; 141:170553. [PMID: 33862164 DOI: 10.1016/j.peptides.2021.170553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Six peptides, belonging to the NDBP-4 family of scorpion antimicrobial peptides were structurally and functionally characterized. The sequence of the mature peptides VpCT1, VpCT2, VpCT3 and VpCT4 was inferred by transcriptomic analysis of the venom gland of the scorpion Mesomexovis variegatus. Analysis of their amino acid sequences revealed patterns that are also present in previously reported peptides that show differences in their hemolytic and antimicrobial activities in vitro. Two other variants, VpCT3W and VpCTConsensus were designed to evaluate the effect of sequence changes of interest on their structure and activity. The synthesized peptides were evaluated by circular dichroism to confirm their α-helical conformation in a folding promoting medium. The peptides were assayed on two Gram-positive and three Gram-negative bacterial strains, and on two yeast strains. They preferentially inhibited the growth of Staphylococcus aureus, were mostly ineffective on Pseudomonas aeruginosa, and moderately inhibited the growth of Candida yeasts. All six peptides exhibited hemolytic activity on human erythrocytes in the range of 4.8-83.7 μM. VpCT3W displayed increased hemolytic and anti-yeast activities, but showed no change in antibacterial activity, relative to its parental peptide, suggesting that Trp6 may potentiate the interaction of VpCT3 with eukaryotic cell membranes. VpCTConsensus showed broader and enhanced antimicrobial activity relative to several of the natural peptides. The results presented here contribute new information on the structure and function of NDBP-4 antimicrobial peptides and provides clues for the design of less hemolytic and more effective antimicrobial peptides.
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), CDMX, Mexico
| | - Santos Ramírez-Carreto
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Gerardo Corzo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Baltazar Becerril
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Ernesto Ortiz
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
10
|
Deslouches B, Montelaro RC, Urish KL, Di YP. Engineered Cationic Antimicrobial Peptides (eCAPs) to Combat Multidrug-Resistant Bacteria. Pharmaceutics 2020; 12:pharmaceutics12060501. [PMID: 32486228 PMCID: PMC7357155 DOI: 10.3390/pharmaceutics12060501] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
- Correspondence: ; Tel.: +1-412-624-0103
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Ken L. Urish
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Yuanpu P. Di
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
| |
Collapse
|