1
|
Hu Y, Shen W, Lin D, Wu Y, Zhang Y, Zhou H, Zhang R. KPC variants conferring resistance to ceftazidime-avibactam in Pseudomonas aeruginosa strains. Microbiol Res 2024; 289:127893. [PMID: 39255583 DOI: 10.1016/j.micres.2024.127893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/26/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND This study aimed to characterize three KPC variants (KPC-33, KPC-100, and KPC-201) obtained from a clinical isolate of Pseudomonas aeruginosa (#700), along with two induced strains C109 and C108. METHODS Genomic DNAs of #700 (ST235), C109 (ST463), and C108 (ST1076) were sequenced using Illumina and Oxford Nanopore technologies. The transferability and stability of the plasmid was assessed through conjugation experiments and plasmid stability experiments, respectively. Minimum inhibitory concentrations of bacterial strains were determined using broth microdilution methods. In vitro induction was performed using ceftazidime-avibactam (CZA) at concentrations of 6/4 µg/ml. Linear genomic alignments were visualized using Easyfig, and protein structure modeling of the novel KPC variant (KPC-201) was conducted using PyMol. RESULTS The plasmids carrying the KPC variants in the three CZA-resistant strains (C109, C108, and #700) had sizes of 39,251 bp (KPC-100), 394,978 bp (KPC-201), and 48,994 bp (KPC-33). All three plasmids belonged to the IncP-like incompatibility (Inc) groups, and the plasmid exhibited relatively high plasmid stability, KPC-33 and KPC-201-harboring plasmids were successfully transferred to the recipient strain P. aeruginosa PAO1rifR. The genetic environments of the three blaKPC genes differed from each other. The mobile elements of the three blaKPC genes were as follows, TnAS1-IS26-ΔISKpn27-blaKPC-33-ISKpn6-IS26, IS6-ΔISKpn27-blaKPC-100-ISKpn6-IS26-Tn3-IS26, and IS6100-ISKpn27-blaKPC-201-ISKpn6-TnAS1. Notably, the length of ΔISKpn27 upstream of the blaKPC-33 and blaKPC-100 genes were remarkably short, measuring 114 bp and 56 bp, respectively, deviating significantly from typical lengths associated with ISKpn27 elements. Moreover, the novel KPC variant, KPC-201, featured a deletion of amino acids LDR at positions 161-163 in KPC-3, resulting in a looser pocket structure contributing to its avibactam resistance. CONCLUSIONS KPC-201, identified as a novel KPC variant, exhibits resistance to CZA. The presence of multiple mobile elements surrounding the blaKPC-variant genes on stable plasmids is concerning. Urgent preventive measures are crucial to curb its dissemination in clinical settings.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Weiyi Shen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Di Lin
- Wangjiang Subdistrict Community Healthcare Center, Shangcheng District, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Hongwei Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Zhou J, Yan G, Tang C, Liu J, Fu P, Ding L, Yang W, Guo Y, Wang C, Lu G, Hu F. Emergence of ceftazidime-avibactam resistance in bla KPC-33-harbouring ST11 Klebsiella pneumoniae in a paediatric patient. Int J Antimicrob Agents 2024; 63:107163. [PMID: 38570018 DOI: 10.1016/j.ijantimicag.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses immense threats to the health of infected patients worldwide, especially children. This study reports the infection caused by CRKP in a paediatric intensive care unit (PICU) child and its drug-resistant mutation during the treatment. Twelve Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains were isolated from the child. Broth microdilution method, plasmid transformation assay, and whole genome sequencing (WGS) were performed to investigate the antimicrobial susceptibility, resistance mechanisms, and genetic structural features of CRKPs. The results showed that 12 strains were highly resistant to most available antimicrobial agents. Among them, K. pneumoniae FD11 and K. pneumoniae FD12 were resistant to ceftazidime-avibactam (CZA, MIC >64 mg/L) and restored the carbapenem susceptibility (Imipenem, MIC =0.25 mg/L; Meropenem, MIC =2 mg/L). The patient improved after treatment with CZA in combination with aztreonam. Plasmid transformation assay demonstrated that the blaKPC-33-positive transformant increased MICs of CZA by at least 33-fold and 8-fold compared with the recipient Escherichia coli DH5α and blaKPC-2-positive transformants. WGS analysis revealed that all strains belonged to the ST11-KL64 type and showed highly homologous (3-26 single nucleotide polymorphisms [SNPs]). A single base mutation (G532T) of blaKPC-2 resulted in a tyrosine to aspartic acid substitution at Ambler amino acid position 179 (D179Y), which conferred CZA resistance in K. pneumoniae. This is the first report of a drug-resistant mutation evolving into blaKPC-33 during the treatment of blaKPC-2-positive CRKP in paediatric-infected patients. It advises clinicians that routine sequential antimicrobial susceptibility testing and KPC genotyping are critical during CZA therapy in children infected with CRKP.
Collapse
Affiliation(s)
- Jinlan Zhou
- Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Gangfeng Yan
- Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chengkang Tang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Jing Liu
- Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pan Fu
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Weiwei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Chuanqing Wang
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China.
| |
Collapse
|
3
|
Javid A, Ahmed M. A computational odyssey: uncovering classical β-lactamase inhibitors in dry fruits. J Biomol Struct Dyn 2024; 42:4578-4604. [PMID: 37288775 DOI: 10.1080/07391102.2023.2220817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
In the antibacterial arsenal, β-lactams have held a prominent position, but increasing resistance due to unauthorized use and genetic factors requires new strategies. Combining β-lactamase inhibitors with broad-spectrum β-lactams proves effective in combating this resistance. ESBL producers demand new inhibitors, leading to the exploration of plant-derived secondary metabolites for potent β-lactam antibiotics or alternative inhibitors. Using virtual screening, molecular docking, ADMET analysis, and molecular dynamic simulation, this study actively analyzed the inhibitory activity of figs, cashews, walnuts, and peanuts against SHV-1, NDM-1, KPC-2, and OXA-48 β-lactamases. Using AutoDock Vina, the docking affinities of various compounds for target enzymes were initially screened, revealing 12 bioactive compounds with higher affinities for the target enzymes compared to Avibactam and Tazobactam. Top-scoring metabolites, including Oleanolic acid, Protocatechuic acid, and Tannin, were subjected to MD simulation studies to further analyze the stability of the docked complexes using WebGro. The simulation coordinates, in terms of RMSD, RMSF, SASA, Rg, and hydrogen bonds formed, showed that these phytocompounds are stable enough to retain in the active sites at various orientations. The PCA and FEL analysis also showed the stability of the dynamic motion of Cα residues of phytochemical-bound enzymes. The pharmacokinetic analysis of the top phytochemicals was performed to analyze their bioavailability and toxicity. This study provides new insights into the therapeutic potential of phytochemicals of selected dry fruits and contributes to future experimental studies to identify βL inhibitors from plants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amina Javid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Mehboob Ahmed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| |
Collapse
|
4
|
Ding L, Shen S, Chen J, Tian Z, Shi Q, Han R, Guo Y, Hu F. Klebsiella pneumoniae carbapenemase variants: the new threat to global public health. Clin Microbiol Rev 2023; 36:e0000823. [PMID: 37937997 PMCID: PMC10732083 DOI: 10.1128/cmr.00008-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) variants, which refer to the substitution, insertion, or deletion of amino acid sequence compared to wild blaKPC type, have reduced utility of ceftazidime-avibactam (CZA), a pioneer antimicrobial agent in treating carbapenem-resistant Enterobacterales infections. So far, more than 150 blaKPC variants have been reported worldwide, and most of the new variants were discovered in the past 3 years, which calls for public alarm. The KPC variant protein enhances the affinity to ceftazidime and weakens the affinity to avibactam by changing the KPC structure, thereby mediating bacterial resistance to CZA. At present, there are still no guidelines or expert consensus to make recommendations for the diagnosis and treatment of infections caused by KPC variants. In addition, meropenem-vaborbactam, imipenem-relebactam, and other new β-lactam-β-lactamase inhibitor combinations have little discussion on KPC variants. This review aims to discuss the clinical characteristics, risk factors, epidemiological characteristics, antimicrobial susceptibility profiles, methods for detecting blaKPC variants, treatment options, and future perspectives of blaKPC variants worldwide to alert this new great public health threat.
Collapse
Affiliation(s)
- Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Jing Chen
- Hangzhou Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Zhen Tian
- Hangzhou Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
5
|
Yang Q, Li Y, Fang L, Lei T, Cai H, Hua X, Zheng M, Yu Y. A novel KPC-113 variant conferring carbapenem and ceftazidime-avibactam resistance in a multidrug-resistant Pseudomonas aeruginosa isolate. Clin Microbiol Infect 2023; 29:387.e7-387.e14. [PMID: 36252790 DOI: 10.1016/j.cmi.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This study aimed to characterize a novel KPC-113 variant from a clinical Pseudomonas aeruginosa isolate R20-14. METHODS Genomic DNA of R20-14 was subjected to Illumina and Oxford Nanopore sequencing. The horizontal transmission of plasmid was evaluated with conjugation experiments. Minimum inhibitory concentrations of bacterial strains were obtained using broth microdilution methods. KPC-113 detectability of different carbapenemase detection methods was tested. The kinetic parameters of KPC-113 were compared with those of KPC-2 by a spectrophotometer. Structure modelling and molecular docking of KPC-2 and KPC-113 were performed using Schrödinger. RESULTS R20-14, a sequence type 3903 multidrug-resistant strain, was resistant to carbapenems and ceftazidime-avibactam (CZA) concurrently. S1-nuclease pulsed-field gel electrophoresis and genomic analysis revealed a blaKPC-113-carrying plasmid pR20-14, which resembled the previously reported type I KPC-encoding P. aeruginosa plasmids and exhibited a high conjugation frequency. KPC-113, with a glycine residue insertion between Ambler positions 266 and 267 in KPC-2, conferred both carbapenem and CZA resistance in DH5α and PAO1 transformants. Diagnostic tests showed that KPC-113 acted in a similar manner to KPC-2. Compared with KPC-2, KPC-113 presented reduced catalytic ability to carbapenems and ceftazidime, meanwhile responding poorly to avibactam inhibition. Modelling structure revealed that KPC-113 possibly had a more flattened binding pocket than KPC-2, leading to the change of ligand binding modes. CONCLUSIONS KPC-113 is a novel KPC variant mediating both CZA resistance and carbapenem resistance. It is of great concern that blaKPC-113 could transfer horizontally with great efficiency and inactivate carbapenems and CZA simultaneously. Great efforts should be made to prevent its spread in clinical settings.
Collapse
Affiliation(s)
- Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Li Fang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother 2022; 66:e0044722. [PMID: 35980232 PMCID: PMC9487638 DOI: 10.1128/aac.00447-22] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
First variants of the Klebsiella pneumoniae carbapenemase (KPC), KPC-2 and KPC-3, have encountered a worldwide success, particularly in K. pneumoniae isolates. These beta-lactamases conferred resistance to most beta-lactams including carbapenems but remained susceptible to new beta-lactam/beta-lactamase inhibitors, such as ceftazidime-avibactam. After the marketing of ceftazidime-avibactam, numerous variants of KPC resistant to this association have been described among isolates recovered from clinical samples or derived from experimental studies. In KPC variants resistant to ceftazidime-avibactam, point mutations, insertions and/or deletions have been described in various hot spots. Deciphering the impact of these mutations is crucial, not only from a therapeutic point of view, but also to follow the evolution in time and space of KPC variants resistant to ceftazidime-avibactam. In this review, we describe the mutational landscape of the KPC beta-lactamase toward ceftazidime-avibactam resistance based on a multidisciplinary approach including epidemiology, microbiology, enzymology, and thermodynamics. We show that resistance is associated with three hot spots, with a high representation of insertions and deletions compared with other class A beta-lactamases. Moreover, extension of resistance to ceftazidime-avibactam is associated with a trade-off in the resistance to other beta-lactams and a decrease in enzyme stability. Nevertheless, the high natural stability of KPC could underlay the propensity of this enzyme to acquire in vivo mutations conferring resistance to ceftazidime-avibactam (CAZavi), particularly via insertions and deletions.
Collapse
|
7
|
Complete Genome Sequence of Providencia stuartii CMC-4104, Isolated from a Human Splenic Abscess, Containing Multiple Copies of NDM-1 and PER-1 Carbapenem Resistance Genes. Microbiol Resour Announc 2022; 11:e0051422. [PMID: 35924937 PMCID: PMC9476899 DOI: 10.1128/mra.00514-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We report the complete genome sequence of a clinical isolate of Providencia stuartii strain CMC-4104, isolated from a splenic abscess. Oxford Nanopore Technologies (ONT) and Illumina sequencing reads were assembled using Geneious to generate a 4,504,925-bp circular chromosome containing multiple copies of the NDM-1 and PER-1 genes in a genomic resistance island.
Collapse
|
8
|
Shi Q, Han R, Guo Y, Yang Y, Wu S, Ding L, Zhang R, Yin D, Hu F. Multiple Novel Ceftazidime-Avibactam-Resistant Variants of blaKPC-2-Positive Klebsiella pneumoniae in Two Patients. Microbiol Spectr 2022; 10:e0171421. [PMID: 35588280 PMCID: PMC9241591 DOI: 10.1128/spectrum.01714-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
As the first-line antimicrobial agent for the infection caused by carbapenem-resistant Enterobacterales, ceftazidime-avibactam develops drug resistance during its ever-growing clinical use. In this study, we report multiple novel variants in blaKPC-2-positive Klebsiella pneumoniae from two separate patients during their exposure to ceftazidime-avibactam. For one patient, the blaKPC-2 gene carried by K. pneumoniae mutated into blaKPC-35, blaKPC-78, and blaKPC-33 over the same period, while that for the other patient mutated into blaKPC-79 and further evolved into blaKPC-76 to enhance resistance level, among which blaKPC-76 and blaKPC-79 were reported for the first time. In contrast with blaKPC-2, the emergent mutations within the Ω-loop conferred high-level resistance to ceftazidime-avibactam with a sharp reduction of carbapenemase activity. These blaKPC-positive K. pneumoniae isolated from sputum (both patients) and cerebrospinal fluid (patient 2) belonged to ST11 and ST859, respectively. All strains located blaKPC alleles on IncFII/IncR plasmids, except one on an IncFII plasmid. Such blaKPC-2 variants first appeared after 9 to 18 days of ceftazidime-avibactam usage, but the lack of its feasible detection method often led to the assumption of ceftazidime-avibactam sensitivity resulting in clinical incorrect usage. Subsequent substitution of ceftazidime-avibactam with carbapenems also failed, because the blaKPC-2-containing K. pneumoniae dominated again. Ultimately, treatment failed even with the therapeutic regimen of ceftazidime-avibactam combined with carbapenems, because of the inadequate concentration of avibactam in infection sites and decreased drug sensitivity of strains caused by increased expression of blaKPC and point mutation of ompK35 and ompK36. As novel KPC variants conferring resistance to ceftazidime-avibactam are constantly emerging worldwide, quick and efficient laboratory detection and surveillance are urgently needed for infection control. IMPORTANCE Carbapenem-resistant K. pneumoniae which was classified as the most urgent threat by World Health Organization, is the most critical public health concern due to its high mortality rate. Recently, the rapid mutation of blaKPC has occurred during anti-infective therapy, which posed an unexpected challenge for both the diagnostic laboratory and clinical practice.
Collapse
Affiliation(s)
- Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Rong Zhang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
9
|
Ding L, Shen S, Han R, Yin D, Guo Y, Hu F. Ceftazidime–Avibactam in Combination with Imipenem as Salvage Therapy for ST11 KPC-33-Producing Klebsiella pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11050604. [PMID: 35625247 PMCID: PMC9138154 DOI: 10.3390/antibiotics11050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
A 22-year-old man, after a hematopoietic stem cell transplant, suffered long-term pneumonia caused by blaKPC-2-positive K. pneumoniae and blaKPC-33-positive K. pneumoniae alternately and finally achieved pathogenic clearance and improvement of clinical infectious conditions after using ceftazidime–avibactam in combination with imipenem as salvage therapy. This case provides a reference for treating infection caused by K. pneumoniae with a KPC variant in countries lacking new antimicrobial agents.
Collapse
Affiliation(s)
- Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (L.D.); (S.S.); (R.H.); (D.Y.); (Y.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai 200040, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (L.D.); (S.S.); (R.H.); (D.Y.); (Y.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai 200040, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (L.D.); (S.S.); (R.H.); (D.Y.); (Y.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai 200040, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (L.D.); (S.S.); (R.H.); (D.Y.); (Y.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai 200040, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (L.D.); (S.S.); (R.H.); (D.Y.); (Y.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai 200040, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (L.D.); (S.S.); (R.H.); (D.Y.); (Y.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai 200040, China
- Correspondence: ; Tel.: +86-21-52888186
| |
Collapse
|
10
|
Emergence of a KPC-90 Variant that Confers Resistance to Ceftazidime-Avibactam in an ST463 Carbapenem-Resistant Pseudomonas aeruginosa Strain. Microbiol Spectr 2022; 10:e0186921. [PMID: 35019766 PMCID: PMC8754116 DOI: 10.1128/spectrum.01869-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) has become a serious challenge in the clinic. Recently, the prevalence of CRPA isolates carrying the blaKPC-2 gene has been increasing in China. Ceftazidime-avibactam (CZA) has shown good efficacy against large portions of KPC-2-producing CRPA strains. However, with the increasing usage of this drug, CZA resistance in CRPA strains has been reported. Here, we reported for the first time that resistance of the ST463 CRPA strain to CZA was caused by a novel variant in the KPC gene that arose after CZA exposure. The CRPA strain PA2207 is a carbapenem- and CZA-resistant strain that harbors a mutated blaKPC gene, named blaKPC-90. Cloning and expression of blaKPC-90 in Escherichia coli DH5α revealed that KPC-90 led to a 64-fold increase in the MIC value of CZA. Conjugation experiments further confirmed that blaKPC-90 was located on a conjugative plasmid. Whole-genome sequencing analysis showed that this plasmid had high sequence similarity to a previously reported novel blaKPC-2-harboring plasmid in a clinical P. aeruginosa strain isolated in China. In addition, overexpression of an efflux pump (MexXY-OprM) might be associated with the CZA resistance phenotype, as determined by reverse transcription-quantitative PCR and efflux pump inhibition experiments. For the first time, we reported a KPC variant, KPC-90, in a clinical ST463 CRPA strain with CZA resistance that was mediated by a 2 amino acid insertion outside the KPC omega-loop region. Our study further highlights that diverse KPC variants that mediate CZA resistance have emerged in the CRPA strain. Furthermore, KPC-90 mutation combined with efflux pump overexpression resulted in a high level of resistance to CZA in the PA2207 isolate. Effective surveillance should be conducted to prevent CZA resistance from spreading in the CRPA strain. IMPORTANCE For the first time, we reported a KPC variant, KPC-90, in a clinical ST463 CRPA strain with CZA resistance. CZA resistance was mediated by a 2 amino acid insertion outside the KPC omega-loop region in CRPA. Our study further emphasized that CZA resistance caused by blaKPC gene mutation could be selected in CRPA after CZA therapy. Considering the widespread presence of the ST463 CRPA strain in China, clinicians should pay attention to the risk of the development of CZA resistance in CRPA strains under treatment pressure.
Collapse
|
11
|
Abstract
Recently, various blaKPC-2 variants resistant to ceftazidime-avibactam have begun to emerge in clinical settings, but it is unclear which testing method is most appropriate for detecting these variants. Strains were subjected to antimicrobial susceptibility testing using the broth microdilution method. Four carbapenemase detection methods, modified carbapenem inactivation method (mCIM) and EDTA carbapenem inactivation method (eCIM), APB/EDTA (carbapenemase inhibitor APB [3-aminophenylboronic acid] and EDTA enhancement method), NG-test Carba 5, and GeneXpert Carba-R were used to try to detect KPC-2 variants in 19 Klebsiella pneumoniae isolates. Among those blaKPC-2 variants, blaKPC-33-, blaKPC-35-, blaKPC-71-, blaKPC-76-, blaKPC-78-, and blaKPC-79-positive isolates accounted for 26.3% (5/19), 15.8% (3/19), 5.3% (1/19), % 42.1% (8/19), 5.3% (1/19), and 5.3% (1/19), respectively. All 19 K. pneumoniae carrying blaKPC-2 variants showed resistance to ceftazidime-avibactam (MICs:16 to >64 mg/L), and 14 strains were susceptible to imipenem (MICs: 0.25 to 1 mg/L). None of the blaKPC-2 variants could be detected using either the mCIM or the APB/EDTA method, while five strains carrying blaKPC-2 variants (blaKPC-35, blaKPC-78, and blaKPC-79) tested KPC positive when using NG-test Carba 5. However, GeneXpert Carba-R was able to detect blaKPC-2 variants (harboring blaKPC-33, blaKPC-35, blaKPC-71, blaKPC-76, blaKPC-78, and blaKPC-79) carried by all 19 K. pneumoniae. The emergence of new KPC variants poses an increased challenge for carbapenemase detection methods, and laboratories should use the appropriate assays to accurately detect these variants. IMPORTANCE Carbapenemase detection is essential for the appropriate treatment of CRE infections. Several clinical laboratories have begun using relevant carbapenemase assays such as mCIM and eCIM, the APB/EDTA method, NG-test Carba 5, and GeneXpert Carba-R to detect carbapenemases. Nevertheless, some of these methods may have limitations for detecting blaKPC-2 variants. Additionally, there has been little relevant research on evaluate the differences between these standard methods for detecting blaKPC-2 variants. Therefore, we investigated the reliability of these classic methods for assessing 19 K. pneumoniae with blaKPC-2 variants. Our results showed that none of the blaKPC-2 variants could be detected using either the mCIM or APB/EDTA method, while five strains (harboring blaKPC-35, blaKPC-78,and blaKPC-79) tested KPC positive when using NG-test Carba 5. GeneXpert Carba-R could detect six blaKPC-2 variants carried by all 19 K. pneumoniae. This study may be valuable for clinical laboratories in their efforts to test for various blaKPC-2 variants.
Collapse
|