1
|
Anderson R, Feldman C. The Global Burden of Community-Acquired Pneumonia in Adults, Encompassing Invasive Pneumococcal Disease and the Prevalence of Its Associated Cardiovascular Events, with a Focus on Pneumolysin and Macrolide Antibiotics in Pathogenesis and Therapy. Int J Mol Sci 2023; 24:11038. [PMID: 37446214 DOI: 10.3390/ijms241311038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Despite innovative advances in anti-infective therapies and vaccine development technologies, community-acquired pneumonia (CAP) remains the most persistent cause of infection-related mortality globally. Confronting the ongoing threat posed by Streptococcus pneumoniae (the pneumococcus), the most common bacterial cause of CAP, particularly to the non-immune elderly, remains challenging due to the propensity of the elderly to develop invasive pneumococcal disease (IPD), together with the predilection of the pathogen for the heart. The resultant development of often fatal cardiovascular events (CVEs), particularly during the first seven days of acute infection, is now recognized as a relatively common complication of IPD. The current review represents an update on the prevalence and types of CVEs associated with acute bacterial CAP, particularly IPD. In addition, it is focused on recent insights into the involvement of the pneumococcal pore-forming toxin, pneumolysin (Ply), in subverting host immune defenses, particularly the protective functions of the alveolar macrophage during early-stage disease. This, in turn, enables extra-pulmonary dissemination of the pathogen, leading to cardiac invasion, cardiotoxicity and myocardial dysfunction. The review concludes with an overview of the current status of macrolide antibiotics in the treatment of bacterial CAP in general, as well as severe pneumococcal CAP, including a consideration of the mechanisms by which these agents inhibit the production of Ply by macrolide-resistant strains of the pathogen.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Johannesburg 2193, South Africa
| |
Collapse
|
2
|
Domon H, Hirayama S, Isono T, Sasagawa K, Takizawa F, Maekawa T, Yanagihara K, Terao Y. Macrolides Decrease the Proinflammatory Activity of Macrolide-Resistant Streptococcus pneumoniae. Microbiol Spectr 2023; 11:e0014823. [PMID: 37191519 PMCID: PMC10269745 DOI: 10.1128/spectrum.00148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
Over the past 2 decades, the prevalence of macrolide-resistant Streptococcus pneumoniae (MRSP) has increased considerably, due to widespread macrolide use. Although macrolide usage has been proposed to be associated with treatment failure in patients with pneumococcal diseases, macrolides may be clinically effective for treating these diseases, regardless of the susceptibility of the causative pneumococci to macrolides. As we previously demonstrated that macrolides downregulate the transcription of various genes in MRSP, including the gene encoding the pore-forming toxin pneumolysin, we hypothesized that macrolides affect the proinflammatory activity of MRSP. Using HEK-Blue cell lines, we found that the supernatants from macrolide-treated MRSP cultures induced decreased NF-κB activation in cells expressing Toll-like receptor 2 and nucleotide-binding oligomerization domain 2 compared to the supernatants from untreated MRSP cells, suggesting that macrolides inhibit the release of these ligands from MRSP. Real-time PCR analysis revealed that macrolides significantly downregulated the transcription of various genes encoding peptidoglycan synthesis-, lipoteichoic acid synthesis-, and lipoprotein synthesis-related molecules in MRSP cells. The silkworm larva plasma assay demonstrated that the peptidoglycan concentrations in the supernatants from macrolide-treated MRSP cultures were significantly lower than those from untreated MRSP cultures. Triton X-114 phase separation revealed that lipoprotein expression decreased in macrolide-treated MRSP cells compared to the lipoprotein expression in untreated MRSP cells. Consequently, macrolides may decrease the expression of bacterial ligands of innate immune receptors, resulting in the decreased proinflammatory activity of MRSP. IMPORTANCE To date, the clinical efficacy of macrolides in pneumococcal disease is assumed to be linked to their ability to inhibit the release of pneumolysin. However, our previous study demonstrated that oral administration of macrolides to mice intratracheally infected with macrolide-resistant Streptococcus pneumoniae resulted in decreased levels of pneumolysin and proinflammatory cytokines in bronchoalveolar lavage fluid samples compared to the levels in samples from untreated infected control mice, without affecting the bacterial load in the fluid. This finding suggests that additional mechanisms by which macrolides negatively regulate proinflammatory cytokine production may be involved in their efficacy in vivo. Furthermore, in this study, we demonstrated that macrolides downregulated the transcription of various proinflammatory-component-related genes in S. pneumoniae, which provides an additional explanation for the clinical benefits of macrolides.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
3
|
Rawat R, Chouhan RS, Sadhu V, Sharma M. Clarithromycin-Loaded Submicron-Sized Carriers: Pharmacokinetics and Pharmacodynamic Evaluation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093593. [PMID: 37176475 PMCID: PMC10179782 DOI: 10.3390/ma16093593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The current study aims to improve clarithromycin bioavailability and effectiveness in complicated intra-abdominal infection management. Therefore, clarithromycin-loaded submicron dual lipid carriers (CLA-DLCs) were developed via hot high shear homogenization technique and evaluated for colloidal parameters, release behavior, stability study, and in-vitro antibiofilm activity. Bioavailability and therapeutic efficacy of optimized formulation on hampering cytokines storm induction was determined in E. coli-induced peritonitis. The developed CLA-DLCs (particle size 326.19 ± 24.14 nm, zeta potential -31.34 ± 2.81 mV, and entrapment efficiency 85.78 ± 4.01%) exhibited smooth spherical shapes and sustained in vitro release profiles. Long-term stability study of optimized CLA-DLCs ensured maintenance of colloidal parameters for 1 year at room temperature. In vitro antimicrobial studies revealed 3.43-fold higher anti-biofilm activity of CLA-DLCs compared with clarithromycin. In addition, the relative bioavailability of CLA-DLCs was enhanced 5.89-fold compared to pure drug in rats. The remarkable decrease in microbial burden in blood as well as tissues, along with oxidative stress markers (lipid peroxidation, myeloperoxidase activity, and carbonylated protein level) and immunological markers (total leukocyte count, neutrophil migration, NO, TNF-, and IL-6) on treatment with CLA-DLCs enhanced the survival in a rat model of peritonitis compared with the pure drug and untreated groups. In conclusion, CLA-DLCs hold promising potential in management of intra-abdominal infections and prevention of associated complications.
Collapse
Affiliation(s)
- Reetika Rawat
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Institute "Jožef Stefan", Jamova 39, 1000 Ljubljana, Slovenia
| | - Veera Sadhu
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravskaesta 9, 84511 Bratislava, Slovakia
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 84541 Bratislava, Slovakia
| | - Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| |
Collapse
|
4
|
Sakoulas G, Nowak M, Geriak M. Omadacycline in treating community-based infections: a review and expert perspective. Expert Rev Anti Infect Ther 2023; 21:255-265. [PMID: 36718489 DOI: 10.1080/14787210.2023.2174100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Omadacycline is approved for the treatment of community-acquired bacterial pneumonia (CABP) and acute bacterial skin and soft tissue infection (ABSSSI). The integration of newer agents into clinical use involves understanding the nuances of clinical decision-making. This review will provide an in-depth focus on omadacycline in clinical practice. AREAS COVERED Literature review of omadacycline utilizing PubMed was performed to provide a comprehensive evaluation of omadacycline pharmacology, microbiology, registrational Phase 3 clinical trials, and post-marketing clinical studies. In addition, the immunomodulatory and other attributes of tetracycline class of antibiotics, of which omadacycline is a member, are reviewed, introducing the concept of antibiotic selection with attention to the bacterial pathogen and human host relationship. EXPERT OPINION Omadacycline builds upon the favorable attributes of tetracycline antibiotics and provides very reliable empiric coverage for both Staphylococcus aureus and Streptococcus spp. Clinicians require a more robust understanding of antibiotics, including omadacycline, in order to optimize patient outcomes, streamline care, and reduce medical costs.
Collapse
Affiliation(s)
- George Sakoulas
- Division of Host-Microbe Systems & Therapeutics, Center for Immunity, Infection & Inflammation, University of California-San Diego School of Medicine, La Jolla, CA, USA.,Sharp Rees-Stealy Medical Group and Sharp Memorial Hospital, San Diego, CA, USA.,Sharp Memorial Hospital, San Diego, CA, USA
| | | | | |
Collapse
|
5
|
Chowers M, Gerassy-Vainberg S, Cohen-Poradosu R, Wiener-Well Y, Bishara J, Maor Y, Zimhony O, Chazan B, Gottesman BS, Dagan R, Regev-Yochay G. The Effect of Macrolides on Mortality in Bacteremic Pneumococcal Pneumonia: A Retrospective, Nationwide Cohort Study, Israel, 2009-2017. Clin Infect Dis 2022; 75:2219-2224. [PMID: 35443039 PMCID: PMC9761884 DOI: 10.1093/cid/ciac317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Previous cohort studies of pneumonia patients reported lower mortality with advanced macrolides. Our aim was to characterize antibiotic treatment patterns and assess the role of quinolones or macrolides in empirical therapy. MATERIALS An historical cohort, 1 July 2009 to 30 June 2017, included, through active surveillance, all culture-confirmed bacteremic pneumococcal pneumonia (BPP) among adults in Israel. Cases without information on antibiotic treatment were excluded. Logistic regression analysis was used to assess independent predictors of in-hospital mortality. RESULTS A total of 2016 patients with BPP were identified. The median age was 67.2 years (interquartile range [IQR] 53.2-80.6); 55.1% were men. Lobar pneumonia was present in 1440 (71.4%), multi-lobar in 576 (28.6%). Median length of stay was 6 days (IQR 4-11). A total of 1921 cases (95.3%) received empiric antibiotics with anti-pneumococcal coverage: ceftriaxone, in 1267 (62.8%). Coverage for atypical bacteria was given to 1159 (57.5%), 64% of these, with macrolides. A total of 372 (18.5%) required mechanical ventilation, and 397 (19.7%) died. Independent predictors of mortality were age (odds ratio [OR] 1.051, 95% confidence interval [CI] 1.039, 1.063), being at high-risk for pneumococcal disease (OR 2.040, 95% CI 1.351, 3.083), multi-lobar pneumonia (OR 2.356, 95% CI 1.741, 3.189). Female sex and macrolide therapy were predictors of survival: (OR 0.702, 95% CI .516, .955; and OR 0.554, 95% CI .394, .779, respectively). Either azithromycin or roxithromycin treatment for as short as two days was predictor of survival. Quinolone therapy had no effect. CONCLUSIONS Empirical therapy with macrolides reduced odds for mortality by 45%. This effect was evident with azithromycin and with roxithromycin. The effect did not require a full course of therapy.
Collapse
Affiliation(s)
- Michal Chowers
- Correspondence: M. Chowers, Infectious Diseases Unit, Meir Medical Center, 59 Tshernichovski St, Kfar-Saba, Israel 44821 ()
| | - Shiran Gerassy-Vainberg
- Department of Gastroenterology, Rambam Health-Care Campus, Haifa, Israel,Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Cohen-Poradosu
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel,Infectious Diseases Unit, Tel Aviv Medical Center, Tel-Aviv, Israel
| | - Yonit Wiener-Well
- Infectious Diseases Unit, Shaare-Zedek Medical Center, Jerusalem, Israel,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jihad Bishara
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel,Infectious Diseases Unit, Belinson Campus, Rabin Medical Center, Petah-Tikva, Israel
| | - Yasmin Maor
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel,Infectious Diseases Unit, Wolfson Medical Center, Holon, Israel
| | - Oren Zimhony
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel,Infectious Diseases Unit, kaplan Medical Center, Rehovot, Israel
| | - Bibiana Chazan
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel,Infectious Diseases Unit, Ha’Emek Medical Center, Afula, Israel
| | - Bat-sheva Gottesman
- Infectious Diseases Unit, Meir Medical Center, kfar-Saba, Israel,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Dagan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gili Regev-Yochay
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel,Infection Control Unit, Sheba Medical Center, Tel-Hashomer, Israel
| | | |
Collapse
|
6
|
Sasagawa K, Domon H, Sakagami R, Hirayama S, Maekawa T, Isono T, Hiyoshi T, Tamura H, Takizawa F, Fukushima Y, Tabeta K, Terao Y. Matcha Green Tea Exhibits Bactericidal Activity against Streptococcus pneumoniae and Inhibits Functional Pneumolysin. Antibiotics (Basel) 2021; 10:antibiotics10121550. [PMID: 34943762 PMCID: PMC8698834 DOI: 10.3390/antibiotics10121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is a causative pathogen of several human infectious diseases including community-acquired pneumonia. Pneumolysin (PLY), a pore-forming toxin, plays an important role in the pathogenesis of pneumococcal pneumonia. In recent years, the use of traditional natural substances for prevention has drawn attention because of the increasing antibacterial drug resistance of S. pneumoniae. According to some studies, green tea exhibits antibacterial and antitoxin activities. The polyphenols, namely the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) are largely responsible for these activities. Although matcha green tea provides more polyphenols than green tea infusions, its relationship with pneumococcal pneumonia remains unclear. In this study, we found that treatment with 20 mg/mL matcha supernatant exhibited significant antibacterial activity against S. pneumoniae regardless of antimicrobial resistance. In addition, the matcha supernatant suppressed PLY-mediated hemolysis and cytolysis by inhibiting PLY oligomerization. Moreover, the matcha supernatant and catechins inhibited PLY-mediated neutrophil death and the release of neutrophil elastase. These findings suggest that matcha green tea reduces the virulence of S. pneumoniae in vitro and may be a promising agent for the treatment of pneumococcal infections.
Collapse
Affiliation(s)
- Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Rina Sakagami
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yoichi Fukushima
- Nestlé Japan Ltd., Wellness Communications, Tokyo 140-0002, Japan;
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Correspondence: ; Tel.: +81-25-227-2838
| |
Collapse
|
7
|
Intracellularly Released Cholesterol from Polymer-Based Delivery Systems Alters Cellular Responses to Pneumolysin and Promotes Cell Survival. Metabolites 2021; 11:metabo11120821. [PMID: 34940579 PMCID: PMC8709088 DOI: 10.3390/metabo11120821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Cholesterol is highly abundant within all human body cells and modulates critical cellular functions related to cellular plasticity, metabolism, and survival. The cholesterol-binding toxin pneumolysin represents an essential virulence factor of Streptococcus pneumoniae in establishing pneumonia and other pneumococcal infections. Thus, cholesterol scavenging of pneumolysin is a promising strategy to reduce S. pneumoniae induced lung damage. There may also be a second cholesterol-dependent mechanism whereby pneumococcal infection and the presence of pneumolysin increase hepatic sterol biosynthesis. Here we investigated a library of polymer particles varying in size and composition that allow for the cellular delivery of cholesterol and their effects on cell survival mechanisms following pneumolysin exposure. Intracellular delivery of cholesterol by nanocarriers composed of Eudragit E100–PLGA rescued pneumolysin-induced alterations of lipid homeostasis and enhanced cell survival irrespective of neutralization of pneumolysin.
Collapse
|
8
|
Clarithromycin Inhibits Pneumolysin Production via Downregulation of ply Gene Transcription despite Autolysis Activation. Microbiol Spectr 2021; 9:e0031821. [PMID: 34468195 PMCID: PMC8557819 DOI: 10.1128/spectrum.00318-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae, the most common cause of community-acquired pneumonia, causes severe invasive infections, including meningitis and bacteremia. The widespread use of macrolides has been reported to increase the prevalence of macrolide-resistant S. pneumoniae (MRSP), thereby leading to treatment failure in patients with pneumococcal pneumonia. However, previous studies have demonstrated that several macrolides and lincosamides have beneficial effects on MRSP infection since they inhibit the production and release of pneumolysin, a pneumococcal pore-forming toxin released during autolysis. In this regard, we previously demonstrated that the mechanisms underlying the inhibition of pneumolysin release by erythromycin involved both the transcriptional downregulation of the gene encoding pneumolysin and the impairment of autolysis in MRSP. Here, using a cell supernatant of the culture, we have shown that clarithromycin inhibits pneumolysin release in MRSP. However, contrary to previous observations in erythromycin-treated MRSP, clarithromycin upregulated the transcription of the pneumococcal autolysis-related lytA gene and enhanced autolysis, leading to the leakage of pneumococcal DNA. On the other hand, compared to erythromycin, clarithromycin significantly downregulated the gene encoding pneumolysin. In a mouse model of MRSP pneumonia, the administration of both clarithromycin and erythromycin significantly decreased the pneumolysin protein level in bronchoalveolar lavage fluid and improved lung injury and arterial oxygen saturation without affecting bacterial load. Collectively, these in vitro and in vivo data reinforce the benefits of macrolides on the clinical outcomes of patients with pneumococcal pneumonia. IMPORTANCE Pneumolysin is a potent intracellular toxin possessing multiple functions that augment pneumococcal virulence. For over 10 years, sub-MICs of macrolides, including clarithromycin, have been recognized to decrease pneumolysin production and release from pneumococcal cells. However, this study indicates that macrolides significantly slowed pneumococcal growth, which may be related to decreased pneumolysin release recorded by previous studies. In this study, we demonstrated that clarithromycin decreases pneumolysin production through downregulation of ply gene transcription, regardless of its inhibitory activity against bacterial growth. Additionally, administration of clarithromycin resulted in the amelioration of lung injury in a mouse model of pneumonia induced by macrolide-resistant pneumococci. Therefore, therapeutic targeting of pneumolysin offers a good strategy to treat pneumococcal pneumonia.
Collapse
|
9
|
Splenic macrophages as the source of bacteraemia during pneumococcal pneumonia. EBioMedicine 2021; 72:103601. [PMID: 34619637 PMCID: PMC8498229 DOI: 10.1016/j.ebiom.2021.103601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Severe community-acquired pneumococcal pneumonia is commonly associated with bacteraemia. Although it is assumed that the bacteraemia solely derives from pneumococci entering the blood from the lungs it is unknown if other organs are important in the pathogenesis of bacteraemia. Using three models, we tested the relevance of the spleen in pneumonia-associated bacteraemia. Methods We used human spleens perfused ex vivo to explore permissiveness to bacterial replication, a non-human primate model to check for splenic involvement during pneumonia and a mouse pneumonia-bacteraemia model to demonstrate that splenic involvement correlates with invasive disease. Findings Here we present evidence that the spleen is the reservoir of bacteraemia during pneumonia. We found that in the human spleen infected with pneumococci, clusters with increasing number of bacteria were detectable within macrophages. These clusters also were detected in non-human primates. When intranasally infected mice were treated with a non-therapeutic dose of azithromycin, which had no effect on pneumonia but concentrated inside splenic macrophages, bacteria were absent from the spleen and blood and importantly mice had no signs of disease. Interpretation We conclude that the bacterial load in the spleen, and not lung, correlates with the occurrence of bacteraemia. This supports the hypothesis that the spleen, and not the lungs, is the major source of bacteria during systemic infection associated with pneumococcal pneumonia; a finding that provides a mechanistic basis for using combination therapies including macrolides in the treatment of severe community-acquired pneumococcal pneumonia. Funding Oxford University, Wolfson Foundation, MRC, NIH, NIHR, and MRC and BBSRC studentships supported the work.
Collapse
|
10
|
Domon H, Terao Y. The Role of Neutrophils and Neutrophil Elastase in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2021; 11:615959. [PMID: 33796475 PMCID: PMC8008068 DOI: 10.3389/fcimb.2021.615959] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae, also known as pneumococcus, is a Gram-positive diplococcus and a major human pathogen. This bacterium is a leading cause of bacterial pneumonia, otitis media, meningitis, and septicemia, and is a major cause of morbidity and mortality worldwide. To date, studies on S. pneumoniae have mainly focused on the role of its virulence factors including toxins, cell surface proteins, and capsules. However, accumulating evidence indicates that in addition to these studies, knowledge of host factors and host-pathogen interactions is essential for understanding the pathogenesis of pneumococcal diseases. Recent studies have demonstrated that neutrophil accumulation, which is generally considered to play a critical role in host defense during bacterial infections, can significantly contribute to lung injury and immune subversion, leading to pneumococcal invasion of the bloodstream. Here, we review bacterial and host factors, focusing on the role of neutrophils and their elastase, which contribute to the progression of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
11
|
Reijnders TDY, Saris A, Schultz MJ, van der Poll T. Immunomodulation by macrolides: therapeutic potential for critical care. THE LANCET RESPIRATORY MEDICINE 2020; 8:619-630. [PMID: 32526189 DOI: 10.1016/s2213-2600(20)30080-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
Critical illness is associated with immune dysregulation, characterised by concurrent hyperinflammation and immune suppression. Hyperinflammation can result in collateral tissue damage and organ failure, whereas immune suppression has been implicated in susceptibility to secondary infections and reactivation of latent viruses. Macrolides are a class of bacteriostatic antibiotics that are used in the intensive care unit to control infections or to alleviate gastrointestinal dysmotility. Yet macrolides also have potent and wide-ranging immunomodulatory properties, which might have the potential to correct immune dysregulation in patients who are critically ill without affecting crucial antimicrobial defences. In this Review, we provide an overview of preclinical and clinical studies that point to the beneficial effects of macrolides in acute diseases relevant to critical care, and we discuss the possible underlying mechanisms of their immunomodulatory effects. Further studies are needed to explore the therapeutic potential of macrolides in critical illness, to identify subgroups of patients who might benefit from treatment, and to develop novel non-antibiotic macrolide derivatives with improved immunomodulatory properties.
Collapse
Affiliation(s)
- Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
12
|
Maekawa T, Tamura H, Domon H, Hiyoshi T, Isono T, Yonezawa D, Hayashi N, Takahashi N, Tabeta K, Maeda T, Oda M, Ziogas A, Alexaki VI, Chavakis T, Terao Y, Hajishengallis G. Erythromycin inhibits neutrophilic inflammation and mucosal disease by upregulating DEL-1. JCI Insight 2020; 5:136706. [PMID: 32603314 DOI: 10.1172/jci.insight.136706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Macrolide antibiotics exert antiinflammatory effects; however, little is known regarding their immunomodulatory mechanisms. In this study, using 2 distinct mouse models of mucosal inflammatory disease (LPS-induced acute lung injury and ligature-induced periodontitis), we demonstrated that the antiinflammatory action of erythromycin (ERM) is mediated through upregulation of the secreted homeostatic protein developmental endothelial locus-1 (DEL-1). Consistent with the anti-neutrophil recruitment action of endothelial cell-derived DEL-1, ERM inhibited neutrophil infiltration in the lungs and the periodontium in a DEL-1-dependent manner. Whereas ERM (but not other antibiotics, such as josamycin and penicillin) protected against lethal pulmonary inflammation and inflammatory periodontal bone loss, these protective effects of ERM were abolished in Del1-deficient mice. By interacting with the growth hormone secretagogue receptor and activating JAK2 in human lung microvascular endothelial cells, ERM induced DEL-1 transcription that was mediated by MAPK p38 and was CCAAT/enhancer binding protein-β dependent. Moreover, ERM reversed IL-17-induced inhibition of DEL-1 transcription, in a manner that was dependent not only on JAK2 but also on PI3K/AKT signaling. Because DEL-1 levels are severely reduced in inflammatory conditions and with aging, the ability of ERM to upregulate DEL-1 may lead to a novel approach for the treatment of inflammatory and aging-related diseases.
Collapse
Affiliation(s)
- Tomoki Maekawa
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases.,Division of Periodontology, and
| | - Hikaru Tamura
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases.,Division of Periodontology, and
| | - Hisanori Domon
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases
| | - Takumi Hiyoshi
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases
| | | | - Daisuke Yonezawa
- Center for Advanced Oral Science.,Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Naoki Hayashi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Yamashina, Japan
| | | | | | - Takeyasu Maeda
- Center for Advanced Oral Science.,Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Yamashina, Japan
| | - Athanasios Ziogas
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Yutaka Terao
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Abstract
Antimicrobial resistance is a global concern, and prudent use of antibiotics is essential to preserve the current armamentarium of effective drugs. Acute respiratory tract infection is the most common reason for antibiotic prescription in adults. In particular, community-acquired pneumonia poses a significant health challenge and economic burden globally, especially in the current landscape of a dense and aging population. By updating the knowledge on the common antimicrobial-resistant pathogens in community-acquired respiratory tract infections, their prevalence, and resistance may pave the way to enhancing appropriate antibiotic use in the ambulatory and health care setting.
Collapse
|
14
|
Domon H, Hiyoshi T, Maekawa T, Yonezawa D, Tamura H, Kawabata S, Yanagihara K, Kimura O, Kunitomo E, Terao Y. Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways. Microbiol Immunol 2019; 63:213-222. [PMID: 31106894 DOI: 10.1111/1348-0421.12688] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Hinokitiol, a component of the essential oil isolated from Cupressaceae, possesses antibacterial and antifungal activities and has been used in oral care products. In this study, the antibacterial activities of hinokitiol toward various oral, nasal and nasopharyngeal pathogenic bacteria, including Streptococcus mutans, Streptococcus sobrinus, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Fusobacterium nucleatum, methicillin-resistant and -susceptible Staphylococcus aureus, antibiotic-resistant and -susceptible Streptococcus pneumoniae, and Streptococcus pyogenes were examined. Growth of all these bacterial strains was significantly inhibited by hinokitiol, minimal inhibitory concentrations of hinokitiol against S. mutans, S. sobrinus, P. gingivalis, P. intermedia, A. actinomycetemcomitans, F. nucleatum, methicillin-resistant S. aureus, methicillin-susceptible S. aureus, antibiotic-resistant S. pneumoniae isolates, antibiotic-susceptible S. pneumoniae, and S. pyogenes being 0.3, 1.0, 1.0, 30, 0.5, 50, 50, 30, 0.3-1.0, 0.5, and 0.3 μg/mL, respectively. Additionally, with the exception of P. gingivalis, hinokitiol exerted bactericidal effects against all bacterial strains 1 hr after exposure. Hinokitiol did not display any significant cytotoxicity toward the human gingival epithelial cell line Ca9-22, pharyngeal epithelial cell line Detroit 562, human umbilical vein endothelial cells, or human gingival fibroblasts, with the exception of treatment with 500 μg/mL hinokitiol, which decreased numbers of viable Ca9-22 cells and gingival fibroblasts by 13% and 12%, respectively. These results suggest that hinokitiol exhibits antibacterial activity against a broad spectrum of pathogenic bacteria and has low cytotoxicity towards human epithelial cells.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daisuke Yonezawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Eiji Kunitomo
- Central Research and Development Laboratory, Kobayashi Pharmaceutical, Osaka, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|